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 60 

Abstract 61 

Predicting Origin-Destination demand has always been a challenging problem in transportation. 62 
Conventional demand prediction methods mainly propose procedures for forecasting aggregated temporal 63 
Origin-Destination (OD) flows. In other words, they are primarily unable to predict short-term demands. 64 
Another limitation of these models is that they do not consider the impact of environmental conditions on 65 
trip patterns. Furthermore, OD demand prediction requires two individual steps of modeling: trip 66 
generation and trip distribution. This article presents a framework for predicting hourly OD flows using 67 
the Neural Network. The proposed method utilizes trip patterns and environmental conditions for 68 
predicting demands in single-step modeling. A case study on New York City Green Taxi 2018 trip data is 69 
done to evaluate the method, and the results demonstrate that the network has reasonably accurate OD 70 
flows predictions. 71 

 72 
Keywords: O/D demand prediction; Short-term prediction; Neural Network; Machine 73 

Learning, Trip Generation 74 

 75 

Highlights 76 

 Short-time O/D flow prediction is proposed to be obtained by Neural Network models 77 

 The proposed Neural Network model uses past trip and environmental condition data 78 

 The proposed model may replace aggregate distribution models for short-time predictions 79 

 80 

1. Introduction 81 

In recent years, demand for public transport has increased significantly due to urban 82 

development and population growth. One option to meet this demand is public transportation 83 

network expansion, which is expensive and has many limitations [1]. A more appropriate 84 

solution is network management with the available facilities. Network management includes 85 

strategies and policies to fulfill demand in the system and utilize the facilities more effectively 86 

[2]. A preliminary requirement if devising such management plans is predicting and modeling 87 

users' travel behavior. 88 
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One of the most popular models in demand modeling is the Four-Step Model (FSM), which 89 

contains the following steps: 1. trip generation, 2. trip distribution, 3. mode choice, and 4. route 90 

choice [3]. Although this paper mainly focuses on the first two steps and assumes predicting O/D 91 

demands for a single mode, some dynamic factors are considered that could alter users’ mode 92 

choices. The second step, trip distribution, distributes generated trips to match destinations. In 93 

the third step, mode choice and trip modes proportions are specified, and the user behavior is 94 

modeled using the Consumer Choice theory. Based on this theory, consumers' preference is 95 

affected by utility functions, which are not deterministic [4–6]. By assuming a uniform 96 

distribution for the random component of the utility function across the modes, it can be 97 

concluded that the difference in utilities is only due to the difference in the systematic part. 98 

However, it should be noted that researchers have assumed that the random components are 99 

independent but non-identically distributed [4]. 100 

Nonetheless, reviewing the random component’s distributions is beyond the scope of this 101 

paper, and since it will not be used in this research’s modeling process, the distribution is 102 

assumed to be uniform to explain the impact of the systematic component. As a result, users' 103 

mode choice behavior can be modeled and predicted by considering systematic utility 104 

components, including consumers' socio-economic attributes, the vehicle's operational 105 

characteristics, and the trip distribution table [4]. Moreover, previous studies show that 106 

environmental conditions (e.g., weather data, land use, and other related parameters) have 107 

substantial impacts on travel times, public transportation systems quality, and daily travel 108 

behaviors [7–10]. As a result, these parameters can be considered in the consumer's utility 109 

function. The relationship of these parameters with the utility function (e.g., linear or nonlinear) 110 

would be determined by the Neural Network in this project by creating dummy variables in the 111 

hidden layers; hence, this paper will not discuss the possible relationships with the utility 112 

function. Given that the other parameters, such as the socio-economic attributes (e.g., the impact 113 

of income on the mode choice), do not vary over short periods, this paper disregards such 114 

parameters as they are assumed to be unchanged over the study period. 115 

This paper aims to predict hourly OD flows for a single specific mode using the Neural 116 

Network (NN) without users' information (e.g., income, car ownership). To predict OD flows, 117 

input parameters reflecting the consumer's utility and other parameters regarding trip information 118 

are used. Then to evaluate the proposed method, this study uses New York City Green Taxi 2018 119 

trip data and New York City 2018 weather data. The trip data consists of 8.81 million trip 120 

information, including trips' origin and destination zones number, trip distance, and other related 121 

trip information. Another dataset that is used for training the model includes hourly weather data 122 

of the desired location. 123 

The rest of this article is organized as follows. Section 2 reviews related works on OD 124 

prediction and studies using a similar dataset. Section 3 discusses the proposed framework to 125 

predict OD flows in detail. Then, section 4 describes datasets used to evaluate the proposed 126 

model and data verification by investigating existing trip patterns. Section 5 discusses model 127 

results, and the final section provides the conclusion. 128 

 129 

2. Literature review 130 

Demand modeling has been a prominent research area in transportation for years, and the 131 

FSM has been one of the most comprehensive approaches for demand modeling. This approach 132 

underlies methods to predict mode-specific demand [11]. The Gravity model is widely used for 133 

trip distribution in the trip generation step of the FSM. This model distributes trips between 134 
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zones based on the zones' relative attraction and a function of distances between zones [12]. The 135 

model is calibrated on a single OD table, including aggregated trip data. Thus, applying the 136 

Gravity model for estimating hourly OD flows is not practical. Moreover, the Gravity model 137 

considers a limited number of parameters to calibrate the model. Studies have shown that the 138 

Gravity model output has little similarity with the observed data [13]. It can be inferred from the 139 

