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Abstract 
 

Considering many advantages of 3D printing of polymers using Fused Deposition Modeling 

(FDM) technique and its service nature, achieving maximum customer satisfaction is very 

important. The satisfaction of each particular customer may be obtained by providing one or 

more different outputs of this process, which may not have the same weights. This paper 

concentrates on multi-objective optimization of three response variables, including tensile 

strength, dimensional accuracy, and production cost. Eight FDM process parameters containing 

orientation, layer thickness, infill density, nozzle temperature, print speed, number of shells, 

infill pattern, and print position have been selected. For carrying out experimental studies, 

specimens were designed based on Taguchi L27 and manufactured according to ASTM D368-

(Ⅰ) using Polylactic Acid (PLA). Then the signal-to-noise ratio is calculated, and the 

mathematical regression model of all outputs is obtained. Finally, an intuitive optimal Pareto 

front is presented to the customer rather than a single point. By repeating the proposed algorithm 

for eight other customers, the average satisfaction number of 88.56% indicates the efficiency of 

this method. 

 

Keywords: FDM, Customer Satisfaction, Multi-Objective Optimization, Process Parameters, 

Design of Experiments 

1. Introduction 

Additive Manufacturing (AM) is defined as a production method that fabricates objects from 

Computer Aided Design (CAD) models by creating sequential layers of material [1]. Contrary to 

traditional processes involving tools and molds, AM uses only the finishing step when necessary; 

therefore, there is no time and raw materials waist. Fused Deposition Modeling (FDM) is one of 

the most popular consumer-level AM processes based on extrusion that widely uses 

thermoplastic filaments, including polycarbonate, Acrylonitrile Butadiene Styrene (ABS), and 

Polylactic Acid (PLA) [2,3]. Low cost, material flexibility, scalability, and ability to build 
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functional parts having complex geometries are the principal reasons for the popularity of this 

method. In FDM printers, by using a controlled feed mechanism, filament enters a hot cavity, 

melts into a semi-liquid state, and is extruded through a nozzle. Finally, the created successive 

two-dimensional layers onto the build platform result in the fabrication of a three-dimensional 

part [4].  

The development of AM technology, along with its application, has increased consumers’ 

expectations and led to a competitive market. Gaining a competitive advantage is crucial in such 

a market. In this vein, predicting customers’ undiscovered needs is an effective way to increase 

customer satisfaction which will enhance reputation and customer loyalty [5–7]. The same rules 

apply to companies providing 3D (Three-Dimensional) printing services. Consumers require 

printed components for various applications, so their definition of quality differs. For instance, if 

a customer requires stiff parts but cannot afford high-quality products, strength might be 

decreased to some level to have an optimum production cost. Based on this example, it can be 

deduced that offering accurately customized services leads to higher customer satisfaction. 

In recent years, FDM 3D printers' performance has been improved using various methods. Liu X. 

et al., in 2017, used gray Taguchi to optimize tensile, flexural, and impact strength [8]. In 2018, 

Yaman U. et al. [9] utilized shrinkage as a tool to compensate for the shrinkage. Printed interior 

line segments, which are directly connected to the hole perimeter, pull it inward of the artifact. 

This considerably improves the hole’s dimensional accuracy. Raju et al., in 2019, applied a PSO-

BFO hybrid method to optimize surface roughness, hardness, tensile strength, and flexural 

modulus [10]. Akbaş, O. E., et al. experimentally and numerically analyzed the effect of the 

nozzle temperature and feed rates on the dimensions of the FDM polymer parts [11]. According 

to Menddricky and Fris, in 2020, the height of the layers has the greatest influence on the surface 

roughness and dimensional accuracy of parts produced by FDM. [12]. In 2021, Dev & Srivastava 

