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Abstract 

This paper is aimed to examine the dynamics of cracked thin rectangular plates subjected to a moving non-stationary 

random load. A random load is considered with a constant mean value, a constant moving velocity, and five 

different covariance patterns namely the white noise, constant, exponential, cosine wave, and exponential cosine 

covariance. Accordingly, an intact plate’s orthogonal polynomials in combination with the well-known corner 

functions are employed to explore the mechanical behavior of the cracked plate. As the non-dimensional deflection 

values, the functions of the squared mean values are obtained for the damped and undamped cracked plates at 

different points. Then an inclusive parametric study is performed to explore effects of the inclined crack angles and 

the crack lengths on the non-dimensional functions of squared mean values at middle point of the undamped and 

damped cracked plates. Based on the obtained results, there are non-monotonous nonlinear relations between 

increasing the incline crack angles as well as the crack lengths and the non-dimensional functions of squared mean 

values. Furthermore, it is found that in the exponential covariance cases, the effects of increasing crack angles and 

lengths on the non-dimensional squared mean values are profounder than the other four patterned covariance cases.    

Keywords Cracked thin plate · Dynamic vibration · Moving non-stationary random load · Orthogonal polynomials · 

Corner functions · Squared mean value  

 

1. Introduction 

The engineering structures are subjected to unknown moving loads during their lifecycle, obeyed the random 

processes or the random functions of time or location. The random vibration in mechanical systems was developed 

by Crandall [1]. Through 1965 and 1967, the introduction to non-stationary random processes was presented by 

Priestley [2, 3].  As many structures such as transport structures, are subjected to a kind of moving random load, in 

1976, a beam subjected to a moving non-stationary random load with a constant velocity and a mean value was 

investigated by Fryba [4]. After that, the dynamic vibration of a beam subjected to a series of random moving loads 

with random velocities, was proposed by Sniady [5]. In another research project, dynamic vibrations of a beam 

subjected to a series of random moving loads with a constant velocity, were studied by Sieniawska and Sniady [6]. 

Moreover, the responses of a beam subjected to a moving load with a random velocity were studied by Sniady et al. 

[7]. Rystwej and Sniady [8] investigated the vibrations of an infinite beam and a plate, sitting on a Pasternak 

foundation, subjected to a crossing moving random load with a constant velocity. Malara and Spanos [9] managed to 

evaluate the nonlinear responses of a plate due to the vibrations induced by the random loads. Sniady et al. [10] 

studied the behavior of the Euler-Bernoulli beam, subjected to the Gaussian white noise as a random vibration. Kong 

and Spanoc [11], evaluated the nonlinear vibration of a plate, subjected to the Brownian noise or red noise. 

Furthermore, the vibration of a rectangular-shaped system subjected to the white noise was studied by Jiao and 

Spanos [12]. Spanos and Malara [13] studied the nonlinear vibration of the simply-supported beams and plates 

subjected to the Brownian noise. A linearization of a nonlinear single degree of freedom system subjected to the 

deterministic and the White noise as a random load was presented by Zhang and Spanos [14]. 
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The vibration of nonlinear elastic impact oscillator with Coulomb friction subjected to the White noise was studied 

by Liu et. al. [15]. Thereafter, a two-degree-of-freedom system subjected to the random excitation was analyzed by 

Podworna et al. [16] as a model of the transport structure and the structure vibration absorber. Jablonka and 

Iwankiewicz [17] investigated the vibrations of a beam subjected to the moving random loads. The vibration of a 

beam form structure subjected to moving random loads was investigated by Golcki et al. [18].  

According to the researchers’ reports [19 – 26], moving masses, whose inertial effects are considered, have impact 

on plates’ deflections. Rofooei and Nikkhoo [19] revealed the moving mass effect on a plate displacement, 

especially for larger mass weights and/or larger velocities. In another study, Nikkhoo and Rofooei [20] examined the 

importance of the inertial effect, by using all acceleration terms of the moving mass. Nikkhoo et al. [21], 

investigated the excitation of a thin rectangular plate subjected to series of moving masses. Ghazvini et al. [22] 

studied the dynamic vibration of thin un-uniform profile rectangular plates under the force of a moving mass. 

Hassanabadi et al. [23] investigated the resonance of thin rectangular plates subjected to a train of moving mass. 

Rofooei et al. [24] collated the Von Karman and Kirchhoff plate theory to explore the deflection of rectangular 

plates subjected to a moving mass. In another research attempt, Nikkhoo et al. [25], explored the excitations of flexo 

– poro elastic structures resting on the elastic foundations subjected to the moving loads. In another study, Nikkhoo 

et al. [26], evaluated effects of the moving mass’ weights, velocities, plates’ aspect ratios, inclined crack angles, and 

crack lengths.  

