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Abstract 

Control charts are one of the critical tools for process monitoring. Test statistics are computed as 

a function of sample means in control charts for monitoring the process mean. In this study, these 

functions are modeled by filters. These filters have essential properties in both time and 

frequency domains. In previous studies, only their properties in the time domain have been 

considered. Thus, the resulting filters have sub-optimal performance. This study investigates the 

optimal design of these filters for monitoring the process mean. The behavior of these filters is 

analyzed not only in the time domain but also in the frequency domain. Properties such as 

stability are considered in designing this filter. An optimization model is designed and solved 

using a Genetic Algorithm to minimize the Average Run Length. The proposed optimal filter is 

compared with other control charts using simulation studies. Results showed the high speed of 

the proposed filter in detecting shifts in the process mean. The proposed optimal filter is also 

used to monitor the oil price of the OPEC basket. The results showed that shifts were detected at 

the right time using the proposed optimal filter. 
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1. Introduction  

One of the most important tools of statistical process control is control charts. These charts are 

used to assess the stability of the processes. It is usually assumed that quality characteristics of 

interest are well modeled using some univariate or multivariate distributions. Parameters of these 

distributions must be at nominal levels for the process to be in control. Monitoring univariate 

distribution is usually performed based on the normality assumption of the quality characteristic 

of interest with mean,   and variance, 2 . In this study, monitoring of the process mean is 

considered. Different control charts may be used to monitor this parameter. One of the most 

widely used control charts is the Shewhart X  control chart. However, the Shewhart control chart 

usually cannot detect small changes in the process mean. 

Some other charts have been proposed in the literature to overcome this problem. The basic idea 

of these charts is to use some test statistics in which previous samples are taken into account. 

According to Montgomery [1], two types of these control charts are Cumulative Sum (CUSUM) 

and Exponentially Weighted Moving Average (EWMA) control charts. 

A standard structure may be used to define the test statistics of the control charts mentioned 

above. In the Shewhart X  chart, sample means are merely used as test statistics. The CUSUM 

chart defines the test statistics using the cumulative sum of the sample mean deviations from the 

in-control mean. Test statistics of the EWMA chart are defined by a weighted average of the 

previous sample means. In all of these control charts, some appropriate functions of sample 

means are used to determine the test statistics. These functions which convert sample means to 

test statistics are systems. A system is a mechanism that alters inputs to obtain some appropriate 

outputs.  

The converting system should be defined so that shifts can be detected rapidly. To define an 

appropriate control chart, parameters of the converting system that characterize the behavior of 

test statistics should be chosen optimally. The primary purpose of this research is to design an 

optimal converting system and introduce a corresponding control chart to rapidly detect shifts in 

the process mean. 

According to Box et al. [2], many systems used in reality are defined as linear systems. If a linear 

system is used to convert sample means, test statistics are computed as follows: 
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0 1 1 2 2 ...;  t t t tY X X X t          (1) 

in which 
tY  is the test statistics computed at time t, 

tX  is the sample mean at time t, and 

{ ;  0,1,2,...}j j   are some appropriate real values, called the impulse responses of the system. 

In Figure 1 block diagram of this system is shown.    

      

Figure 1: Block diagram of a linear system 

 

The system properties are categorized into time and frequency domain properties. In this study, 

these two domains are considered simultaneously to design an optimal converting system.    

Some authors only consider converting systems in the time domain in the literature on statistical 

process control. Jiang et al. [3] proposed an ARMA control chart to monitor both i.i.d. and 

autocorrelated processes by passing the input process through an ARMA filter. Jafarian-Namin 

et al. [4] utilized an ARMA control chart to monitor autocorrelated data.  

The EWMA control chart could also be seen as a filter applied to the input signal sequence. 

Golosnoy et al. [5] suggested using an EWMA control chart for monitoring a linear measurement 

error model. Mitra et al. [6] designed an AEWMA-type control chart without prior knowledge 

about the shift magnitude. Tang et al. [7] presented two procedures to optimally design an 

AEWMA control chart using median run length and expected median run length. To study other 

types of EWMA control charts, interested readers may refer to Alevizakos et al. [8], Sanusi et al. 

[9], Noor-ul-Amin [10], and Maravelakis et al. [11]. 

One other type of control chart that is used to monitor the processes is the CUSUM chart. Hou 

and Yu [12] developed a log-likelihood-ratio-based CUSUM control chart to monitor arbitrary 

changes in the probability distribution. Sunthornwat and Areepong [13] derived an explicit 

formula for the ARL of the CUSUM control chart for monitoring seasonal and non-seasonal 

moving average processes. Rafiei and Asadzadeh [14] proposed a CUSUM control chart to 

monitor the survival time of patients. Mahamadkhani and Amiri [15] combined the EWMA and 

CUSUM charts to monitor the process mean effectively. Awais and Haq [16] also proposed 

Shewhart-EWMA combinations to monitor the process mean.     

https://www.tandfonline.com/author/Alevizakos%2C+Vasileios
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Control charts are usually designed based on the assumption of data independence over time. 

According to the increasing rate of automation in processes, data are collected at adjacent times, 

which are usually correlated. Some authors studied the design of control charts in the time 

domain for correlated data. Tyagi and Yadav [17] designed a Modified Mixed EWMA and 

CUSUM (MMEC) control chart to monitor autocorrelated observations. Supharakonsakun [18] 

studied the performance of a modified EWMA chart for monitoring autocorrelated observations. 

Khusna et al. [10] proposed a Max-CUSUM control chart for monitoring autocorrelated 

observations.  