[13] employed analysis of variance (ANOVA) to investigate the importance of process 

parameters on flexural strength. In addition, they utilized Response Surface Methodology (RSM) 

and genetic algorithm to optimize process parameters and achieve favorable flexural strength. In 

the same year, Camposeco-Negrete [14] investigated the impact of adjustable inputs on 

processing time, energy consumption, dimensional accuracy, and mechanical properties of the 

part by applying the Taguchi method besides analysis of variance. The same approach was used 

by Ramesh & Panneerselvam [15] to determine mechanical characteristics depending on input 

parameters. As a hybrid method for optimizing dimensional accuracy, Mohamed et al. [16] 

applied a definitive screening design and an artificial neural network. As a different approach, 

Haghshenas Gorgani et al. [17] predicted dimensional errors and modified CAD models with a 

nonlinear error compensator to improve dimensional accuracy. In 2022, Rezaeian et al. 

investigated the printing speed influence on the mechanical and fractural performance of ABS 

parts manufactured by the FDM printer [18]. In the same year, Sandhu et al. utilized Taguchi 

orthogonal arrays to study the impact of layer thickness, raster angle, and infill pattern on 

mechanical properties and surface roughness of FDM parts [19]. In addition, Tosto et al. 

combined FDM and debinding-sintering techniques to reduce the costs of traditional metal AM 

techniques. They employed the Design Of Experiment technique to study the effect of nozzle 

temperature, layer thickness, and flow rate on the tensile and bending properties of parts 

fabricated with this method [20]. 
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As mentioned, most publications related to optimizing FDM process have attempted to identify 

the effect of input parameters on output responses. Meanwhile, A more efficient use of FDM 

printers might have been achieved if the behavior of several customer-based response variables 

were investigated. 

Furthermore, in the majority of previous studies, the number of investigated input parameters 

rarely exceeded six, possibly due to increased calculations or distortion of response functions. In 

this research, two steps have been taken to solve this problem: First, before the optimization 

process, a Taguchi analysis is performed, which removes ineffective and noisy data. Second, 

combining the desirability function with the metaheuristic algorithm of NSGA II reduces the 

calculations and provides optimal Pareto fronts in 2D (Two-Dimensional) form, which facilitates 

customer decision-making. In previous research, desirability function and NSGA II have been 

used alone, but their combination has never been utilized. 

Also, in most of the reviewed literature, a single optimal point is presented, which gives only one 

choice to the beneficiary. However, providing a range of answers as an optimal Pareto front 

allows the customer to understand various situations intuitively and make a better decision. This 

leads to greater customer satisfaction which is one of the goals of any service work. 

Based on this, the main goals of this research are: 

 Defining a response function whose inputs are device settings and outputs are customer 

requests. Naturally, this function should be a vector function with more than two 

dimensions. 

 Optimizing the response function and providing an optimal Pareto front that gives the 

customer insight and a wide choice. 

 Validation of the method based on conducting tests and measuring its efficiency. 

In order to achieve the above goals, firstly the research method is explained in section 2. In 

section 3, the details of the production and measurement method of the specimens are described, 

and the results are presented. At the end of this section, the results are analyzed and discussed. 

Finally, section 4 includes the conclusion, limitations, and suggestions for future research. 

2. Materials and methods 

Step 1: Identifying inputs and outputs  

It is essential to establish significant customer's demands as response variables to gain the 

highest level of customer satisfaction [21,22]. According to the reviewed literature and customer 

surveys, tensile strength, dimensional accuracy, and production cost are selected as outputs. The 

inputs are determined based on highly effective process parameters in slicer software and the 

most frequent entries in recent years' articles. Accordingly, Orientation, layer thickness, infill 

density, nozzle temperature, print speed, number of shells, infill pattern, and print position were 

identified as initial input parameters. It is possible that some of the inputs may be removed due to 

their negligible or noisy effect. 