In the present study, for the first time, the vibration of a rectangular thin plate with a surface constant crack 

subjected to a moving non-stationary random load with a constant velocity and a constant mean value is investigated 

for five various covariance patterns, namely the white noise, constant, exponential, cosine wave and the exponential 

cosine covariance. The non-dimensional deflection values at different points of the undamped and damped cracked 

plates are obtained. To this end the intact plate orthogonal polynomials in combination with the well-known corner 

functions are employed to define the behavior of the cracked plate. Further, a parametric investigation is performed 

to determine the effects of the inclined crack angles and the crack lengths on the non-dimensional deflection values 

at the middle point of the undamped and damped cracked plates as well.   

2. Problem Definition 

 

The partial differential equation of motion of a uniform thin rectangular plate, subjected to a moving load, is 

expressed as follows [27]:  
2
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where W (x, y, t) is the vertical deflection of the plate at any time-dependent coordinates x, y. 
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, is the plate’s flexural rigidity, where E, ν, and h are the plate’s modulus of elasticity, Poisson’s ratio 

and thickness, respectively. Accordingly, m, and c are the mass per unit area and damping constant of the plate 

respectively. The free vibration response of the plate is assumed as:   
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where ϕ ij (x, y), ωij, and ῑ  are the ijth vibration mode, the natural frequency of the plate and the imaginary unit, 

respectively. It is assumed that the mode shape of the plate, ϕ ij (x, y), is taken into account. Moreover, it is assumed 

that the random process is sum of random variables, whose probability distribution is determinate by time, and a 

zero mean random process, that are revealed in the equation (5) respectively [4, 28]:  
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where the E operator, and v are the linear function of the mean value and the constant velocity of the moving load 

respectively.  

Rpp, the covariance is achieved as following equations:  
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The covariance of the generalized moving random load is: 
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The covariance of the generalized deflection is: 
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where the h operator is the impulse function: 
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in which ωij′, ωij, and ωb are the natural frequency of the damped plate, the natural frequency of the undamped plate 

and the damping coefficient respectively. For most structures, the damping coefficient is below 20% of the natural 

frequency of the undamped plate. In present investigation, the damping coefficient is designated below 10% of the 

natural frequency of the undamped plate. 

 

The mode shapes of a simply-supported rectangular intact plate are as follows and the mode shapes of other 

boundary conditions also can be considered as given below [29]: 
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Five types of the covariance of the force P(t), the white noise, constant covariance, exponential cosine, exponential 

and the cosine wave, are taken into account. 

For the white noise, the covariance and the spectral density are determined as follows: 
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where Sp is the constant spectral density and δ is Dirac delta function.  

The squared mean value is obtained as follows: 
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As the cross values for ij # kl are sufficiently smaller than those for ij=kl [30], the cross values for ij # kl can be 

neglected.  
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As the y component in the assumed moving load is independent of time, it can be deduced to: 
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For the constant covariance, the covariance and the spectral density are determined as follows: 
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where σp is a constant value. The squared mean value is achieved as follows:   
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For the exponential cosine, the covariance and the spectral density are determined based on what follows:  
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where σp, ωg, and ω0 are constants. The squared mean value is attained as:  
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   
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1
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sin( ) cos( ) sin( ) sin( )sin( )sin( )g b b

t
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e d e e

b a b
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
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
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                                                                                                                                                                                     (34)                               
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e d
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   



      
         

    
    

                                                                                                                                                                                    (35) 

The all governing formulas of the exponential cosine covariance, are converted to the exponential and the cosine 

wave covariance by limiting the ω0 and ωg to zero respectively.   

In the rectangular plate with the surface constant crack case, while the mode shape of the plate must consider the 

plate’s boundary conditions form and can satisfy the differential equation, according to the Ritz method, the mode 

shape is represented as the two sets of the functions’ summation:  

( , ) ( , ) ( , )
p cij ij ij

x y x y x y                                                           (36) 

where, ( , )
pij

x y  denotes the behavior of the intact plate, in which: 

1 1

( , ) ( , )
p

N N

ij ij ij

i j

x y a x y 
 

                                                              (37) 

where ψij (x, y) is a set of orthogonal polynomials in x and y directions, directed in the plate’s edges directions, 

generated by the Gram-Schmidt process [31], expressed according to the boundary characteristics orthogonal 

polynomials (BCOP) method [32]. N is the number of utilized orthogonal polynomials, and aij is a set of constants, 

indicating the participation ratio of the orthogonal polynomials.  

( , )
cij

x y are the William’s solutions for the plate’s internal crack, denoted the well-known corner functions, 

expressing behavior of the cracked plate along the crack line as additional modes, additionally, ( , )
cij

x y described 

the stress singularity near the tips of the crack and the discontinuities along the crack [33]: 
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1 2

31 2 4

, 1 1 2 2 , 1 1 2 2

1 1

( , ) ( ) ( ) { ( , , , , ) ( , , , , )
c

N N

nn n n

ij n n S n n n A n

n n

x y x a x y b y b r r c r r        
 

      

               
3 4

, 1 1 2 2 , 2 2 1 1

1 1

( , , , , ) ( , , , , )}

N N

n n A n n n S n

n n

c r r e r r       
 

                                                                          (38) 

in which: 