Chen and Yu [20] proposed a deep learning approach for monitoring autocorrelated 

observations. Li et al. [21] used the EWMA control chart to monitor the residual of the p-th order 

autoregressive model. Keshavarz et al. [22] modified the accelerated failure time regression 

model to account for the autocorrelated data. Zhou et al [23] designed an attribute control chart 

to monitor the mean of autocorrelated processes. Li et al. [24] proposed a hidden Markov model 

to monitor autocorrelated observations. 

A system expressed by Equation 1 is usually called a linear filter. The filter parameters are 

consequential in determining system behavior and should be correctly determined. Principals of 

filter design were introduced by Oppenheim et al. [25]. Some authors proposed process 

monitoring based on filtering. He and Hu [26] designed a Chebyshev lowpass filter optimally. 

Chin and Apley [27] considered the design of a control chart as an optimal linear filter design 

problem in the time domain. One disadvantage of this method is that computing the output of 

their linear filter can be somewhat time-consuming to implement.  

To overcome this drawback, Chin and Apley [28] proposed a control chart based on a second-

order linear filter. However, they only studied the time domain behavior for filter design. Han et 

al. [29] also proposed a nonlinear filter to construct a control chart. 

Some authors used control charts in conjunction with time-frequency analysis. However, they 

did not design control charts optimally. Teng et al. [30] proposed a data-driven method to 

monitor a bearing. Jawad and Jaber [31] used the CUSUM control chart to develop a fault 

detection system for bearings based on time-domain analysis. Teng et al. [32] used the Shewhart 

control chart to monitor the rotating machine condition based on the time-frequency analysis.  
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Ahmadi and Shahriari [33], designed filters in the frequency domain to monitor the process 

mean. However, they did not optimize filters in time and frequency domains.  

1-1- Research Gap 

Different approaches for designing control charts that are addressed above could be categorized 

into five main classes shown in Table 1. In all of these approaches, a filter design problem is 

implicitly studied. 

 

Table 1: Summarized literature review 

 

Table 1 shows that almost all research in the field of statistical process monitoring is limited in 

the time domain. In these approaches, filters are designed to have suitable properties only in the 

time domain. However, some properties of filters may not be unfolded in the time domain. As 

well as time domain properties, filters have some properties in the frequency domain. 

A co-occurrence analysis was conducted using the Web of Science database to shed some light 

on the research gap. In this analysis, 595 articles published from 12/30/1992 to 12/30/2022, 

which include terms such as Control Chart, ARMA Chart, and Linear Filter were considered. A 

total number of 87 important author keywords of these articles were assessed for constructing the 

co-occurrence network. Using R software, these author keywords were processed to determine 

their co-occurrences. The resulting co-occurrence network, which is the output of Gephi 

software, is shown in Figure 2.  

 

Figure 2: The co-occurrence network of essential keywords 

In Figure 2, author keywords are represented by the network nodes. If two keywords are 

mentioned in an article simultaneously, an edge is drawn between the nodes corresponding to 

those two keywords. The width of an edge represents the co-occurrence frequency. As seen in 

Figure 2, the node “control chart” is only connected to the node “signal processing” with a thin 

edge. It means that these two keywords were stated simultaneously only one time. As stated 

earlier, almost all research was conducted to develop control charts considering only the time 

domain properties of filters. A few studies were conducted to design control charts using the 

signal and system approach.      
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Filters' time and frequency properties should be considered simultaneously to construct a control 

chart properly. Considering only time domain properties of filters may result in control charts 

with sub-optimal behaviors. Critical features of a filter could be extracted more appropriately 

using time-frequency analysis.  

This paper proposes a unified framework for designing control charts for monitoring the process 

mean using time-frequency analysis. From Table 1, one may conclude that the time-frequency 

analysis should be used to design a control chart. This paper studies the essential properties of a 

second-order filter based on time-frequency analysis. The output of this filter is used to monitor 

the process. The optimal design of this filter is the primary goal of this research.   

The main contributions of this research are as follows: 

 Utilizing a converting system to monitor the process mean 

 Studying the time domain properties of the converting system 

 Studying the frequency domain properties of the converting system 

 Optimal design of the converting system using time-frequency analysis 

 Constructing a control chart based on the optimal converting system to detect small and 

moderate shifts as quickly as possible.  

The remainder of this paper is organized as follows. In Section 2, some preliminaries about 

signals and systems are explained. In Section 3, the proposed model for optimal filter design is 

provided. In Section 4, this model is solved using GA. In Section 5, the performance of the 

optimal second-order filter is evaluated using simulation studies. A real case study is analyzed 

and monitored using the proposed optimal filter in Section 6. Finally, results are discussed, and 

conclusions are made in Section 7.      

2. Signal and Systems 

It is required to study system properties in time and frequency domains to design an optimal 

filter. In this research, signals and systems theory is used for system analysis. According to 

Oppenheim et al. [25], this section provides some preliminaries about signals and systems. A 

signal is any time-varying function. In this study, discrete in-time signals are considered. 
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A system is a mechanism that converts an input signal to an output signal. Let , ;  t tx y t  

denote the input and output signals of a system, respectively. One class of systems frequently 

used in practical situations is the Linear Time-Invariant (LTI) system. Input-output relation of 

this system is as follows: 

0 1 1 2 2 ... ;  t t t t j t j

j

y x x x x t   


  



       (2) 

where 0;  0t t   . As well as expressing a system's input-output relation in the time domain, 

one may represent this relation in the frequency domain using Discrete-Time Fourier 

Transformation (DTFT). The DTFT of a signal is defined as: 