Step 2: Preparing specimens 
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Samples are being produced according to ASTM D638-14 (Type I), for both tensile testing, and 

dimensional measurement. Dimensions of the specimen are indicated in Figure 1. [Figure 1] 

The full factorial design of experiment method, is very complicated, expensive, and time-

consuming [23]. In such a case, the Taguchi orthogonal arrays are very efficient and lead to a 

significant reduction in the number of experiments [24]. Table 1 provides input parameters’ 

levels, according to available materials, existing printers, and measurement equipment. Figure 2 

illustrates the infill pattern types. [Table 1], [Figure 2] 

According to experiments designed by the Taguchi method in Minitab software, 27 samples 

should be manufactured as shown in Table 2. [Table 2] 

Step 3: Measurement of output variables 

Calculating the cost of each sample: A stopwatch recorded each sample's printing time, and its 

mass was measured using a digital scale after production. Accordingly, the cost of each specimen 

is calculated using Equation (1).  

t mC C t C m                           (1) 

Where 𝑡 indicates the printing time, 𝑚 is the mass of each specimen, 𝐶𝑡 is the price per unit time, 

and 𝐶𝑚 is the price per unit mass.  

Measuring the Dimensional Accuracy: The specimens’ width was measured by a digital caliper. 

A lower difference between the width of the CAD model and the actual sample shows higher 

manufacturing accuracy.   

Tensile strength test:  An electromechanical universal testing machine was utilized to conduct 

the tensile test. The ultimate tensile force has been considered as a criterion for comparing 

samples’ strength. 

Step 4: Taguchi Analysis: 

The results have been analyzed using the Grubbs' test with a significance level of 0.5, and 

outliers have been removed. Finally, signal-to-noise (S/N) has been obtained using Taguchi 

analysis where, the chosen strategy is "smaller is better" for dimensional error and price, and 

"bigger is better" for tensile strength. 

Step 5: Obtaining the equation of output responses 

RSM is a regression-based statistical approach for obtaining the relation between one or more 

output responses in terms of several input variables. According to Equation (2), the outputs are 

generated using "full quadratic regression."  

1 1 1

n n n

i i j l i j i

j l j

Y a X X b X c
  

                          (2) 
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Where 𝑌𝑖 is the output response function, 𝑋𝑗 and 𝑋𝑙  are input parameters, and 𝑎𝑖 and 𝑏𝑖 are 

coefficients. Moreover, 𝑖 and 𝑛 are the number of total output responses and input parameters, 

respectively. 

Finally, three distinct equations, including production cost, dimensional error, and tensile 

strength are obtained and represented by 𝑌𝑐 ,  𝑌𝑎, and  𝑌𝑠 respectively. 

Step 6: Optimizing the results 

Since the optimization of a vector output function with three components (with respect to three 

response variables) gives a three-dimensional Pareto front, which may not visually make sense to 

the end-user [25], the following method is applied: 

To begin, each component of tensile strength and dimensional accuracy is weighed between 1 

and 10 by the end-user. Suppose these weights are called 𝑊𝑠 and 𝑊𝑎 respectively. 𝑌𝑑 represents 

the aggregation of qualitative components in Equation (3): 

1
( )

( )s a s aW W W W

d s aY Y Y
 

                           (3) 

Note that, ultimately, minimizing 𝑌𝑑 is desirable. The total desirability function is generated 

from the vector combination of 𝑌𝑑 and 𝑌𝑐, as shown in Equation (4). 

d

c

Y
F

Y

 
  
 

                    (4) 

Then, a multi-objective genetic algorithm (NSGA-ⅠⅠ) on MATLAB software is used to 

minimize F. As a result, a two-dimensional Pareto Front is obtained in which all points represent 

optimal states. At this stage, the customer can choose one of these points depending on the 

relative importance of quality and cost. 

3. Results and Discussion 

3.1. Manufacturing of the specimens and inspection 

Samples were fabricated with 1.75 mm diameter PLA filaments on a "Quantum 2025" 3D printer 

machine. For all samples, the top/bottom solid thickness was 1.08 mm, the nozzle diameter was 

0.4 mm, and the bed temperature was 50 ℃. Figures 3 and 4 show specimens being produced and 

tested; Table 3 provides the main results. 