Gravity model that the origin and destination zones and a function of distances between the 140 

zones (either temporal or spatial) should be considered in the modeling.  141 

The third step of the FSM involves using discrete choice models to understand user behavior 142 

when selecting transportation modes. The Logit and Probit models are commonly used in this 143 

step, which use utility functions to determine choice probabilities [14,15]. However, collecting 144 

user information to define these utility functions can be challenging. These models have 145 

limitations, such as assuming a constant relationship between dependent and independent 146 

variables, making them inflexible and unable to adapt dynamically. They also perform poorly 147 

when input variables are multicollinear [16–18]. This paper focuses on parameters that can affect 148 

user choices based on environmental conditions, rather than explicitly modeling mode choice. 149 

Recent studies have explored the use of Neural Networks (NN) as an alternative to 150 

traditional methods for predicting OD matrices and mode choices [19–23]. Researchers have 151 

compared the accuracy and performance of NN models with other statistical methods, such as 152 

the Multinomial Logit Model (MNL) [24], mode choice modeling [25], and Bayesian Model 153 

Tree [26]. Xiong et al. [27], proposed a framework that used Graph Neural Networks (GNN) and 154 

Kalman filters to predict OD flows based on historical link flows. Yaldi et al. [28] used NN 155 

models with three input parameters to predict trip flows. However, these approaches have 156 

limitations in considering the factors impacting OD flows and user behavior. The current paper 157 

proposes a new approach that uses NN models to predict trip flows based on trip patterns, 158 

environmental conditions, and consumer preferences. Like the method proposed by Xiong et al. 159 

[27], the framework used by Yaldi et al. [28] limits input parameters to trip interchange 160 

attributes, ignoring environmental attributes affecting users' behaviors. In contrast, the current 161 

paper implements the NN to predict trip flows using trip patterns and environmental conditions 162 

considering consumer preferences.  163 

Researchers have realized that environmental conditions may impact traffic patterns in 164 

various ways. Liu et al. claimed that weather parameters, including temperature, snowfall, and 165 

precipitation, substantially impact travel behaviors [7]. They showed that these weather 166 

parameters affect all travel modes, including pedestrian walking, bicycle, private car, and public 167 

transport. In another study, Rudloff et al. evaluated relations between weather conditions and trip 168 

patterns using mode choice models. They estimated choice models' parameters based on 169 

household survey data from Vienna, employing the maximum likelihood approach. Their results 170 

showed that weather conditions significantly influence transport choice and travel behavior [8]. 171 

Hyland et al. investigated the effects of weather conditions on travel mode choice using a stated 172 

preference (SP) survey in Chicago and realized that commute choice patterns differ vastly in 173 

various weather conditions. Furthermore, they claimed that the impacts of weather on mode 174 

choices vary across the community [29]. Thus, the present paper considers weather conditions as 175 

effective environmental parameters while training the network for predicting OD flows. 176 

The NN is mainly trained on the existing trip patterns to learn future predictions. 177 

Consequently, it is essential to create parameters considering different trip patterns to have a 178 

more accurate estimate of the future. Studies have shown that different trip behaviors are 179 

observed on weekends and holidays compared to workdays. Dong et al. [30] used trajectory data 180 
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collected from ride-hailing services in Beijing, China, to investigate urban trip patterns. Their 181 

results showed tangible differences in trip distributions between particular zones. Specific hourly 182 

patterns also justify considering the hour of the day as an effective parameter in network training. 183 

They observed a notable difference between workday and non-workday trip patterns for various 184 

trip purposes. Other researchers have also shown the importance of the time of the day in 185 

predicting OD flows [31–33]. These results reveal the importance of considering weekends, 186 

holidays, and hour of the day in model training. 187 

Another aspect of this research is dealing with big data for transportation analysis. In this 188 

regard, numerous research uses big data for various types of analysis. To name a few related 189 

research, [34,35] use big data for analyzing a specific mode of transportation. The latter also 190 

focuses on the impacts of COVID-19 on bike-sharing systems. Another similar approach to 191 

dynamically predict trip patterns using the NN is to apply agent-based day-to-day models. In this 192 

field, many papers focus on trip-related information and how it can impact traffic conditions by 193 

applying agent-based models [36,37]. Based on the nature of the problem, which includes 194 

various parameters impacting traffic patterns and mode choices, this paper opts to utilize the NN 195 

for predicting OD flows. 196 

This article uses 2018 New York City taxi data from NYC Open Data to evaluate the 197 

proposed framework's performance. Related works on similar datasets are as follows. Deri et al. 198 

used similar 2010-2013 New York City taxi data and presented a solution for estimating taxi 199 

trajectories using Dijkstra's algorithm with a significantly reduced computation time [38]. In 200 

another study, Freire et al. discussed cleaning Spatio-temporal data. They used 2008-2012 New 201 

York City taxi data to observe the anomalies in the dataset. Results showed that data exploration 202 

needs users' assistance, and the lack of adequate information about events prevents the system 203 

from discerning anomalies [39]. Patel et al. proposed an approach to visually explore big OD 204 

data and determine average hourly drivers' revenue. They used 2014 New York City taxi data to 205 

evaluate their method. Unlike related works using a similar dataset [40], this paper aims to 206 

predict OD flows considering the abovementioned parameters. 207 

 208 

3. Materials and Methods 209 

This section describes data cleaning procedures and obtaining various input and output 210 

parameters required for modeling and the network structure. Input parameters (independent 211 

parameters in modeling) indicate parameters used as the network's input to predict output 212 

parameters (dependent parameter in modeling), the OD flow per hour. In other words, hourly 213 

input data are used to predict the hourly OD flows. This section divides the proposed algorithm’s 214 

procedure into four major steps, as summarized below: 215 

 216 

 Step 1: Obtaining Input Parameters (Independent Parameters) data for training and testing the NN 217 
(See Section 3.1). This step consists of the following minor steps: 218 
o 1A: Obtaining OD zone IDs and hour of the day (See Section 3.1.1) 219 
o 1B: Obtaining interzonal travel times (See Section 3.1.2) 220 
o 1C: Obtaining binary parameters (See Section 3.1.3) 221 