( )i i t

t

t

X e x e 






    (3) 

where 1i    and   is called the frequency component. A signal must be absolutely 

summable, i.e. t

t

x




   to have a DTFT.  If 
tx  and 

t are both absolutely summable, then 

one can take DTFT from both sides of Equation 2 and express the input-output relation of a 

system in the frequency domain as follows: 

( ) ( ) ( )i i iY e e X e     (4) 

in which ( )iY e   and ( )ie   are DTFT of  ty  and t , respectively. The function ( )ie   is 

usually called the frequency response of a system. The modulus of this function is shown by 

( )ie  . Filters are systems used to alter the frequency properties of the input signals. Some 

filters are designed so that ( )ie  vanishes for large values of  , called lowpass filters. These 

filters preserve the low frequencies of the input signal, while high frequencies are disappeared in 

the output. Thus, the input noises are reduced, and a smoother output signal is produced. In 

Figure 3, the typical shape of  ( )ie   for an ideal lowpass filter is shown.  

 

Figure 3: Modulus of frequency response for an ideal lowpass filter 
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If 0;  0t t   , the filter is called causal. According to this property, the output signal's current 

value depends on the input signal's current and previous values. For a system to have the 

frequency response, 
t must be absolutely summable. A System with this property is called a 

stable system.  

According to Ogata [34], another property which is required a system to have is the minimum 

phase property. A minimum phase system reacts to changes in input signal rapidly. Thus, if a 

sudden shift is introduced in the input signal, this change may be unfolded quickly in the output 

signal using a minimum phase system. 

Not all systems are stable. For non-stable systems, the generalization of DTFT, called Z 

transformation, may be used to express input-output relations. Let ;  0iz re r  . Then, the Z 

transform of a signal 
tx , is defined as follows: 

( ) ;   t

t

t

X z x z z ROC






    (5) 

where ROC is the Region of Convergence of the Z transform. One may take Z transform from 

both sides of Equation 1 as follows: 

( ) ( ) ( );   Y z z X z z ROC   (6) 

in which ( )Y z  and ( )z  are the Z transform of  
ty  and 

t , respectively.  

Many linear filters can be shown by a linear difference equation with constant coefficients as 

follows: 

1 1

0 0

N M

k t k k t k

k k

a y b x
 

 

 

    (7) 

 where N and M are some positive integers. Taking the Z transform from both sides of Equation 

7, results: 
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1

0

1

0

( )
( ) ;   

( )

M
k

k

k

N
k

k

k

b z
Y z

z z ROC
X z

a z











   



  (8) 

The roots of the nominator and denominator of the function shown in Equation 8 are called zeros 

and poles of the system, respectively. According to Oppenheim [25], all poles must be inside the 

unit circle for a stable system. For a system to be lowpass, poles must be near +1. In terms of z 

transformation, a system is said to be causal if its ROC lies outside a circle in the z-plane. If all 

poles and zeros of a system lie inside the unit circle, the system will be the minimum phase. 

As an example, suppose that a system has two poles 1,2 0.9 0.1z i  . It is also assumed that this 

system has no zero and the ROC of the system is 0.91z  . In Figure 4 these two poles are 

shown in the z-plane.  

 

Figure 4: Location of poles for a stable lowpass filter 

 

Since the two poles of this system are inside the unit circle, the corresponding filter is stable. 

These two poles are near +1. Thus, the filter is also lowpass. According to the location of the 

system poles, the system is the minimum phase. The ROC is the outer region of a circle with the 

origin as the center. Thus, this system is causal too.  

Usually, sample means are used to monitor the process mean. However, the sequence of sample 

means may be very noisy. Fluctuations in sample means may hide small changes in the process 

mean. An appropriate filter can remove fluctuations from sample means. This research proposes 

an optimal second-order filter with some desired properties for monitoring the process mean. In 

Section 3 design of such a filter is studied.  

3. Proposed Model for Optimal Filter Design    

All control charts for monitoring the process mean may be seen as filters converting sample 

means to some test statistics. Many researchers studied the time domain properties of filters and 

attempted to construct control charts. However, filters have some essential properties in the 
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frequency domain that should be considered for designing control charts. The main objective of 

this research is to propose a unified framework for designing the process mean control chart 

using both time domain and frequency domain properties. This section considers the second-

order filter frequency and time domain properties to construct an optimal process mean control 

chart.  

A second-order filter may be represented as follows: 

1 1 2 2 ;  t t t ty y y x t        (9) 

The filter parameters are shown by 
1 2,   which must be determined in the filter design 

procedure. According to Equation 8, the transfer function of this filter is as follows: 

2

1 2 2

1 2 1 2

( ) 1
( ) ;   

( ) 1

zY z
z z ROC

X z z z z z    
    

   
 (10) 

Different properties of a second-order filter can be expressed using this transfer function. 

In designing the proposed optimal second-order filter for monitoring the process mean, some 

new assumptions are made, listed as follows: 

a) The proposed filter should have specific properties in the frequency domain to detect shifts in 

the process mean as quickly as possible as follows:  

i) Stability 

ii) Lowpass 

iii) Causality 

iv) Minimum phase 

b) The proposed filter should also have time domain properties. It is required that the proposed 

filter detects a predefined critical shift in the process very rapidly.  

This paper proposes using a second-order filter to monitor the process mean with 

properties a and b, discussed in more detail in the following. 

3-1- Stability 



11 
 

The most important property that a second-order filter is required to have is stability. 