A digital scale with 0.1 g was used to measure each sample's mass. At the time of the study, Ct 

and Cm in Equation (1) were 0.63 USD/h and 0.02 USD/g, respectively. The dimensional 

inspection was performed with a digital caliper with 0.01 mm accuracy. Also, tensile testing was 

conducted on a "ZwickRoell Z100" electromechanical universal testing machine. [Figure 3 and 

4], [Table 3] 
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In such samplings, one of the main concerns is the repeatability of the results. Due to the 

prohibitive expense of making a large number of samples, researchers take one of two 

approaches [8, 13, 14, 15, 19, and 20]: 

One approach is to decrease the number of tests by reducing the number of inputs. Therefore, 

you can increase repetitions of samples, but the comprehensiveness of the tests faces 

fundamental doubt due to the reduced number of inputs. Another approach is to maintain the 

number of inputs and reduce the number of sampling repetitions. In this case, the tests' 

comprehensiveness is guaranteed, but repeatability is doubtful. 

To solve this problem, a modified version of the second approach which involves removing or 

replacing outlier data using a valid method such as Grubb's test was applied. Two specimens 

were fabricated for each experiment. Each specimen was dimensionally inspected twice by 

different individuals. Therefore, the total number of dimensional records is four. Next, by using 

Grubb’s test, the outliers were detected as 18.95, 19.6, and 19.18 in experiments 1, 19, and 21, 

respectively. To detect outliers in the tensile test results, specimens of each experiment should be 

compared to each other. However, in this case, there is no criterion to detect an outlier between 

two data. As an available solution, an initial Taguchi analysis was performed and indicated that 

the most effective input parameters of tensile strength are infill density and the number of shells. 

Then, the tensile strength results were categorized into nine groups so that members of each 

group have the same infill density and number of shells. As a result, the only outlier detected 

using Grubbs' test was 2172 in experiment 8. No outlier data was observed among the mass and 

printing time results. 

3.2. Taguchi analysis and S/N ratios  

Figures 5, 6, and 7 provide the main effects plots for S/N ratio and means of tensile strength, 

dimensional accuracy, and production cost; furthermore, Tables 4, 5, and 6 represent the 

responses of S/N ratios to these parameters. The similarity between plots of S/N ratios and means 

could confirm the validity of the results. The differences are trivial and not decisive. [Figure 5], 

[Table 4], [Figure 6], [Table 5], [Figure 7], [Table 6] 

As presented in Table 4 and Figure 5, number of shells and infill density are the most influential 

parameters in tensile strength. Increasing the infill density and number of shells in the defined 

range has raised the strength of specimens. They are followed by layer thickness and infill 

pattern as the next effective parameters. Increasing layer thickness has an inverse effect on the 

tensile strength. Among the tested infill patterns, the lines pattern makes the toughest specimens. 

Print position, print speed, nozzle temperature, and orientation have less impact on the printed 

parts' strength. 

According to Table 5, layer thickness, infill density, and orientation have a more noticeable 

impact on dimensional accuracy than other parameters. As displayed in Figure 6, increasing 

layer thickness and infill density have put up the dimensional tolerance. Additionally, specimens 

manufactured with a 45-degree orientation are more accurate. The main effects plots for S/N 

ratios and means of dimensional accuracy show that print position, nozzle temperature, print 

speed, number of shells, and infill pattern have minor influences. 
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Table 6 shows that layer thickness strongly influences production costs. Print speed and infill 

density stand in the second and third positions, respectively. It is also observed that the number 

of shells and infill pattern can be neglected. Figure 7 shows that production costs are reduced by 

thicker layers and faster printing speeds. In addition, increasing infill density leads to more costs. 

As expected, production costs are unaffected by print position and nozzle temperature. The 

printing time parameter including nozzle temperature affects production costs in terms of 

heating. 

The comparison of Figures 5 and 7 indicates that number of shells is a dominant parameter for 

manufacturing a high-strength specimen at a reasonable price. 

3.2. Multiple Regression Modeling 

According to Section 3, Step 4, RSM has been used to achieve regression models of the output 

responses. For this, all statistical analyses were carried out in Minitab software.  