/ 2 , 1,2,...
n

n n                                                                                                                                   (39 – a) 

and for 
n
  (natural numbers):  

1 2

, 1 1 2 2

1

( , , , , ) ( cos( 1) cos( 1) )nk

n S n j i n i n i
r r r r

 
       




                                                                     (39 – b) 

1 3

, 1 1 2 2

1

( , , , , ) ( sin( 1) sin( 1) )nk

n A n j i n i n i
r r r r

 
       




                                                                        (39 – c) 

and for 
n
   (natural numbers): 

12 3

, 1 1 2 2

1

( , , , , ) sin ( / 2) ( cos( 1) cos( 1) )nk

n S n j j i n i n i
r r r r

 
        




                                                   (39 – d) 

12 2

, 1 1 2 2

1

( , , , , ) sin ( / 2) ( sin( 1) sin( 1) )nk

n A n j j i n i n i
r r r r

 
        




                                                  (39 – e) 

where 

1 2 3
( 1)( 1) , (1 ) (3 ) , (1 ) (3 )

n n n
                                                                        (39 – f) 

The polar coordinates (r1, θ1) and (r2, θ2) are the two tips of an internal crack. The subscripts A and S indicate 

asymmetric and symmetric modes respectively. n1, n2, n3, and n4 represent the boundary conditions of the cracked 

plate. There are three geometrical boundary conditions, namely clamped, simply supported and free. N1, N2, N3, and 

N4 are the number of the admissible corner functions. bn, cn, dn, and en are the constants, expressing the participation 

ratio of the admissible corner functions.  

 

  

3. Validation Process and the numerical results of the present study 

The numerical results are presented as the time-dependent behavior of the function of the squared mean value at any 

point with x0 and y0 coordinates in the rectangular or square-shaped thin intact and cracked plates, for several load 

velocities, and for five covariance patterns of the moving random load, scilicet the white noise, constant, exponential 

cosine, exponential and the cosine wave covariance. The non-dimensional function of the squared mean value (the 

function of z), the non-dimensional speed parameter, and the non-dimensional damping parameter are determined as 

follows, respectively:  

2

0

[ ( , , )]
( ) , / , 0 1

p

E w x y t
y z

w V
z x a z                                                                                                           (40)   
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where  a is the length of the plate, w0 is the deflection at the middle of the plate due to the static load P, and the 

coefficient Vp is determined for the white noise as /
p p

V S P  and for the other four covariance as /
p p

V P .    

/v a                                                                                                                                                                                  (41) 

where ω is the natural frequency of the intact plate or the cracked plate. Therefore, 0 1  . 

/
b

                                                                                                                                                                   (42) 

According to the designated damping coefficient, β = 0, 0.1. The non-dimensional parameters g and γ are introduces 

respectively: 

0
/ , /   

g
g a v a v                                                                                                                                     (43) 

For limiting the g, γ and both g and γ to zero, deduced the cosine wave, exponential and constant covariance cases 

respectively. The g and γ are determined the covariance specifies, designated as g = 0, 0.1, γ = 0, π/α. 

While the moving random loads are passed through the middle of plates, the y coordinate is always constant and 

accordingly, the functions of z at the middle point of a simply-supported intact rectangular plate can be compared 

with the functions of z at the middle point of a simply-supported beam, obtained by Fryba [4,28]. Therefore, in the 

following figures, first, the functions of z at the middle point of a simply-supported intact rectangular plate subjected 

to the moving random load with the mentioned patterns, namely the white noise, constant, and the exponential 

cosine, are compared with the functions of z at the middle point of a simply-supported beam subjected to the same 

moving random loads, and after verifications of the convergence and the accuracy of presented method, the 

numerical results of cracked plates are presented and the parametric studies are carried out. 

Figures 1 to 3 reveal the functions of z at the middle point of a simply-supported intact rectangular plate subjected to 

the moving random loads in comparison with those of a simply-supported beam subjected to the same loads. As 

Figures illustrate, only due to the constant parameters in plates and beam, such as the plate’s flexural rigidity and the 

constant bending stiffness of the beam, there is a measure difference between the results. As the equation (40) 

reveals, the function of z is function of the squared deflections. Besides the partial differential equation of motion of 

a uniform thin rectangular plate, subjected to a moving load in equation (1) shows the effect of the plate’s flexural 

rigidity on the deflection. In other side the partial differential equation of motion of a Bernoulli-Euler Beam, 

subjected to a moving load, is described as follow [27]: 

2

4

02

( , ) ( , )
( , ) ( , ) ( ) ( )

 
     

 

W x t W x t
EI W x t c m P x t x x P t

t t
                                                                   

(44) 

where W (x, t) is the vertical deflection of the Beam at any time-dependent coordinates x. 

3

12


Ebh
EI , is the 

constant bending stiffness of the beam, where E, b, and h are the beam’s modulus of elasticity, width and thickness, 

respectively. Accordingly, m, and c are the mass per unit area and damping constant of the beam respectively. 