 Step 2: Obtaining output parameters data (number of trips for each pair of OD zones at each time 222 
step) for training and testing the NN (See Section 3.2). 223 

 Step 3: Cleaning obtained data to remove any outliers that may deteriorate the NN accuracy (See 224 
Section 3.3). 225 

 Step 4: Reshaping input and output data matrices to be fed into the NN for training (See Section 226 
3.4). 227 
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 Step 5: Standardize data to avoid bias in training the NN (See Section 3.5). 228 
 Step 6: Building the NN’s structure and training the network (See Section 3.6). 229 

 230 
 According to the possible factors affecting trips described in earlier sections, this paper 231 

considers the network's input parameters as follows: 232 
 Interzonal travel times, including calculated hourly travel times for all possible OD pairs  233 
 Origin zone, defined by a unique ID 234 
 Destination zone, defined by a unique ID 235 
 Hour of the day, specified by a number within the range zero to 23 236 
 Weekend/ weekday binary classification 237 
 Holiday/ nonholiday binary classification 238 
 Temperature, including hourly resolution records 239 
 Precipitation, including hourly resolution records 240 
 Snow depth, including hourly resolution records 241 

This paper assumes that certain parameters such as passenger count and fare amount cannot be 242 

determined without access to corresponding demand data or algorithms used to calculate these 243 

parameters. Therefore, these parameters are not used as inputs in the model. Additionally, input 244 

parameters with intercorrelation are omitted, such as distance between origin and destination 245 

zones. The procedures for obtaining each parameter are explained in detail below. 246 

 247 

3.1. Obtaining input data 248 

As described earlier, each hourly input record comprises nine factors. Three of these nine 249 

parameters, which are temperature, precipitation, and snow depth, can be obtained directly from 250 

datasets for each time step. Obtaining the remaining six requires additional steps, which are 251 

described below. 252 

 253 

3.1.1. Obtaining OD zone IDs and hour of the day 254 

In this research, the "hour of the day" variable is defined as the departure hour for each trip. 255 

This definition may raise an error since trips are not necessarily finished in the same hour as they 256 

started. Since it is assumed that the desired trips only consist of urban trips, trip durations would 257 

be reasonably short; hence the error is negligible. Zone IDs can be defined as the assigned IDs 258 

for each Traffic Analysis Zones (TAZs). Therefore, each trip's destination and origin can be 259 

determined with two IDs demonstrating its origin and destination. Traffic Analysis Zones can be 260 

specified using the available datasets for the research area or by defining the TAZs using the 261 

available methods [41].  262 

 263 

3.1.2. Obtaining interzonal travel times 264 

The Gravity model examines how distances between zones impact OD flows, but this article 265 

suggests using hourly travel times between zones to consider the impact of traffic flows. Hourly 266 

travel times can be obtained from various services like Google Maps, but the calculation of 267 

shortest paths requires real-time traffic data. Since this research aims to predict hourly OD flows, 268 

all input and output data should be aggregated into hourly records. The article proposes 269 

calculating average travel times between OD pairs in each hour after removing outliers to 270 

represent the hourly travel time for all the trips between the OD zones. Section 3.3 provides more 271 
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details on the removal of outliers. Then, interzonal hourly travel times are obtained as a linear 272 

matrix, 
kTT , according to Equation (1). 273 

 274 

1,1, 1, , , , , ,,..., ,...., ,...,k k n k i j k n n kTT tt tt tt tt                                                                                           (1) 275 

 276 

kTT  = linear travel time matrix in the hour k, 
, ,i j ktt  = travel time for the ij OD pair for the hour k. 277 

 278 
Depending on the dataset used, travel times for the OD pairs may be obtained using a 279 

particular method available. As will be discussed in Section 4.1, the dataset used in this study 280 

includes the start time and end time for each trip record. Therefore, each trip’s travel time can be 281 

simply calculated by computing the in-time vehicle for each trip.  282 

 283 

3.1.3. Obtaining binary parameters 284 

As described in section 2, users have different traffic behaviors on weekends and holidays 285 

than on regular weekdays. Two binary parameters are defined to address this variation: 286 

"Weekend" and "Holidays," parameters which indicate whether the trip was on the weekend or 287 

holiday or not, respectively. These parameters' values are equal to zero if the desired day is not a 288 

holiday or a weekend. It is worth mentioning that the holidays can be specified using the national 289 

holidays' list for the desired database. After obtaining all parameters as discussed, linear matrices 290 

of hourly attributes, 
katt  can be created according to Equation (2). The data source for obtaining 291 

these parameters will be discussed in Section 4.2. 292 

 293 

 , , , , ,k k k k k k katt hr weekend holiday temp PCP SD                                                                               294 

(2) 295 

katt  = linear attributes matrix of the hour k, and for the hour k: 
khr   = the hour k of the day, 

kTemp  = 296 

the hour k hourly temperature, 
kPCP  = the hour k hourly precipitation, 

kSD  = the hour k snow depth. 297 

 298 

3.2. Obtaining output data 299 

The network's output parameter for each hour is an OD flow matrix showing trip counts 300 

between each OD pair. The OD flow matrices at each hour are created by counting the trips 301 

between each pair of OD in the trips database. In this study, origins and destinations are 302 

considered Traffic Analysis Zones (TAZs), which can be specified by assigning zone IDs. The 303 

hourly OD matrix is created as shown in Equation (3). 304 

 305 

 306 

 
1,1 1,

,

,1 ,

                                                                                                                           3

n

k i j

n n n

T T

OD T

T T

 
 

  
 
 