The full quadratic regression equations for tensile strength, dimensional accuracy, and 

production cost are presented in Equations (5), (6), and (7). Furthermore, significant P-values 

have been obtained as the analysis of variance results are presented in Tables 7, 8, and 9, 

demonstrating the adequacy of regression models corresponding to all three equations. Aside 

from quadratic regression, linear regression has been performed for tensile strength and 

production cost. The results show that the quadratic equations are more accurate. For 

dimensional accuracy, linear and full quadratic led to the same results. 

2 21316 1456 5.10 292.4 433 0.215 122.6

25.5

s LT ID NS IP ID IP

LT ID

Y      





´
               (5) 

0.0606 1.028 0.002840aY LT ID                                (6) 

2

2

11.3 55.43 0.0797 0.2015 0.1338 88.37

0.001266 0.1640 0.3567 0.000659

c LT D PS NS LT

PS LT ID LT PS ID PS

Y I  



   

     
                       (7) 

As mentioned, 𝑌𝑎 computes dimensional error, therefore its reduction, increases dimensional 

accuracy. Due to the nature of infill patterns and number of shells, only positive integer values 

are acceptable for these parameters. [Table 7-9] 

3.3. Optimization 

According to Section 2, Step 6, the customer rates the importance of dimensional accuracy and 

tensile strength from 1 to 10. In this case study, our customer selected 5 for dimensional 

accuracy and 9 for tensile strength. Therefore, Equations (3) and (4) are rewritten as Equations 

(8) and (9), respectively: 

1
( )

9 5 0.64 0.369 5( )q s a s aY Y Y Y Y  ´ ´                          (8) 
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F
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´
                                              (9) 

 

Now, the optimization is performed based on the NSGA II algorithm. The result is optimal 

Pareto front of Figure 8 which contains optimal points. Table 10 coordinates of the points with 

their corresponding input parameters' values. [Figure 8], [Table 10] 

There are two problems with the presented Pareto front in Figure 8: first, the customer may not 

grasp the concept of 𝑌𝑑, and second, we have calculated 𝑌𝑐 based on our test specimens, whereas 

the customer's part may differ. The results have been normalized using Equations (10) and (11) 

to solve these problems. 

,

,

max

d n

d n

d

Y
Y

Y
*                  (10) 

,

,

max

c n

c n

c

Y
Y

Y
*                             (11) 

Where 𝑛 provides the index of each point and 𝑌𝑑,𝑛
∗  and 𝑌𝑐,𝑛

∗  show normalized form of 𝑌𝑑 and 𝑌𝑐. Results 

of normalization can be seen in Figure 9 and the last 2 columns of Table 10. 

The manufacturing cost of each point in Figure 9 can be reliably estimated by Equation (12). 

Where 𝑃ℎ represents the cost to manufacture the customer's part based on inputs related to 𝑌𝑐
∗ equal to 

one, and 𝑛 indicates the index of each point. 

,n h c nP P Y *´                    (12) 

[Figure 9] 

Finally, the customer can choose each given point in Figure 9. For example, our customer has 

selected the 20th point with the coordinates (0.6305, 0.5987). The optimal input parameters for 

this case study are shown in Table 11. According to these input settings, the most satisfactory 

and suitable part has been manufactured for this customer. [Table 11] 

This algorithm was tested on eight other customers to ensure its effectiveness. On a scale of 0-

100, they expressed their satisfaction with the expected price and quality. The average result of 

88.56 indicates the high efficiency of the proposed method. 

4. Conclusion 

This study aimed to optimize FDM 3D printing process parameters based on customers’ 

demands. The investigation considered three response variables as outputs and eight process 

parameters as inputs. The experiments based on Taguchi L27 were designed and manufactured in 

two iterations. After obtaining S/N ratios, three full quadratic regression base equations for 
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output responses were generated and show that the layer thickness, infill density, print speed, 

number of shells, and infill pattern significantly affect the output responses.  