Considering Equation 10, it can be seen that the system has two zeros at 0z  . Also, the system 

has two poles. Solving 2

1 2 0z z     for z  one can obtain two poles as follows: 

2

1 1 2

1 2

4
,

2
z z

   
   (11) 

According to Oppenheim [25], the filter is stable if the two poles lie inside the unit circle, i.e. 

1 1z   and 
2 1z  . These conditions are equivalent to the following [2]: 

1

1 2

2 1

1 1

1

1



 

 

  

 

 

  (12) 

3-2- Lowpass 

The second-order filter must be lowpass to smooth the input signal. According to Oppenheim 

[25], the second-order filter is lowpass if 1 2, 1z z  . Therefore, it is proposed in this research 

that constraints be imposed on the real and imaginary parts of 
1 2,z z . Based on these constraints, 

real and imaginary parts of 
1 2,z z  must lie inside a specific interval. In this study, an interval in 

the vicinity of +0.715 is defined as  10.715   where 1 0.215  . Thus, the real part 

constraints are defined as follows: 

1

2

0.5 Real( ) 0.93

0.5 Real( ) 0.93

z

z

 

 
  (13) 

in which Real(.) is the real part of complex numbers. 

As well as real parts, some constraints must be satisfied by imaginary parts of system poles. In 

this study, an interval is also proposed for imaginary parts of 1 2,z z as   20   where 2 0.2  . 

Thus, the imaginary part constraints are proposed as follows: 

1

2

-0.2 Img( ) 0.2

-0.2 Img( ) 0.2

z

z

 

 
  (14) 

where Img(.) stands for the imaginary part of complex numbers.  
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3-3- Causality 

The output signal of the second-order filter is the test statistics. For these test statistics to be 

applicable, the current values must be computable based on the input signal's current and 

previous (not future) values. Thus, the filter should be causal [35]. Considering Equation 9, this 

filter is causal. No further constraints are needed in this case.   

3-4- Minimum Phase 

When a shift occurs in the process mean, it is required that the test statistics exceed control limits 

immediately. Thus, shifts in input signals, e.g., sample means, must be reflected in test statistics 

with minimum delay. The proposed filter should be the minimum phase to react immediately. 

The proposed second-order filter has two zeros at 0z   and two poles shown by Equation 11. 

According to Equation 12, the filter's poles must be chosen inside the unit circle. Thus, by 

designing a stable filter, all zeros and poles will lie inside the unit circle, and the resulting filter 

will be the minimum phase. 

3-5- Time Domain Constraint   

The filter output is plotted on the corresponding control chart. In this study, it is assumed that 

when the process is in control, the quality characteristic of interest is normally distributed with 

known mean 
0  and known variance 2

0 . If random samples of size n are taken from the in-

control process, sample means are independently normally distributed with mean 0  and 

variance 
2

0

n


. In this research, it is proposed to pass the sample means through the second-order 

filter to reduce noise levels. The proposed test statistics are obtained as follows: 

1 1 2 2 ;  t t t tY Y Y X t       (15) 

For the in-control process, tY is normally distributed with mean  and variance shown in the 

following [2]: 
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0

1 2

2
2 2 0

2 1 2 1 2

1

(1 )

(1 )(1 )(1 )

Y

Y
n




 

 


    


 




    

 (16) 

In this research, the Lower Control Limit (LCL) and Upper Control Limit (UCL) of the proposed 

control chart are defined as follows: 

Y Y

Y Y

UCL L

LCL L

 

 

 

 
  (17) 

where 0L   is the coefficient of the control chart and must be determined.  

In addition to the frequency (z-domain) constraints, a time domain constraint is imposed on the 

second-order filter and corresponding control chart. The more quickly a control chart detects 

shifts, the better its performance. The Average Run Length (ARL) is usually used to assess the 

control charts in the time domain [36]. When the process is in-control, ARL is shown by 0ARL  

and for out-of-control conditions, it is shown by 
1ARL .  

To construct the proposed control chart appropriately, it is assumed that 
0 200ARL  . In contrast, 

1ARL  needs to be as small as possible for a particular shift in the process mean. This shift is 

called the critical shift in this study. This study proposes imposing a time domain constraint on 

the filter as follows:  

0 1 2( , , ) 200ARL L     (18)  

▪ 

After defining properties that need to be satisfied by the second-order filter, an optimization 

model is proposed for filter design as follows:   

 1 1 2min   ( , , ; )ARL L    (19) 

2

. .

1 1

s t

  
 (20) 

1 2 1    (21) 



14 
 

2 1 1    (22) 

2

1 1 24
0.5 Real 0.93

2

    
  
 
 

 (23) 

2

1 1 24
0.2 Img 0.2

2

    
   
 
 

 (24) 

0 1 2( , , ) 200ARL L    (25) 

1 20;   ,L     (26) 

where   is the critical shift in the process mean. More formally, it is required that when the 

process's mean changes to a new level, 
0 0   the corresponding control chart detects this 

shift as quickly as possible using a stable, lowpass, causal, and minimum phase filter. The 

parameters and decision variables of the proposed model are shown in Table 2. 

 

Table 2: Description of model parameters and decision variables 

 

The main objective of the proposed model is to find the values of  1 , 2 and L, which minimize 

the out-of-control ARL of the proposed control chart for a given value of  , shown by 

1 1 2( , , ; )ARL L   . It is required that Equation 12 be satisfied by 
1 and 

2 to obtain a stable 

filter. Thus, these constraints are added to the proposed model, shown by Equations 20, 21, and 

22.  