Therefore, the beam’s deflection depends on 
1

EI
and accordingly the beam’s squared deflection depends on  

21
( )

EI

. By making the equation dimensionless, the functions of z of a beam depend on  
212

( )
E

. while the assumed moving 

random loads are passed through the middle of plates, the y coordinate is always constant, therefore, the plate’s 

deflection depends on x coordinate similar to the beam and accordingly depends on 
1

D
where 

3

2
12(1 )

Eh
D





, is the 
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plate’s flexural rigidity and consequently, the plate’s squared deflection depends on  
21

( )
D

. By making the equation 

dimensionless, the function of z of plate depend on  

2

212(1 )
( )



E
. Therefore, by utilizing alike materials for beams 

and plates, the function of z of the plate and the function of z of the beam differ by 
2 2(1 ) . In the presented 

investigation, the simply–supported aluminum thin square plate with the mass density ρ = 2700 kgm
-3

, the modulus 

of elasticity E = 7.31× 10
10

 pa, and the Poisson’s ratio ν = 0.33, for the convergence study, are taken into 

consideration. The designated width and the length of the plate are equal to 2 m and its thickness is 1.7 cm [26]. Of 

course, according to the non-dimensional function, only the Poisson’s ratio is included in the calculations. 

Figure 1 shows the functions of z at the middle point of a simply-supported intact rectangular plate subjected to the 

moving random load with the white noise covariance with various speed parameters in comparison with those of a 

simply-supported beam. 

Figure 2 demonstrates the functions of z at the middle point of a simply-supported intact rectangular plate subjected 

to the moving random load with the constant covariance with various speed parameters in comparison with those of 

a simply-supported beam subjected to the same loads. 

Figure 3 shows the functions of z at the middle point of a simply-supported intact rectangular plate subjected to the 

moving random load with the exponential cosine covariance with various speed parameters in comparison with 

those of a simply-supported beam subjected to the same loads. 

After attesting the convergence and the accuracy of the proposed method, the investigation of the moving random 

load effect and the parametric studies of the cracked plates, are performed. Since studied cracks, are constant cracks 

[34], increasing the inclined crack angles as well as the crack lengths are extended to the limitation that stress 

intensity factors should be less than the critical stress intensity factor [34]. The limitation of moving load velocities 

and magnitudes are depended on the plates’ dynamic stability, conformed to the characteristic equation or the 

frequency equation [35], the positive root for plates natural frequencies, the positive definition of the plates’ masses 

as well as the plates stiffness. As the following diagrams are presented as non-dimensional diagrams, the moving 

load velocities and magnitude are not considered directly in the diagrams. In other words, the moving load 

magnitude is not included in the calculations. Besides the dynamic responses are investigated until the moving load 

is on the plate and due to the simple-supported plate natural frequencies formula, presented by Leissa [36] as

2 2 2
[( ) ( ) ] ]    

n ij

i j D

a b m
, the designated dimensions of the plate and the definition of the speed parameter α, 

the moving load velocities are in any case in the plate’s dynamic stability limitation.   

Figure 4 to 8 illustrate behavior of the functions of z at the middle point of the damped and undamped intact 

rectangular plates as well as the damped and undamped rectangular plates with a surface constant crack at the 

middle of the plates subjected to the moving random load, passed through the middle of plates, with five different 

covariance, the white noise, the constant covariance, the exponential cosine, the exponential and the cosine wave 

covariance.  

Figure 4 exhibits the functions of z at the middle of the undamped and damped intact plates and the cracked plates 

with the crack length equal to c/a = 0.5 and the 45° inclined crack angle, subjected to the moving random load with 

the white noise covariance with different speed parameters. By increasing the non-dimensional time parameter (i.e. 

z), the function of z in the undamped cracked plate case compared with the undamped intact plate case, for the speed 

parameter 0.25, increases substantially and for the other speed parameters, increases gradually because of the crack 

presence and the moving random load effect. The order of speed parameters in the denominator of the squared mean 

value equation, deduced the functions of z, is larger than the order of speed parameters in the numerator of that 

function, accordingly, the function of z in the undamped cracked plate case in comparison with the undamped intact 

plate case, for the speed parameter 0.25, is increase excessively, compared to that for the other speed parameters. 

The increasing of the function of z in the damped cracked plate cases compared to the damped intact plate cases is 

similar to the increasing the undamped cracked plate cases compared to the undamped intact plate cases although the 
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increasing is more moderately than those in the undamped cases due to the damper. Furthermore, in the mentioned 

damped intact and cracked plate cases, for the speed parameter equal to zero, the maximum functions of z appear 

when the moving load arrives near to the middle of the plates and in all other cases, those appear when the moving 

load comes nearby the right side of the plates. The function of z illustrates the function of the dynamic deflection to 

the static deflection ratio. Therefore, the maximum ratio’s function in the white noise covariance case, in the 

damped intact and cracked plate case is a bet less than 1.5 at the speed parameter zero and in the undamped intact 

and cracked plate case is a bit more than 1.5 at the speed parameter 0.5. 