According to the customer's demands, a quality function was defined, which is a weighted 

geometric average of dimensional accuracy and tensile strength. Following this, the quality and 

cost functions were used to define the fitness function. A Multi-objective optimization was done 

using NSGA II, and a two-dimensional optimal Pareto front was achieved and normalized. Then, 

the customer could select any point on the Pareto front that was more favorable to them 

according to their expectations. The most important innovations of this research are carrying out 

multi-objective optimization based on three outputs, presenting a range of optimal points instead 

of a single one, assigning the weights of outputs based on customer’s demands, making visual 

sense by presenting the 2D optimal Pareto front, and having the potential of generalizing to other 

cases by presenting the normalized form of Pareto front. 

Further studies can focus on other materials such as ABS and nylon, as well as other 

characteristics of FDM parts, including surface roughness, flexural strength, and compressive 

strength, covering a greater range of customer demands. Utilizing an artificial neural network or 

an adaptive neuro-fuzzy inference system in mathematical modeling has considerable potential 

to provide excellent results. Furthermore, the same approach could be applied to other AM 

technologies to make them more satisfactory for customers. 

Nomenclature 

2D Two-Dimensional 

3D Three-Dimensional 

ABS Acrylonitrile Butadiene Styrene 

AM Additive Manufacturing 

CAD Computer Aided Design 

FDM Fused Deposition Modeling 

ID Infill Density 

IP Infill Pattern 

LT Layer Thickness 

NS Number of Shells 

NT Nozzle Temperature 

OR Orientation 

PLA Polylactic Acid 

PP Print Position 

PS Print Speed 

RSM Response Surface Methodology 

S/N Signal/Noise 
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Table 1. Levels of input parameters 

Parameter Level 1 Level 2 Level 3 

Orientation (Deg) 0 45 90 

Layer Thickness (mm) 0.06 0.18 0.27 

Infill Density (%) 10 30 50 

Print Position Right (1) Center (2) Left (3) 

Nozzle Temperature (℃) 190 205 220 

Print Speed (mm/s) 30 42 55 

Number of Shell 2 3 4 

Infill Pattern Grid (1) Lines (2) Triangles (3) 

 

Table 2. List of experiments designed by L27 Taguchi orthogonal array 

Exp. 

No. 

Orientation 

(Deg) 

Layer 

Thickness 

(mm) 

Infill 

Density 

(%) 

Print 

Position 

Nozzle 

Temp. 

(℃) 

Print 

Speed 

(mm/s) 

Number 

of Shell 

Infill 

Pattern 

1 0 0.06 10 1 190 30 2 1 

2 0 0.06 10 1 205 42 3 2 

3 0 0.06 10 1 220 55 4 3 

4 0 0.18 30 3 190 30 2 2 

5 0 0.18 30 3 205 42 3 3 

6 0 0.18 30 3 220 55 4 1 

7 0 0.27 50 2 190 30 2 3 

8 0 0.27 50 2 205 42 3 1 

9 0 0.27 50 2 220 55 4 2 

10 45 0.06 30 2 190 42 4 1 

11 45 0.06 30 2 205 55 2 2 

12 45 0.06 30 2 220 30 3 3 

13 45 0.18 50 1 190 42 4 2 
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14 45 0.18 50 1 205 55 2 3 

15 45 0.18 50 1 220 30 3 1 

16 45 0.27 10 3 190 42 4 3 

17 45 0.27 10 3 205 55 2 1 

18 45 0.27 10 3 220 30 3 2 

19 90 0.06 50 3 190 55 3 1 

20 90 0.06 50 3 205 30 4 2 

21 90 0.06 50 3 220 42 2 3 

22 90 0.18 10 2 190 55 3 2 

23 90 0.18 10 2 205 30 4 3 

24 90 0.18 10 2 220 42 2 1 

25 90 0.27 30 1 190 55 3 3 

26 90 0.27 30 1 205 30 4 1 

27 90 0.27 30 1 220 42 2 2 

 

Table 3. Summary of experimental data 

Exp. 