Equations 13 and 14 must be satisfied to obtain a second-order lowpass filter. Thus, these two 

constraints are added to the proposed model and are shown by Equations 23 and 24. According 

to the structure of the proposed filter, no further constraints are needed to be imposed on the 

model to obtain a causal and minimum phase filter. The time domain constraint is added to the 

proposed model, shown in Equation 25.  In Section 4, the proposed model is solved using GA for 

different values of  .  

4. Solving the Proposed Model 
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It is required to determine the values of filter parameters, 
1 2,  , and L to use the second-order 

filter. These values may be determined by solving the proposed model. According to the 

structure of the model objective function and some model constraints, shown in Equations 23, 

24, and 25, the proposed model is nonlinear. Note that the complexity of this model is due to the 

structures of the objective function, 
1 1 2( , , ; )ARL L   , and the time domain constraint, 

0 1 2( , , ) 200ARL L   . 

In the proposed method, test statistics are correlated according to Equation 16. The proposed test 

statistics construct an Autoregressive model of order 2, AR(2). Consequently, ARL values cannot 

be computed using the reciprocal probability of type I or II errors [37]. Thus, methods other than 

conventional gradient-based optimization are needed to solve this model. However, if ARL 

values are approximated adequately, metaheuristic algorithms may be used to solve this model. 

Interested readers are referred to Hamidi-Asl et al. [38] and Fasihi et al. [39] for more details 

about metaheuristic algorithms.    

In this study, GA is used to solve the model. Other metaheuristic algorithms, such as the 

Simulated Annealing (SA) algorithm or Particle Swarm Optimization (PSO), may also be used to 

solve the model. Interested readers are referred to Abbaszadeh et al. [40] for more details about 

these algorithms. 

In this research, a simulation-based method is used to compute ARL values. For given values of  

1 2,  , L , and  , ARL values are approximated using 10000 simulation runs. The proposed 

procedure to approximate 0 1 2( , , )ARL L   is as follows: 

Step 0- Let 1t  . 

Step 1- Generate a random sample of size n from the following model: 

0 0 ;   1,2,..., ;   (0,1)tj tj tjX j n N        (27) 

Step 2- Based on the sample generated in step 1, compute tX . Using the current sample mean 

and Equation 15, compute test statistics tY . The value of Y shown in Equation 16 is used as the 

initial values of tY , i.e., 0 1,Y Y . 
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Step 3- Compare test statistics 
tY with control limits shown in Equation 17. If ( , )tY LCL UCL , 

1t t   and go to step 1. If ( , )tY LCL UCL , let RL=t and stop.    

This algorithm is repeated 10000 times. The average of RLs over 10000 simulation runs is 

computed. If RL in the k
th

 run is shown by ;  1,2,...,10000kRL k  , then  

10000

0 1 2

1

1ˆ ( , , )
10000

k

k

ARL L RL 


  .  

To approximate 
1 1 2( , , ; )ARL L    above algorithm is also used but with a change in step 1. In 

this step, random samples are generated from the following model: 

0 0 0( ) ;   1,2,...,tj tjX j n         (28) 

Using this algorithm to compute ARL values, GA can be used to solve the proposed model. In 

this research, the GA toolbox of MATLAB R2018b is used as an optimization method.  

It is required to determine the cost function and constraints of the model for implementing GA. 

The cost function is shown in Equation 19. Constraints used in GA are shown in Equations 29 to 

37. 

2 0.99 0    (29) 

1 2 0.99 0     (30) 

2 1 0.99 0     (31) 

2

1 1 24
Real 0.93 0

2

    
   
 
 

 (32) 

2

1 1 24
0.5 Real 0

2

    
  
 
 

 (33) 

2

1 1 24
Img 0.2 0

2

    
   
 
 

 (34) 

2

1 1 24
0.2 Img 0

2

    
   
 
 

 (35) 
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0 1 2( , , ) 200 0.001 0ARL L      (36) 

1 20;   ,L     (37) 

Equations 29 to 31 are equivalent to Equations 20 to 22. But in formers, the value of 1 is 

substituted by the value of 0.99, making it possible to use the “  ”  operator instead of  the “ ” 

operator. To speed up GA, instead of using Equation 25, an approximation of this equation, 

shown by Equation 36, is used.   

 For each solution in GA runs, say 
10 20 0( , , )L  , the cost function and constraints need to be 

computed. The cost function is approximated using the abovementioned algorithm. Note that 

0 10 20 0( , , )ARL L  needs to be computed in Equation 36. In this case, the abovementioned 

algorithm is also used to approximate this constraint. 

In this research, scattered crossover as in [41] and [42], and uniform mutation operators are used 

in GA. As well as these operators, the probability of crossover (
cP ), the probability of mutation (

mP ), population size ( popn ), and generation number ( iteration ), are determined using the 

Taguchi design toolbox of MINITAB software. To use the Taguchi design, different levels for 

GA parameters, shown in Table 3, are considered.  

 

Table 3: Levels of GA parameter used in the Taguchi design 

 

Figure 5 shows the mean values of the signal-to-noise (SN) ratio for different GA parameter 

levels.   

 

Figure 5: Mean values of SN ratio for different levels of GA parameters 

 

According to the definition of SN ratio, those levels of GA parameters in which the SN ratio is 

maximal should be selected. Considering Figure 5, it is evident that 100iteration  , 0.6cP  ,



18 
 

0.4mP   and 100popn   should be chosen. Thus, in the following, these values are used to solve 

the optimization model using GA.   