307 

 308 
 309 

, ,i j kT  = trip counts from zone i to zone j, for the hour k. k = the data record index representing the hour 310 

k  311 
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 312 
It should be noted that hourly trips are counted based on their start time (i.e., departure time). 313 

These matrices are then reshaped to linear matrices, as shown in Equation (4), to simplify the 314 

network’s training process since it would be less baffling to acquire one row of data per record 315 

when feeding the input data to the network. 316 

 317 

  318 

 1,1, 1, , , , , ,                                                                                             4k k n k i j k n n kOD T T T T    319 

 320 

 321 

These matrices are then added to the final output matrix, 𝑇, according to the occurrence time, 322 

starting from the first hour of the initial day (k = 0) to the last hour of the last day in the period (k 323 

= t). Thus, the output matrix, 𝑇, would be a  , t n n  dimensional matrix according to Equation 324 

(5). Each row of the output matrix (i.e., dependent variable) indicates hourly trip counts for an 325 

OD pair. The predicted results after training the model will also follow the same format. 326 

 327 

 
0

                                                                                                                                                 5

t

OD

T

OD

 
 


 
  

328 

 329 

 330 

3.3. Data Cleaning 331 

The existence of errors in data will result in bias in the network's training process. As a 332 

result, possible errors should be omitted from the data before using it for training. This section 333 

discusses removing outliers and possible errors from input and output data. To do so, the Z-score 334 

is calculated for each record to identify outliers in the data. The Z-score indicates the distance 335 

between the observed value and the sample's mean in the standard deviation units [42]. The Z-336 

score can be calculated using Equation (6). 337 

 338 

                                                                                                                                                    6
x

z





339 

 340 
 341 

z = the standard score, x = the observed value,   = the mean of the sample,   = the standard 342 

deviation of the sample 343 
 344 

After calculating the Z-score, records with 3z   are considered outliers (preserving 99.8% of 345 

the data range). It should be noted that the threshold for removing the records is calculated after 346 

investigating the results by examining different thresholds. This procedure should be done for all 347 

input and output parameters with possible errors. Besides, constraints should be set for each 348 

parameter to ensure that all remaining data are valid. For example, travel time values should be 349 

positive and over 60 seconds. Values exceeding these ranges should be omitted based on the 350 

parameter range. 351 
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 352 

3.4. Reshaping data matrices 353 

So far, the origin and destination zone IDs have not been determined in the input and output 354 

matrices. As discussed before, each pair of OD has a unique traffic pattern. So, it is crucial to 355 

consider origin and destination zones as parameters for training the model. Then, input and 356 

output data are reshaped so that each row of data matrices represents dependent and independent 357 

values for a specific OD pair in a specific hour. The final output matrix, 𝑇, would be as shown in 358 

Equation (7). 359 

1,1,0

0

, ,0

, ,

, ,

n n

k

i j k

t

n n t

T

OD

T

T OD

T

OD

T

 
 

   
   
   
    
   
   
    

 
  

                                                                                                                    (7) 360 

 361 

To create the final input matrix, X , the travel times matrices, 
kTT , should be first reshaped 362 

similar to the output matrix. Then, trip attributes parameters can be appended, including origin 363 

and destination zone IDs for each record, duplicating common attributes for all the trips in the 364 

desired hour. As a result, the final input matrix, X , is according to Equation (8). 365 

 366 

1,1,0 0 0 0 0 0 0

, ,

, ,

i j k k k k k k k

i j t t t t t t t

tt i j hour weekend holiday temp PCP SD

X tt i j hour weekend holiday temp PCP SD

tt i j hour weekend holiday temp PCP SD

 
 
 
 
 
 
 
  

                                  (8) 367 

 368 

, ,i j ktt  = calculated travel time for the origin zone i and the destination zone j in the hour k 369 

  i ,  j = origin and destination zone IDs for each record 370 

 371 

 3.5. Data Standardization  372 

 Due to the significant variances between parameter values (either the difference between 373 

values of one parameter or the diversity between the data range of various parameters), the 374 

network's training process may be biased. As a result, large trip counts in the OD matrix, which 375 

are vital for modeling, could be recognized as outliers. All parameters’ values are standardized in 376 

their category to address this issue, making the mean of each parameter zero and the standard 377 

deviation of parameter one. Standard values are calculated using Equation (9) [43]. 378 
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     379 

                                                                                                                                                     9
x

x






380 

 381 
 382 

x  = the standardized value, x  = the observed value,   = the mean of the sample,   = the standard 383 

deviation of the sample 384 
 385 

It should be noted that the network's predicted data will be calculated in the normalized format 386 

and must be converted to the original format for evaluating the model. 387 

 388 

3.6. The Neural Network's structure 389 

The Neural Network is a supervised machine learning method in which the network is 390 

trained first using a set of data with pre-defined outputs. The network tries to minimize the 391 

defined objective function to achieve the most desirable results by finding connections between 392 

input and output nodes. The NN is composed of multiple layers including input, hidden, and 393 

output layers. Hidden layers identify possible relations between parameters and provide a 394 

representation of data with multiple layers of abstraction. Each layer has a specific activation 395 

function to transmit the data format for the next layer. The NN optimizer updates weights based 396 

on the gradients computed in each iteration through an iterative backpropagation process [44]. 397 

The NN used in this paper has two hidden layers, as illustrated in Figure 1. The input layer is 398 

provided with the input parameters and transmits input data directly to the next layer via the 399 

neurons. As mentioned earlier, the number of nodes in this layer equals the number of input 400 

parameters, which is nine. The input and output layers' dimensions are 9 and 1, implying the 401 

input feature vector's dimensionality and prediction value. The predicted value here is the hourly 402 