Figure 5 show the behavior of the functions of z in time, at the middle point of the damped and undamped cracked 

plates with the crack length equal to c/a = 0.5 and the 45° inclined crack angle, as well as the damped and undamped 

intact plates, subjected to the moving random load with constant covariance. As shown in Figure 5, due to the 

admissible corner functions, in the cracked plate cases, the functions of z in that case are higher than those in the 

intact plate cases. The functions of z in the undamped cracked plate cases are larger than those of the damped 

cracked plate cases because of the damping. Moreover, in the alluded damped intact and cracked plate cases, for the 

speed parameter equal to zero and 1, the maximum functions of z appear when the moving load arrives near to the 

middle of the plates and nearby the right side of the plates respectively. Those events are similar to the white noise 

covariance case. In the other hand, in the mentioned damped intact and cracked plate cases, for the speed parameter 

0.25 and 0.5, the maximum functions of z reach when the moving load comes nearby 40% of the left side distance of 

the plates and 35% of the right side distance of the plates respectively. The maximum dynamic deflection to the 

static deflection ratio’s function in the constant covariance case, in the damped and undamped intact and cracked 

plate case is a bet less than 1.5 at the speed parameter 0.5. 

Figure 6 illustrate the effect of the crack line to the functions of z at the middle point of the undamped and damped 

intact as well as cracked plates with the crack length equal to c/a = 0.5 and the 45° inclined crack angle, subjected to 

the moving random load with exponential cosine covariance. The alteration of the functions of z, caused by cosine 

component, is large enough, that the modifying, created by exponential component, is covered and the increasing of 

the functions of z due to the crack line seem insignificant. It can be observed that, while the damping component, 

appears as a negative power in the exponential component, increase in the functions of z, caused by admissible 

corner functions, in the damped cracked plate case, is greater than those in the undamped cracked plate case. 

Besides, in the mentioned damped intact and cracked plate cases, for the speed parameter equal to zero, the 

maximum functions of z reach when the moving load arrives near to the middle of the plates and in all other cases, 

those appear when the moving load comes nearby the right side of the plates. Those events are similar to the white 

noise covariance case. The maximum dynamic deflection to the static deflection ratio’s function in the exponential 

cosine covariance case, in the damped intact and cracked plate case is a bet more than 4 at the speed parameter zero 

and in the undamped intact and cracked plate case is a bit more than 3 at the speed parameter 0.25. 

Figure 7 reveal the functions of z at the middle point of the undamped and damped crack plates with the crack length 

equal to c/a = 0.5 and the 45° inclined crack angle, in comparison with those of the intact plates, subjected to the 

moving random load with exponential covariance pattern. Due to the crack line, the functions of z in the undamped 

and damped crack plate cases are greater than those in the undamped and damped intact plate cases. As the equation 

(30) reveals, the exponential covariance, derives by limiting the ω0 to zero. Therefore, the damping element, 

expressed as a negative power in the exponential element. Accordingly, the increase of the functions of z due to the 

crack line in the damped crack plate cases, is greater than those in the undamped crack plate cases. Otherwise, in the 

mentioned damped intact and cracked plate cases, for the speed parameter equal to zero and 1, the maximum 

functions of z reach when the moving load arrives near to the middle of the plates and nearby the right side of the 

plates respectively. Further, in the mentioned damped intact and cracked plate cases, for the speed parameter 0.25 

and 0.5, the maximum functions of z reach when the moving load comes nearby 40% of the left side distance of the 

plates and 35% of the right side distance of the plates respectively. Those events are similar to the constant 

covariance case. The maximum dynamic deflection to the static deflection ratio’s function in the exponential 

covariance case, in the undamped intact and cracked plate case is a bet less than 1.5 at the speed parameter 0.5 and 

in the damped intact plate case is a bet less than 1.5 at the speed parameter 0.5 however in the damped cracked plate 

case is a bit less than 1.5 at the speed parameter 0.25. 
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Figure 8 illustrate, the increasing trend of the functions of z at the middle point of the undamped and damped 

cracked plates with the crack length equal to c/a = 0.5 and the 45° inclined crack angle, subjected to the moving 

random load with cosine covariance, versus those of the undamped and damped intact plates. As the equation (30) 

reveals, the cosine covariance derives by limiting the ωg to zero. As the high values of the functions of z in the 

cosine wave covariance cases reveal, the effect of the cosine component prevails in the all other components, such 

as the admissible corner functions in the cracked plates. Accordingly, the increase in the functions of z in the 

undamped and damped cracked plate cases in comparison with the undamped and damped of intact plate cases are 

inconsiderable. In addition, in the alluded damped intact and cracked plate cases, for the speed parameter equal to 

zero, the maximum functions of z reach when the moving load arrives near to the middle of the plates and in all 

other cases, those appear when the moving load comes nearby the right side of the plates. Those events are similar to 

the white noise as well as exponential cosine covariance case. The maximum dynamic deflection to the static 

deflection ratio’s function in the cosine covariance case, in the damped intact and cracked plate case is a bet more 

than 4 at the speed parameter zero and in the undamped intact and cracked plate case is a bit more than 3 at the 

speed parameter 0.25.    