The value of critical shift,  , must be determined to solve the model. For sensitive processes in 

which small shifts must be detected, small values for   should be used. But, for processes in 

which moderate shifts must be detected rapidly, it should be better to use larger values of  . In 

this study, 0.25,0.5,1   are considered. For each value of  , GA optimizes the proposed 

model. Optimal values of 
1 2,   and L are shown in Table 4: 

 

Table 4: Parameters of the optimal second-order filter and the corresponding control chart 

 

The case 0.5   is considered in more detail to study the behavior of proposed optimal filters. 

According to Table 4, the input-output relation of this optimal filter is as follows: 

1 21.6111 3 ;6 0  0. 8t t t tY Y Y X t     (38) 

According to Equation 10, the transfer function of this filter is expressed by: 

1 2

1
( ) ;   

1 1.6111 0.638
z z ROC

z z 
  

 
 (39) 

This filter has two zeros at 0z   and two poles at 
1 0.91z  , 2 0.7011z  . These values are 

shown in Figure 6.  

 

Figure 6: Zeros and poles of the optimal second-order filter for 0.5   

 

Considering Figure 6, it is evident that both poles of the filter lie inside the unit circle. Thus, the 

filter shown in Equation 38 is stable. The zeros of this filter are also inside the unit circle. 

Therefore, this filter is the minimum phase too. This filter is causal, implying that the filter’s 

ROC is 1z z . Thus, the ROC of the filter includes the unit circle 1z  . Since the filter is 



19 
 

stable, it has a frequency response, ( )ie  . Substituting z  by ie   in Equation 39, ( )ie   is 

obtained as follows: 

2

1 1
( )

1 1.6111 0.638 (1 0.91 )(1 0.7011 )

i

i i i i
e

e e e e



      
  

   
 (40) 

In Figure 7,  ( )ie   is depicted over one period, [ , ]    . 

 

Figure 7: Modulus of the frequency response of the optimal second-order filter 

It can be seen in Figure 7 that ( )ie   has large values in the vicinity of 0   while it vanishes 

as   , i.e. for high frequencies. Thus, the intended filter is a lowpass filter. 

In Section 5, the performance of the proposed optimal filter and corresponding control chart in 

detecting shifts in the process mean is evaluated. 

5. Performance Evaluation  

In this section, the proposed control chart, called AR(2) chart, is compared with other control 

charts for monitoring the process mean. Comparisons are made via simulation studies by 

MATLAB R2018b software. Shewhart and EWMA control charts are competitors. Table 5 

shows the test statistics and control limits of these charts. 

 

Table 5: Test statistics and control limits of the Shewhart and the EMWA control charts 

 

In Table 5, L values for all control charts are determined to have 
0 200ARL  .  

To compare AR(2) control chart with competitors, ARL  is used as the first criterion. A control 

chart with smaller values of out-of-control ARL can detect shifts in the process more quickly.  

Jaiswal and Kumar [43] stated that the run length distribution is usually right-skewed, especially 

for small shifts. Thus, as in Qiao et al. [44], more than the ARL criterion as a measure of the 
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performance of control charts is needed. One such performance measure is the Median of Run 

Length distribution, MRL, which is used as the second criterion for performance evaluation.  

The third criterion for performance evaluation is the Probability of a False Signal (PFS). This 

criterion is the percentage of times a control chart warns while the process is in control. The 

smaller the value of PFS, the better the control chart performance. 

For comparison, it is assumed that when the process is in control 
0 0   and 2

0 1  . Also, for 

simplicity it is assumed that 1n  . To compare the ability of control charts to detect shifts in the 

process mean, the out-of-control process is modeled as follows: 

0 0 0( ) ;  1,2,...;   (0,1)t t tX t N          (41) 

where   is the magnitude of the shift in the process mean. The ability of three control charts to 

detect various step shifts, 2, 1.9, 1.8,...,1.8,1.9,2     , is studied. Parameters of the AR(2) 

control chart should be determined using the method proposed in Section 4. These parameters 

are provided in Table 4 for different values of  .  

The Shewhart control chart has one parameter, L, which must be determined. For this chart, 

/2L z , where /2z is the upper percentile of standard normal distribution. Using 0 200ARL  , it 

can be concluded that 2.81L   for the Shewhart control chart.    

The EWMA control chart's parameters,   and L , are determined to detect small shifts quickly 

while 
0 200ARL  . Based on simulation studies, 0.5946   and 2.8L   were obtained.  

Three scenarios for designing the AR(2) control chart were considered. In these scenarios, it is 

assumed that the critical shift is at low, moderate, and high levels, which can be shown by 

0.25,0.5,1  , respectively. For each scenario, data were generated from the model shown in 

Equation 41. ARL and MRL values were then computed for three control charts based on 10000 

simulation runs for different values of  . Results for the first scenario in which 0.25   are 

shown in Figures 8 and 9. 

 

Figure 8: ARL comparison for the first scenario 
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Figure 9: MRL comparison for the first scenario 

 

Considering Figure 8, it can be seen that when the process is in control, 0  , all three control 

charts have approximately the same ARL values. But as   increases, ARL values for the three 

control charts decrease. However, ARL values of the AR(2) chart decrease more rapidly than 

other control charts. Using the AR(2) control chart, small shifts in the process mean can be 

detected more rapidly. This phenomenon results from using an optimal lowpass stable filter in 

AR(2) control chart. High-frequency components in data are removed, and more smooth test 

statistics are obtained. Small shifts in the process mean are magnified and thus can be detected 

more quickly. 

Figure 9 shows that the MRL values for the three control charts decrease as   increases. For 

small and moderate shifts in the process, the AR(2) chart's MRL values are less than those for the 

other two control charts. Smaller MRL values for the AR(2) chart are also a result of removing 

high-frequency components from the input signal in the proposed second-order filter. 