OD flow, and each predicted value defines the predicted flow for a specific OD pair in a specific 403 

hour of the desired period. To determine the number of nodes in the hidden layer, different 404 

numbers of nodes can be chosen, and then the output results of the network can be compared. As 405 

a general experimental rule, the number of nodes in the hidden layers is chosen close to the 406 

average input and output number of nodes. After investigating the results with different counts of 407 

nodes for the hidden layers, 7 and 5 nodes are finally considered for the hidden layers, 408 

respectively, as shown in Figure 1.  409 

Activation functions are added to the NN to convert the previous layer's output values into 410 

desirable input values for the next layer. The ReLU (Rectified Linear Unit) activation function is 411 

used for hidden layers in this network as it offers better performance and generalization than the 412 

other activation functions used for predicting a numerical value [45]. The ReLU function can be 413 

written as Equation (10). 414 

 415 

     
,              0

max 0,                                                                                  10
0,             0

x if x
ReLU x x

if x


  


416 

  417 

 418 

As illustrated in Figure 1, the output layer connects the last hidden layer to the output values. 419 

This layer has only one node, which is the network output value. Activation functions like the 420 

Sigmoid function result in output values between 0 and 1 that predict categorical values. The 421 
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output values in this work are numerical; thus, the Linear function is used as an activation 422 

function for the output layer, expressed as Equation (11). 423 

 424 

 425 

                                                                                                                                                  11f x ax426 

 427 

 428 

The Mean Squared Error (MSE) loss function is used in this study to calculate the difference 429 

between the actual and the prediction value. This function computes the average squared 430 

difference between the actual and predicted values using Equation (12) [43]. The MSE is also 431 

used as the metric parameter for keeping track of performance measures (i.e., the objective 432 

function of the NN). 433 

 434 

 435 

   
2

1

1
                                                                                                                          12ˆ

n

i i

i

MSE y y
n 

 436 

 437 
 438 

iy  = the actual value, ˆ
iy  = the predicted value, n  = number of predicted values 439 

 440 
The "learning rate" is a crucial hyperparameter in NN that determines the step size for 441 

weight updates during the optimization process. Overfitting is a common issue when data is 442 

similar to each other in time, and to avoid it, the "shuffle" parameter should be used while 443 

training the model. The Adam optimizer is used for updating weights in the network, and it can 444 

adjust the learning rate with the "decay" parameter. The network's weights are updated iteratively 445 

using batches, with each batch representative of the dataset, and the batch size should be large 446 

enough to include non-zero values. The dataset is divided into three splits of training, testing, and 447 

validation, with each containing a different percentage of the data. The optimal values for the 448 

hyperparameters require evaluating different values on the dataset. 449 

The process of updating the weights of a neural network is iterative and occurs over many 450 

epochs. An epoch consists of one forward and backward pass of the entire dataset, which is 451 

usually too large to be fed into the network at once, so it is divided into batches. It is important to 452 

choose a batch size that is representative of the dataset to prevent errors. The batch size 453 

parameter should be large enough to include non-zero values in a batch since multiple output 454 

values are often zero. The correct values for the batch size and epoch parameters should be 455 

chosen by assessing different data values. Finally, the dataset is split into three sets: training, 456 

testing, and validation, with percentages of 56%, 30%, and 14%, respectively. 457 

 458 

4. Case Study 459 

 A case study was done using open-source trip and weather datasets to evaluate the proposed 460 

framework. These datasets are reviewed in detail in the following sections. 461 

 462 

4.1. Trip Data 463 

This study uses open-source data provided by the Taxi and Limousine Commission (TLC) 464 

available on the NYC Open Data website [46]. The dataset consists of 8.81 million New York 465 
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Green Taxi 2018 trip records. Each record includes pickup date and time, drop-off date and time, 466 

trip's origin and destination zones ID, and other fields shown in Table 1 (redundant fields for 467 

modeling such as tax and distance are ditched). 468 

According to the City Zones dataset available on the NYC Open Data, zone IDs denoted in 469 

Table 1 represent specific taxi zones defined by the Department of City Planning [47]. As shown 470 

in Figure 2, there are 265 zones numbered from 1 to 265. Table 2 shows samples of this dataset. 471 

This study uses this definition of zones for the case study instead of TAZs for specifying origins 472 

and destinations. 473 

 474 

4.2. Weather Data 475 

Section 2 discussed that the weather conditions substantially impact daily travel behaviors. 476 

This study uses an open-source weather dataset from the National Climatic Data Center (NCDC) 477 

[48]. This dataset contains hourly recorded weather information, including date and time, 478 

temperature, wind speed, wind direction, 1-hour liquid precipitation, 6-hour liquid precipitation, 479 

and snow depth, as shown in Table 3. 480 

 481 

4.3. Data Preparation  482 

Now that the datasets are explained, procedures done on the datasets described in section 3 483 

are summarized here. After setting constraints for each parameter, values exceeding these 484 

constraints are omitted. Then, examining the remaining data reveals that there are apparently no 485 

outliers remaining in the dataset, as they were possibly removed in the last step. However, there 486 

would still be outliers while calculating average travel times, which will be removed based on 487 

the Z-score. Moreover, additional constraints should be set for some parameters. For example, 488 

calculated travel times with minimal positive values (e.g., less than a minute) may not be omitted 489 

based on the initial constraint of being positive and also may not be detected as outliers. After 490 

cleaning the datasets from possible errors, only the data for the first quarter of the year (90 days) 491 

is used in this study to prevent inundating the network while training. So, indices of data rows 492 

considering the available 265 zones are calculated as 265*265*90*24 = 151,686,000 indices. 493 