Consequently, the proposed method can be utilized to obtain behaviors of the functions of z in undamped and 

damped plate with more than one crack in various locations.  

Figure 9 illustrates the behaviors of the functions of z at the middle point of the damped plate with the crack length 

equal to 0.4 of the plate length with the inclined crack angle equal to 30°, located in the middle of the plate, versus 

those that located in the corner of the plate, subjected to the moving random load with three different covariance 

patterns, including the white noise, constant covariance, and the exponential cosine covariance. In addition, the 

behaviors of the functions of z at the middle point of the damped plate with the crack length equal to 0.4 of the plate 

length with the inclined crack angle equal to 30°, located in the corner of the plate, are compared with functions of z 

at the middle point of the damped plate with the crack length equal to 0.5 of the plate length with the inclined crack 

angle equal to 45°, located in the middle of the plate, in comparison with the functions of z at the middle point of the 

damped plate with the total of mentioned cracks subjected to the moving random load with various speed parameters 

and three different covariance patterns, scilicet the white noise, constant, and the exponential covariance. As figures 

show, the functions of z at the middle point of the damped plate with the total of mentioned cracks, are a little more 

than the functions of z at the middle point of the damped plate with mentioned cracks individually.     

In the following, parametric studies are implement to indicate effects of the crack lengths, and the inclined crack 

angles, on the functions of z at the middle point of the plates with a surface constant crack at the middle of the plates 

subjected to the moving random load, passed through the middle of plates. As Figure 10 to 19 demonstrate, the 

effects of the crack lengths, and the inclined crack angles, on the functions of z at the middle point of the cracked 

plates subjected to the moving random load are gently because the crack is assumed as a constant crack. Besides, 

there are non-monotonous nonlinear relations between the plates’ functions of z and the inclined crack angles as 

well as the crack lengths in all cases.  

Figure 10 reveals the effects of the inclined crack angles on the functions of z at the middle point of the undamped 

and damped cracked plates, subjected to the moving random load with the white noise covariance pattern with 

various speed parameters at the constant distance parameters. For the moving random load, at the distance 

parameters z = 0.3 z`, z = 0.5 z`, in all undamped and damped cracked plate cases, and for the moving random load 

at the distance parameter z = 0.7 z`, in all damped cracked plate cases, and the undamped cracked plate cases with 

speed parameters α = 0.5, and α = 1, the inclinations of the relevant curves grow insignificant, while for the moving 

random load at the distance parameter z = 0.7 z`, in the undamped cracked plate cases with speed parameters α = 

0.25, increase gently. According to the white noise function of z formula and the admissible corner function 

formulation, the modified parameters due to the inclined crack angles modifying, are much less than one. Therefore, 

the effects of the inclined crack angles on the functions of z in all cases, are not significant.   

Figure 11 illustrates the effects of inclined crack angles on the functions of z at the middle point of the undamped 

and damped cracked plates, subjected to the moving random load with the constant covariance pattern with various 

speed parameters at the constant distance parameters. For moving random load at the distance parameters z = 0.3z`, 

with the speed parameter α = 0.25, in the undamped and damped cracked plate cases, for moving random load at the 
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distance parameter z = 0.5 z`, with the speed parameter α = 0.25, in the undamped and damped cracked plate cases 

and speed parameter α = 0.5, in the damped cracked plate cases, as well as for moving random load at the distance 

parameter z = 0.7 z`,  with the speed parameters α = 0.25, and α = 0.5 in the undamped and damped cracked plate 

cases, the inclinations of the relevant curves grow moderately while in all other cases, increase inconsiderably.  In 

conformity with the constant function of z formulation and the admissible corner function formula, the varied 

parameters due to the inclined crack angles varying, used in that value, are less than one, multiplied by less than one. 

Accordingly, the consequences of the inclined crack angles modifying on the functions of z in all cases, are not 

effective. 

Figure 12 shows the effects of inclined crack angles on the functions of z at the middle point of the undamped and 

damped cracked plates, subjected to the moving random load with the exponential cosine covariance pattern with 

various speed parameters at the constant distance parameters. In all cases, the inclinations of the relevant curves 

grow slightly. According to the exponential cosine function of z formula and the admissible corner function 

formulation, the cosine factor overshadows modified parameters due to the inclined crack angles alteration, used in 

that value. Therefore, the effects of inclined crack angles on the functions of z in all cases, are insignificant.     

Figure 13 illustrates effects of inclined crack angles on the functions of z at the middle point of the undamped and 

damped cracked plates, subjected to the moving random load with the exponential covariance with various speed 

parameters at the constant distance parameters. For moving random load at the distance parameters z = 0.3z`, z = 

0.5z`, and z = 0.7z`, with the speed parameter α = 0.25, in the undamped cracked plate cases, for moving random 

load at the distance parameters z = 0.3z`, and z = 0.7z`, with the speed parameter α = 0.25, and α = 1, in damped 

cracked plate cases, for moving random load at the distance parameters z = 0.5z`, and z = 0.7z`, with the speed 

parameter α = 0.5, and α = 1, in damped cracked plate cases, the inclinations of the relevant curves, for more than 

15° inclined crack angles, increase considerably while in all other cases, increase insignificantly.      