Results for scenario 2, in which 0.5  , are shown in Figures 10 and 11. 

 

Figure 10: ARL comparison for the second scenario 

 

Figure 11: MRL comparison for the second scenario 

 

Since critical shifts in the first and second scenarios are very similar, the general behavior of the 

AR(2) control chart in both scenarios is very similar. However, in the second scenario ARL curve 

for the AR(2) vanishes slightly slower than the one in the first scenario. 

Results for the third scenario, where 1  , are shown in Figures 12 and 13. 
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Figure 12: ARL comparison for the third scenario 

Figure 13: MRL comparison for the third scenario 

Considering Figure 12, one can see that all shifts are detected more rapidly using AR(2) chart. 

Even for a significant critical shift, the ARL curve of the AR(2) control chart damped faster than 

the Shewhart and EWMA control charts. Considering Figures 8, 10, and 12, it can be seen that 

the slope of the ARL plot for the AR(2) control chart in the third scenario is smaller in absolute 

value than the ones for the first and second scenarios. Indeed, in the first and second scenarios 

choosing small values for critical shift results in more sensitive control charts. However, the 

performance of the proposed AR(2) control chart for the third scenario is acceptable compared to 

Shewhart and EWMA control charts. According to Figures 9, 11, and 13, the proposed AR(2) 

control chart performance based on the MRL criterion is uniformly superior to the ones for the 

other two control charts.  

The PFS values were also computed for the three abovementioned scenarios. The simulation 

setting was the same as before. But in each simulation run, it was assumed that the process is in-

control for 1,2,...,10t  . Samples were generated from the model 0 0t tX     , where 
t s 

are normally distributed with zero mean and unit variance. For 11,12,...t  , the process became 

out of control, and observations were generated from the model 

0 0 0( ) ;  11,12,...t tX t       . The PFS was computed in each scenario for different 

values of  . Results are shown in Figures 14,15 and 16.  

Figure 14: PFS for the first scenario 

Figure 15: PFS for the second scenario 

Figure 16: PFS for the third scenario 

 

The overall behavior of the three control charts for different values of   in the three scenarios is 

the same. The proposed AR(2) control chart has much fewer PFS values in all three scenarios 

than the other two. This indicates that the proposed control chart generally signals the process is 

out-of-control after the shift occurs. 
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The proposed second-order filter is an optimal lowpass filter. According to this property, the 

proposed optimal filter smooths out the high-frequency components of the input signal. These 

components are mainly noises. The output signal, plotted on the proposed control chart, becomes 

smoother by removing noises from the input signal. Thus, the probability of falling test statistics 

outside the control limits before shifts occur is reduced compared to other sub-optimal control 

charts.  

Simulation results showed that small shifts in the process mean could be detected rapidly and 

precisely using the proposed optimal lowpass filter. In Section 6, the proposed control chart is 

used to monitor an actual sequence of observations.  

 

6. Case Study 

In this section, an actual data sequence is monitored using the AR(2), Shewhart, and EWMA 

control charts. The data set is the OPEC basket oil price. Monthly time series data from January 

1988 to December 2019, 
tX , is studied. This time series is shown in Figure 17. 

 

Figure 17: Time series plot of OPEC basket oil price 

 

Figure 17 shows that some step changes and abrupt jumps occurred in the time series. For 

financial planning, it is required to find when these changes occurred in the process. One of the 

main tools for detecting these shifts is a control chart.  

A parametric time series model is fitted to the data in the first step. Uncorrelated residuals are 

then computed using this parametric model. Then, the sequence of residuals is monitored via 

AR(2), Shewhart, and EWMA control charts.  

Figure 18 shows the Sample autocorrelation function (ACF) and sample partial autocorrelation 

function (PACF) with 95% confidence intervals for the data. 
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Figure 18: Sample ACF and sample PACF of OPEC basket oil price 

 

From Figure 18, it can be seen that ACF tails off very slowly. This pattern indicates that the time 

series is non-stationary. This process may be transformed to make it stationary by difference 

operation. Thus, the first order difference, 
1t t tX X X 

   , was used to remove non-stationarity 

from the process. Moreover, according to the stability of the first 150 values of 
tX , which can 

be seen in Figure 17, only these 150 values are considered to fit a proper model. Figure 19 

illustrates ACF and PACF of the first 150 differenced observations. 

 

Figure 19: Sample ACF and sample PACF of the first 150 differenced observations 

 

Figure 19 shows that the sample ACF of 
tX  tails off while its sample PACF cuts off after lag 2. 

Thus, according to Box et al. [2], a proper ARMA model for the first 150 observations of 
tX  is 

the (2)AR  model. Fitting this model to tX  , the model parameters were estimated as 0

1
ˆ 0.64  , 

0

2
ˆ 0.27   , and ˆ 1.38  , where 0

1̂  and 0

2̂  are the estimated autoregressive coefficients of 
tX 

and ̂  is the estimated standard deviation of error terms. Based on these parameters, residuals 

are obtained. tX  may be expressed as follows: 

2

1 20.64 0.27 ;   (0,1.38 )t t t t tX X X a a N 
       (42) 

The residuals are monitored using AR(2), Shewhart, and EWMA control charts. For constructing 

AR(2) control chart, filter parameters for 1   shown in Table 4, were chosen. Shewhart and 

EWMA control charts' parameters were the same as those explained in Section 5. Control charts 

are shown in Figure 20. 