 494 

4.4. Data Verification  495 

It is necessary to verify the validity of the acquired data to prevent possible errors before 496 

training the network. Data verification can be done by examining the conformity of trip patterns 497 

with previous studies. As a result, average trip patterns are investigated in this section to verify 498 

the validity of the dataset. To investigate the trip patterns, average hourly trip counts were 499 

computed for all weekends and weekdays in February 2018. To show the contrast between the 500 

trip patterns during the holidays and non-holidays, hourly trip counts of 1
st
 January 2018 (New 501 

Year's Day) are computed as a sample. These patterns are plotted in Figure 3.  502 

As illustrated in Figure 3, there are two peak hours in the morning and the evening for trip 503 

counts in the weekday average trip pattern, which are 8 a.m. and 6 p.m., respectively. The 504 

weekend average trip pattern shows that the morning peak hour is vanished (since there are no 505 

work-based trips in the morning) and the midnight trip is increased significantly compared to the 506 

average weekdays. The trip patterns from previous studies can be compared to similar hourly 507 

patterns of taxi trips on weekdays and weekends to validate the results [30,49]. The main 508 

difference between the holidays and non-holiday trip patterns (including non-holiday weekends) 509 

is that there are numerous holidays, and generally, traffic patterns are changed based on the 510 
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holiday and related celebrations or rituals of the day. The reasons mentioned above substantially 511 

impact trip patterns (e.g., travel destinations change vastly). For instance, the hourly trip pattern 512 

on 1
st
 January 2020 plotted in Figure 3 shows substantial differences compared to weekday and 513 

weekend trip patterns. 514 

Trip patterns between OD zones can also be inspected to see differences in the patterns 515 

between weekends, workdays, and holidays. The weekday average trip pattern shows that trips 516 

between zones 74 and 75, East Harlem North and East Harlem South neighborhoods, have the 517 

most frequency at different day hours, including the morning and evening peak hours. According 518 

to the Office of the New York State Comptroller report, East Harlem is mainly a residential 519 

neighborhood with concentrated small businesses [50]. Weekends average trip pattern exposes 520 

that trips between zones 41 and 42 (Central Harlem and Central Harlem North neighborhoods) 521 

and internal trips of zone 7 (Astoria zone of borough Queens) have the highest frequency at 522 

different hours of the day. Inspecting New York City's Zoning and Land Use Map [51] indicates 523 

that Central Harlem and Astoria are commercial neighborhoods, including numerous recreational 524 

places, specifically the Astoria. Internal trips of the Astoria neighborhood also showed the 525 

highest frequency at different hours in the selected holiday. According to the City Zones dataset, 526 

these paths are illustrated in Figure 4. 527 

These results gave us good insights into the differences between weekdays, weekends, and 528 

holiday trip patterns and the need to use binary parameters to address these variances. It can also 529 

be derived that the demand in the origin and destination zones is a function of land use. 530 

Therefore, it can be verified that the input data have rational patterns and can be used for training 531 

the network. 532 

 533 

5. Results 534 

5.1 Network Results 535 

“Keras is a deep learning API written in Python, running on top of the machine learning 536 

platform TensorFlow. It was developed with a focus on enabling fast experimentation.” [52] This 537 

package provides the required functions for training the network in Python. After evaluating 538 

different values for the network parameters, a summary of the chosen values for the network's 539 

parameters is given in Table 4. After manually inspecting the network’s prediction accuracy, 540 

these values are chosen by evaluating different values for each parameter.  541 

As shown in Figure 5, it is observed that the error value converges to a relatively constant 542 

value after performing several epochs. Consequently, the number of epochs is chosen to be 10. 543 

The NN training results indicate the presence of MSE = 0.5798 after ten epochs, which is 544 

reasonable. It should be noted that these results cannot be compared directly to results from the 545 

trip distribution models, including the Gravity Model and the Fratar model, since these models 546 

predict aggregated trips for a period of time. On the contrary, this paper proposed a method to 547 

predict hourly trip counts. However, the hourly prediction may cause an increase in error, which 548 

comes from numerous possible scenarios in each hour. The output results of each epoch can be 549 

seen in Figure 5, and the loss reduction trend in Figure 6. The middle oscillations in Figure 6 550 

indicate the beginning of a new epoch. The error reduction trend verifies that the network is 551 

working correctly. As shown in Figure 5, loss values decrease rapidly at first and then slowly 552 

after the third epoch. 553 

It can be inferred from the results that the loss value is minimized after a limited number of 554 

iterations, and there is no need to increase the number of epochs. The network performance is 555 

then investigated on one million random samples from the test dataset. It is worth mentioning 556 
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that the predicted results are rescaled to the original values and rounded to the nearest integer 557 

since they represent trip counts. Test results are given in Table 5.  558 

Test results show that the number of predicted zero values in the OD matrix and the total 559 

predicted trips perfectly match the actual values, and the Mean Squared Error of 0.0348 confirms 560 

this. R Squared value of 0.453 shows the model's acceptable fit, but possible reasons for the R 561 

Squared's relatively small value are discussed here. One million samples are approximately 562 

equivalent to 14 hours of trips since there are 70,225 possible paths (a path is a possible route 563 

between OD pair) between zones in an hour, and the results show that there are 15,100 trips in 564 

one million random samples of the trips. It can be deduced that there is an average of 1,100 trips 565 

for the available 70,225 paths in one hour, which means the average hourly trip count for each 566 

path is a small value. It can also be derived from the results that the average value for non-zero 567 

trip counts is approximately equivalent to 1.7 trips. Hence, slight deviations from the actual 568 

value can be due to the rounded predicted values (e.g., the predicted value of 3 for the actual 569 

value of 2), decreasing the Coefficient of Determination (R Squared) vastly. As a result, R 570 