Figure 14 elucidates effects of inclined crack angles on the functions of z at the middle point of the undamped and 

damped cracked plates, subjected to the moving random load with the cosine wave covariance with various speed 

parameters at the constant distance parameters. For all cases, the inclinations of the relevant curves increase 

inconsiderably. According to the cosine function of z formula and the admissible corner function formulation, the 

modifying of that value due to the inclined crack angles variation, is covered by cosine component effect. Therefore, 

the effects of the inclined crack angles on the functions of z in all cases, are insignificant.   

Figure 15 reveals effects of crack lengths on the functions of z at the middle point of the undamped and damped 

cracked plates, subjected to the moving random load with the white noise covariance with various speed parameters 

at the constant distance parameters. For moving random load, at the distance parameters z = 0.3 z`, z = 0.5 z`, and z = 

0.7 z`, with speed parameters α = 0, in the damped cracked plate cases, the inclinations of the relevant curves grow 

moderately, while in all other cases, increase slightly. In conformity with the white noise function of z formulation 

and the admissible corner function formula, the altered parameters due to the crack lengths modifying, used in that 

value, are less than one because the crack is assumed as a constant crack. Accordingly, the consequences of crack 

lengths varying on the functions of z, are moderately.             

Figure 16 indicates effects of crack lengths on the functions of z at the middle point of the undamped and damped 

cracked plates, subjected to the moving random load with the constant covariance with various speed parameters at 

the constant distance parameters. For moving random load, at the distance parameters z = 0.3 z`, z = 0.5 z`, and z = 

0.7 z`, with speed parameters α = 0.25, in the undamped cracked plate cases, the inclinations of the relevant curves, 

for the crack length less than 0.3a increase gently, while in all other cases, increase insignificantly. According to the 

constant function of z formula and the admissible corner function formulation, the modified parameters due to the 

crack lengths varying, used in that value, are less than one because the crack is assumed as a constant crack. 

Therefore, the crack lengths moderately affect the functions of z.              

Figure 17 illustrates effects of crack lengths on the functions of z at the middle point of the undamped and damped 

cracked plates, subjected to the moving random load with the exponential cosine covariance with various speed 

parameters at the constant distance parameters. The inclinations of the relevant curves grow inconsiderably. In 

conformity with the exponential cosine function of z formula and the admissible corner function formulation, the 
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cosine factor overshadows varied parameters due to the crack lengths’ modification, used in that value because the 

crack is assumed as a constant crack. Accordingly, the crack lengths gradually affect the functions of z.            

Figure 18 shows effects of crack lengths on the functions of z at the middle point of the undamped and damped 

cracked plates, subjected to the moving random load with the exponential covariance with various speed parameters 

at the constant distance parameters. For moving random load, at the distance parameters z = 0.3 z`, z = 0.5 z`, and z = 

0.7 z`, with speed parameters α = 0, in the undamped and damped cracked plate cases, the inclinations of the 

relevant curves, for the crack length less than 0.1a grow moderately, while in all other cases, increase 

insignificantly. According to the exponential function of z formulation and the admissible corner function formula, 

the modified parameters due to the crack lengths variation, affect to alter that value. While the crack is assumed as a 

constant crack, the effects of the crack lengths on the functions of z, are moderate.     

Figure 19 shows effects of crack lengths on the functions of z at the middle point of the undamped and damped 

cracked plates, subjected to the moving random load with the cosine wave covariance with various speed parameters 

at the constant distance parameters. For moving random load, in all cases, the inclinations of the relevant curves 

grow slightly. In conformity with the cosine function of z formula and the admissible corner function formulation, 

the varying of that values due to the crack lengths’ alterations, are covered by the cosine component effect because 

the crack is assumed as a constant crack. Accordingly, the crack lengths gently affect the functions of z.            

4. Conclusions 

The transverse vibration of a thin plate with a surface constant crack at the middle of the plate, subjected to a 

moving non-stationary random load with a constant velocity and a constant mean value, is systematically 

investigated. For this purpose, five different covariance patterns are utilized, including videlicet the white noise, 

constant, exponential, cosine wave and the exponential cosine covariance. The behavior of the functions of z, as the 

non-dimensional deflection values, at the middle point of the undamped and damped intact as well as cracked plates 

subjected to the mentioned moving random load, are obtained. The famous corner functions are utilized to express 

the crack line and two tips of the crack. Based on the obtained results, there are non-monotonous nonlinear relations 

between the plates’ functions of z and the inclined crack angles as well as the crack lengths in all cases. While 

cracks are to be constant, the functions of z modifications due to the inclined crack angles increase and also, the 

crack lengths, are moderately developed in all cases. The results obtained from the parametric studies reveal that for 

the white noise covariance pattern, the modified parameters due to the increase in the inclined crack angles and the 