 

Figure 20: Control charts of residuals 
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As shown in Figure 20, fluctuations were removed using the AR(2) chart, and test statistics 

became more smooth. This chart signals that the process was out of control at 201t  . In the 

Shewhart control chart, residuals were used as test statistics which are very noisy. This high level 

of noise made test statistics to exceeded the UCL earlier. The jump at 31t   was due to random 

fluctuations, not assignable causes. Thus, the Shewhart control chart wrongly warned of out-of-

control conditions at 31t  . The EWMA chart also warned of out-of-control conditions at 31t 

. In summary, the proposed optimal AR(2) chart could smooth out fluctuations and properly 

detect shifts in the process.    

 

 

 

7. Conclusions  

In this study, the problem of statistical monitoring of the process mean was considered. Most 

control charts for monitoring the process mean can be considered as systems that convert sample 

means to some test statistics. Proper design of these systems can help control charts detect shifts 

as quickly as possible. The design of such systems was studied in this paper. A second-order-

linear filter, was used as a converting system. An optimization model was proposed to design 

this filter, and the corresponding control chart was constructed. The performance of the proposed 

control chart was evaluated and compared with Shewhart and EWMA control charts using 

simulation studies. It was shown that the proposed optimal control chart could detect any step 

shifts in the process mean rapidly for small, moderate, and large shifts. 

Since the proposed second-order filter is a stable and lowpass filter, it removes the high-

frequency components in the sequence of sample means. These high-frequency components 

correspond to noises. The output signal of the proposed second-order filter will be smoother than 

the input one due to removing noises. Thus, small, moderate, and large shifts in the process mean 

can be detected more rapidly. The small values of ARL and MRL show this for the proposed 

control chart. As a result of the smooth output signal, the probability of false alarms in the 

corresponding control chart, shown by PFS, would be small too. The proposed optimal control 
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chart monitored an actual case of OPEC basket oil prices. It was shown that fluctuations were 

removed from observations and shifts in the process mean could be appropriately detected.  

In this paper, the second-order filter was used to obtain test statistics. However, other filters, 

such as nonlinear and higher-order filters, may also be used to monitor the process mean. In the 

proposed method, GA was used to solve the optimization model. Other metaheuristic 

optimization algorithms, including individual-based algorithms, may also be used to speed up 

solving the filter design problem. The problem of change point detection in the process mean 

could also be addressed using the proposed second-order filter. The proposed filter was designed 

to detect critical step shifts. But, the proposed approach could be used to develop an optimal 

filter to detect other shifts, including sinusoidal, linear trend, spick. These topics may be 

considered for further research.   
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Figure 1: Block diagram of a linear system 
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Figure 2: The co-occurrence network of essential keywords    

 

 

 

 

 

 

 

 

 

Figure 3: Modulus of frequency response for an ideal lowpass filter 



34 
 

 

 

 

Figure 4: Location of poles for a stable lowpass filter 

 

 

 

 

 



35 
 

 

Figure 5: Mean values of SN ratio for different levels of GA parameters 

 

 

 

Figure 6: Zeros and poles of the optimal second-order filter for 0.5   
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Figure 7: Modulus of the frequency response of the optimal second-order filter 

 

 

 

Figure 8: ARL comparison for the first scenario 
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Figure 9: MRL comparison for the first scenario 

 

 

 

Figure 10: ARL comparison for the second scenario 
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Figure 11: MRL comparison for the second scenario 

 

 

 

Figure 12: ARL comparison for the third scenario 
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Figure 13: MRL comparison for the third scenario 

 

 

 

Figure 14: PFS for the first scenario 
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Figure 15: PFS for the second scenario 

 

 

 

Figure 16: PFS for the third scenario 
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Figure 17: Time series plot of OPEC basket oil price 

 

 

 

Figure 18: Sample ACF and sample PACF of OPEC basket oil price 
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Figure 19: Sample ACF and sample PACF of the first 150 differenced observations 

 

 

Figure 20: Control charts of residuals 
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Tables: 

 

Table 1: Summarized literature review 

 Domain Optimization 

Designing approach Time Frequency  Time  
Time and 

frequency  

ARMA control chart ⃰  - ⃰  - 

EWMA control chart ⃰  - ⃰  - 

CUSUM control chart ⃰  - ⃰  - 

Control chart for autocorrelated 

observation 
⃰  - ⃰  - 

Filtering 

General filter ⃰  - ⃰  - 

Second-order filter ⃰  ⃰  - - 

 

 

Table 2: Description of model parameters and decision variables 

Symbol Type Description 

n  Parameter Sample size 

0  Parameter In-control process mean 

0  Parameter In-control process standard deviation 

  Parameter Critical shift 

1  Continuous Decision Variable Coefficient of the proposed filter 

2  Continuous Decision Variable Coefficient of the proposed filter 

L Continuous Decision Variable Coefficient of the proposed control chart 
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Table 3: Levels of GA parameter used in the Taguchi design 

Parameter Level I Level II Level III 

cP  0.2 0.4 0.6 

mP  0.2 0.3 0.4 

popn  80 100 120 

iteration  50 100 120 

 

 

Table 4: Parameters of the optimal second-order filter and the corresponding control chart 

Critical Shift 1  
2  L 

  

0.25 1.5055 -0.5356 2.1323 

0.5 1.6111 -0.6380 2.1478 

1 1.6644 -0.7066 2.2732 

 

Table 5: Test statistics and control limits of the Shewhart and the EMWA control charts 

Control chart Test Statistics ( tY ) LCL UCL 

Shewhart tX  0
0 L

n


   0

0 L
n


   

EWMA 1(1 ) t tY X    
0 0

(2 )
L

n


 





 

0 0
(2 )

L
n


 





 

 