Squared's small value can not necessarily represent the model's inadequate goodness of fit, and 571 

the MSE is a better quantifier to evaluate the model's goodness of fit. Suggested solutions to 572 

reduce the existing errors are given in the discussion. 573 

 574 

5.2 Validating Network Results 575 

In this section, the NN’s results are compared to the Gravity model to validate the results. As 576 

mentioned before, the NN predicted hourly trips, and the Gravity model generates aggregated 577 

trip predictions; therefore, these results cannot be compared directly. So, the results of the 578 

Gravity model should be compared to the aggregated results of the NN. Although this study aims 579 

to predict hourly flows, comparing the aggregated form of the results with the traditional models 580 

is compulsory for validation. The Gravity model's general form can be expressed in Equation 581 

(13) [53,54]. 582 
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The travel cost function in Equation (13) (friction function) is any decreasing function of the 598 

travel cost (which is assumed to be the travel time in this study). Hence, the friction function can 599 

be considered as the power function shown in Equation (16) [55]. 600 

 601 

 602 
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 605 

ijc  = average travel time between zones i and j 606 

n  = power variable 607 

 608 

Since the Gravity model requires total productions and attractions for the prediction period 609 

(i.e., the NN test data), they should be estimated using the trip generation models. The trip 610 

generation models require access to socio-economic data, which are assumed to be unavailable in 611 

this study. As a result, zones' productions and attractions are estimated by applying linear 612 

regression to the train data to predict the number of attracted (
jA ) and produced (

iP ) trips for the 613 

test set. The training and test data in this section cannot be the same as before since the Gravity 614 

model predicts aggregated trips for the prediction period. Consequently, hourly records of the 615 

dataset are aggregated into daily records. The test data includes 27 daily productions and 616 

attractions records for all zones (30% of the whole period), and the training data includes 63 617 

daily records. Although the trip generation estimation should be for the desired 27 days, the 618 

training and the test data are aggregated into data points of 9 days to increase accuracy. In other 619 

words, the test data is aggregated into three data points (each one including aggregated 620 

productions and attractions of all zones for nine days period), and the training data is aggregated 621 

into seven accumulated data points.  622 

Then, linear regression is applied to each zone's seven data points to predict future 623 

productions and attractions. It is worth mentioning that the linear regression equation is 624 

calibrated for the productions and attractions of each zone separately. Hence, 265 2 530   625 

linear regression equations are calibrated, predicting three data points for future periods. Zones' 626 

production and attraction values are then compared to the actual values. Table 6 shows R 627 

Squared values of predictions for the zones' productions and attractions. 628 

Linear regression results show a reasonable fit of the predicted productions and attractions 629 

with an R Squared of 0.99 and a reasonable error in predicting the total trips. The three predicted 630 

data points for each zone's attractions and productions are then aggregated to calibrate the 631 

Gravity model. As shown in Equation (14), the Gravity model requires average travel times for 632 

the forecasting period. The required travel times are calculated by averaging the non-zero travel 633 

times after removing the outliers, as described in section 3.3. It should be noted that the average 634 

travel times are calculated using the data from the 63-day training dataset. Since the zero average 635 

travel times cannot be used in Equation (16), the zone pairs with an average travel time of zero 636 

are assumed to have no trip interchanges. However, this assumption may increase the accuracy 637 

of the results since zone pairs with no trip interchanges in the 63 days training period are forced 638 

to have no trips in the future. 639 
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After implying the travel times in Equation (13), the 
iF  and 

jK  balancing factors are 640 

calibrated through an iterative process to ensure that the conditions expressed in Equation (14) 641 

and Equation (15) are met. The stop condition of this iterative process is as follows: 642 

 643 
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ijT  = total trips between zones i and j  646 

iP  = total trips produced by zone i  647 

jA  = total number of trips attracted to zone j  648 

v  = set of 265 zones 649 

 650 

 Then, the calibration process is done with different power variables, n, in Equation (16) to 651 

minimize the error. Table 7 shows the Gravity model results with different values for the power 652 

variable, including the iterations needed to meet the convergence condition expressed in 653 

Equation (17). 654 

As shown in Table 7, n = 2 had the lowest error in prediction with an MSE of 2340 and an R 655 

Squared of 0.84. However, the aggregated NN results for the same period showed an MSE of 656 

less than 25. One point worth mentioning from the above table is that the R Squared value for the 657 

power variable of 6 is negative. While the R Squared name suggests that it may always range 658 

from 0 to 1, some exceptions may also be negative. In cases where the model predictions are not 659 

being compared to the observation that were used for calibrating the model, the Total Sum of 660 

Squared Errors component (
resSS ) is not included in the Total Sum of Squares (

totSS ) [56]. 661 

 662 
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 666 

resSS = Total Sum of Squares of Residuals 667 

totSS = Total Sum of Squares 668 

 669 
 Hence, as Equation (18) suggests, the R Squared value could also be negative in such cases. 670 

It should be noted that R Squared has been criticized for the lack of reliability as a measure of 671 

predictive accuracy [57]. Therefore, a more suitable measure of accuracy should be used to 672 

compare the prediction results, which is MSE in this case. Moreover, the NN uses MSE as the 673 

metric to optimize the learning process, and as a result, the network tries to reduce MSE in each 674 

iteration. The results showed that the NN had a clear superiority to the Gravity model in this 675 

case, although the purpose of this study was to predict hourly OD flows, and the Gravity model 676 

is unable to predict the flows on an hourly basis. Besides, forecasting the future trip distribution 677 

using the Gravity model required additional steps to estimate the future trip generations (i.e., the 678 

second step of the FSM), while the NN can predict trip distributions more precisely without 679 

requiring further steps. Another point worth mentioning is that, as mentioned before, the output 680 
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results of the gravity may not be directly compared to those of the NN. The reason is that the 681 