crack lengths, are much less than one. Accordingly, the functions of z modify gently. For the constant covariance, 

the moderated parameters due to the increase in the inclined crack angles and the crack lengths, are more less than 

one. Therefore, the functions of z vary gradually. For exponential cosine covariance as well as cosine wave 

covariance, the cosine factor overshadows the altered parameters due to the increase in the inclined crack angles and 

the crack lengths. Accordingly, the functions of z modify moderately. For the exponential covariance, the functions 

of z modify significantly due to increase in the inclined crack angles and the crack lengths. In the mentioned damped 

intact and cracked plate cases, for the speed parameter equal to zero, the maximum functions of z appear when the 

moving load arrives near to the middle of the plates in all covariance cases, and for other speed parameters in the 

white noise, cosine and exponential cosine covariance pattern cases, those appear when the moving load comes 

nearby the right side of the plates. Besides, in the constant and exponential covariance pattern cases, for the speed 

parameter 1, the maximum functions of z appear when the moving load arrives near to the right side of the plates 

and for the speed parameter 0.25 and 0.5, those reach when the moving load comes nearby 40% of the left side 

distance of the plates and 35% of the right side distance of the plates respectively. 

The mentioned analyses are idealized for dynamic analyses in recent years’ highway and railway transport 

structures, where flow high weight and speed vehicles.      
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Captions of the figures: 

Figure 1. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped intact 

rectangular plate (b) damped intact rectangular plate (c) undamped beam (d) damped beam subjected to the moving 

random load with the white noise covariance. 

Figure 2. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped intact 

rectangular plate (b) damped intact rectangular plate (c) undamped beam (d) damped beam subjected to the moving 

random load with the constant covariance. 

Figure 3. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped intact 

rectangular plate (b) damped intact rectangular plate (c) undamped beam (d) damped beam subjected to the moving 

random load with the exponential cosine covariance. 

Figure 4. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped cracked 

rectangular plate compare with undamped intact plate (b) damped cracked rectangular plate compare with damped 

intact plate subjected to the moving random load with the white noise covariance. 

Figure 5. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped cracked 

rectangular plate compare with undamped intact plate (b) damped cracked rectangular plate compare with damped 

intact plate subjected to the moving random load with the constant covariance.  

Figure 6. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped cracked 

rectangular plate compare with undamped intact plate (b) damped cracked rectangular plate compare with damped 

intact plate subjected to the moving random load with the exponential cosine covariance.  

Figure 7. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped cracked 

rectangular plate versus undamped intact plate (b) damped cracked rectangular plate versus damped intact plate 

subjected to the moving random load with the exponential covariance. 

Figure 8. Behavior of the functions of z in time at the middle point of a simply-supported (a) undamped cracked 

rectangular plate versus undamped intact plate (b) damped cracked rectangular plate versus damped intact plate 

subjected to the moving random load with the cosine wave covariance pattern. 

Figure 9. Behavior of the functions of z in time at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and different inclined crack angles subjected to the moving random 

load with the (a) – (b) white noise covariance (c) – (d) constant covariance (e) – (f) exponential cosine covariance. 

Figure 10. Effects of inclined crack angles on the functions of z at the middle point of a simply-supported damped 

cracked rectangular plate with constant crack lengths and different inclined crack angles subjected to the moving 

random load with the white noise covariance pattern. 
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Figure 11. Effects of inclined crack angles on the functions of z at the middle point of a simply-supported damped 

cracked rectangular plate with constant crack lengths and different inclined crack angles subjected to the moving 

random load with the constant covariance. 

Figure 12. Effects of inclined crack angles on the functions of z at the middle point of a simply-supported damped 

cracked rectangular plate with constant crack lengths and different inclined crack angles subjected to the moving 

random load with the exponential cosine covariance. 

Figure 13. Effects of inclined crack angles on the functions of z at the middle point of a simply-supported damped 

cracked rectangular plate with constant crack lengths and different inclined crack angles subjected to the moving 

random load with the exponential covariance. 

Figure 14. Effects of inclined crack angles on the functions of z at the middle point of a simply-supported damped 

cracked rectangular plate with constant crack lengths and different inclined crack angles subjected to the moving 

random load with the cosine wave covariance. 

Figure 15. Effects of crack lengths on the functions of z at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and constant inclined crack angles subjected to the moving random 

load with the white noise covariance. 

Figure 16. Effects of crack lengths on the functions of z at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and constant inclined crack angles subjected to the moving random 

load with the constant covariance. 

Figure 17. Effects of crack lengths on the functions of z at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and constant inclined crack angles subjected to the moving random 

load with the exponential cosine covariance. 

Figure 18. Effects of crack lengths on the functions of z at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and constant inclined crack angles subjected to the moving random 

load with the exponential covariance. 

Figure 19. Effects of crack lengths on the functions of z at the middle point of a simply-supported damped cracked 

rectangular plate with different crack lengths and constant inclined crack angles subjected to the moving random 

load with the cosine wave covariance. 
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