Gravity model predicts aggregated trips for a period of time, while the NN in this study aims to 682 

predict hourly trips. Although it can be argued that the aggregated trips of the NN output results 683 

can be compared to the Gravity model results, given that the NN is optimized to predict the 684 

hourly hours, this study is not focusing on such comparisons using visual descriptions (e.g., 685 

comparison plots) 686 

 687 

6. Conclusion and Discussion 688 

OD matrix prediction for a specific transit mode using traditional methods has always faced 689 

numerous problems, including data collection. Using traditional methods requires data collection 690 

for the trip generation and trip distribution steps of the FSM. This data includes users' socio-691 

economic characteristics and travel expenses information, which requires time-consuming and 692 

costly collection methods, such as filling out questionnaires. Finally, due to the nature of these 693 

collecting data methods, there is a significant error in the collected data, and it is also challenging 694 

to update them periodically. 695 

This paper aimed to facilitate this procedure using the data from data-driven transportation 696 

systems. Prediction results showed proper fit and the logical dependence of the output data on 697 

the input data. Other advantages of predicting trips using the NN compared to the traditional 698 

modeling methods are considering more scenarios (weekends/holidays and more), quickly 699 

updating the network with recent changes, and adequately forecasting OD flows on an hourly 700 

basis. 701 

It can be inferred from the results that there are considerable differences in the number of 702 

trips between zones. As a result, some output values, which are numerically significant and 703 

essential to be included in predictions, are detected as outliers and have insignificant impacts on 704 

model training. As a potential research extension, paths between zones can be classified based on 705 

their traffic volume (e.g., low traffic, medium traffic, and high traffic) and then modeled for each 706 

category separately. Creating dummy variables indicating each category can also be done 707 

instead. 708 

It should also be noted that the results represent the predicted part of the demand that taxi 709 

drivers could handle. In other words, there would be other trip demands exceeding the taxi 710 

service supply; therefore, as there are no data for the unanswered demands in the dataset, the 711 

calibrated model disregards such demands. A potential research extension includes datasets 712 

containing users' requests to consider the drivers' unhandled trip requests, especially during peak 713 

hours. 714 

As described in section 4.4, holiday trips showed various patterns depending on the 715 

occasion. A potential research direction is to model each type of trip discussed in this article 716 

separately (e.g., separate modeling for weekdays and weekends) to increase accuracy. Using 717 

algorithms to detect abnormal trip patterns (e.g., gatherings, special occasions that are not 718 

officially registered, and social events) and separating them from other data used for training the 719 

network can also improve results. Trip data used in this study included origin and destination 720 

zones for each trip, including precise longitude and latitude of origins and destinations, resulting 721 

in more accurate travel times and improved results.  722 

 723 
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Figure 2. Structure of the Neural Network in this study 

Figure 2. New York City taxi zones 
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Figure 3. Weekday, Weekend and Holiday hourly trip patterns 

Holiday trip data as of 1
st
 January 2018, Weekend and Weekday trip data are 

average trip counts of all weekends and all weekdays of February 2018 respectively. 

Figure 4. Paths with highest trip counts 
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 903 
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 905 

 906 
Table 8 - Trip record fields sample 907 

Field 
Pickup 

Date Time 

Dropoff 

Date Time 

PU Location 

ID 

DO 

Location ID 

Passenger 

Count 
Trip Distance 

Description 

Passenger 

pick-up date 

and time 

Passenger 

drop-off 

date and 

time 

Destination 

zone ID 

Origin zone 

ID 

Number of 

passengers 

Distance traveled 

from origin to 

destination 

Sample 
01/01/2018 

12:18:50 AM 
01/01/2018 

12:24:39 AM 
43 75 2 3.5 mi 

 908 
Table 9 – 909 New York City 

zones dataset 910 sample 

 911 

 912 

 913 

 914 

Zone ID 12 46 94 165 
Location Manhattan-

Battery Park 

Manhattan-

Chinatown 
The Bronx-

Fordham South 
Brooklyn- 
Midwood 

Figure 5. Optimum loss values in each epoch 

Figure 6. Loss values in each iteration 
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Table 10 - Weather record sample 915 

Field 
YR--

MODAHRMN 
DIR SPD SKC TEMP PCP01 SD 

Description 

Year-Month-

Day-Hour-

Minute in GMT 

Wind direction 

in compass 

degrees 

Wind 

speed 

(mph) 

Sky cover 

(Nominal 

classification) 

Temperature 

in Fahrenheit 

1-hour liquid 

precipitation in 

inches 

Snow 

depth in 

inches 

Sample 201801281151 990 6 SCT 49 0.01 0.0 

 916 
Table 11. Network parameters values 917 

Parameter Learning rate Decay Batch size Number of epochs 

Value 0.0005 1*10
-6

 256 10 

 918 
Table 12. Test results on one million random samples 919 

 Total Trips 
Number of zero 

values 
R Squared MSE 

Predicted Values 14721 991384 
0.453 0.0348 

Actual Values 15127 991324 

 920 

 921 
Table 13 - Trip generation linear regression results 922 

 Total Trips R Squared 

Predicted Actual 

Zones Productions 692585 693364 0.9921 

Zones Attractions 692565 693364 0.9922 

 923 

 924 
Table 14 - The Gravity model results 925 

Power Variable 

(n) 

Number of zero 

values R Squared MSE Iterations 

Actual Predicted 

1 

19112 

18057 0.5933 6098.768 9 

2 17780 0.8439 2340.261 11 

3 16584 0.7714 3248.935 13 

4 13502 0.4755 7866.803 16 

5 10164 0.1162 13254.1566 19 

6 7950 -0.2248 18370.005 22 

 926 

 927 