No. 

Specimen Width (mm) 
 

Mass (g) Printing 

time  

(s) 

Ultimate Tensile Force 

(N) 

First    

Specimen  

Second 

Specimen 

 

First 

Specimen 

Second 

Specimen 

First 

Specimen 

Second 

Specimen 

1 19.02 19.01 19.02 18.95  10.2 10.3 25285 2162 2159 

2 19.04 18.98 19.08 18.99  11 11.1 19797 2420 2277 

3 19.01 18.92 18.89 19.08  11.8 11.6 16638 2634 2767 

4 19.07 19.23 19.24 19.16  12.7 12.6 11213 2346 2244 

5 19.22 19.18 19.18 19.26  13.3 13.3 8570 2314 2005 

6 19.25 19.21 19.19 19.26  14.1 14.1 6874 2888 2930 

7 19.28 19.42 19.58 19.29  15.1 15 9285 2268 2015 

8 19.36 19.21 19.22 19.29  15.6 15.6 6824 2783 2172 

9 19.23 19.36 19.66 19.4  16.1 16.1 5474 3073 3048 

10 19.13 19.07 19.13 19.05  13.8 13.8 24954 2817 2357 

11 19.15 19.08 19.16 19.12  13 13 18145 2185 2480 

12 19.12 19.14 19.16 19.21  13.9 13.8 33708 2586 2200 

13 19.28 19.2 19.31 19.21  16.2 16.2 10265 3219 3150 

14 19.36 19.34 19.36 19.42  15.4 15.4 7701 2577 2358 

15 19.37 19.33 19.4 19.31  16 16.1 13817 2727 2844 

16 19.25 19.26 19.29 19.28  10.9 10.9 5293 2349 2377 

17 19.25 19.26 19.29 19.22  9.6 9.6 3632 1876 1837 

18 19.23 19.23 19.24 19.22  10.4 10.5 6763 2119 2208 

19 19.13 19.6 19.05 19.07  15.9 15.7 22234 2848 2692 

20 19.03 19.12 19.08 19.07  16.9 16.8 40115 3064 3052 

21 19.18 19.1 19.11 19.1  15.7 15.6 28315 2432 2330 

22 19.24 19.14 19.22 19.21  10.4 10.4 5670 2339 2239 

23 19.12 19.15 19.14 19.12  11.2 11.2 10423 2549 2471 

24 19.15 19.12 19.11 19.15  9.8 9.7 6662 1899 1869 

25 19.28 19.27 19.22 19.21  12.6 12.5 4726 2203 2188 

26 19.32 19.2 19.26 19.27  13.5 13.5 8456 2647 2572 

27 19.29 19.28 19.32 19.26  12.2 12.2 5716 2210 2190 

 

Table 4. Response table of S/N ratios for tensile strength 

Level OR LT ID PP NT PS NS IP 

1 67.90 68.00 67.00 67.95 67.69 67.75 66.78 67.79 
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2 67.73 67.85 67.60 67.68 67.73 67.63 67.67 68.02 

3 67.64 67.42 68.68 67.65 67.85 67.90 68.83 67.46 

Delta 0.26 0.58 1.68 0.30 0.17 0.27 2.05 0.56 

Rank 7 3 2 5 8 6 1 4 

Impact 4.43% 9.88% 28.62% 5.11% 2.90% 4.60% 34.92% 9.54% 

 

Table 5. Response table of S/N ratios for dimensional accuracy 

Level OR LT ID PP NT PS NS IP 

1 18.81 24.31 20.62 18.33 16.71 16.49 16.15 16.88 

2 13.35 13.36 14.51 14.51 16.44 16.65 15.94 16.19 

3 16.38 10.87 13.41 15.71 15.40 15.41 16.46 15.47 

Delta 5.46 13.43 7.20 3.82 1.31 1.24 0.52 1.41 

Rank 3 1 2 4 6 7 8 5 

Impact 15.88% 39.05% 20.94% 11.11% 3.81% 3.60% 1.51% 4.1% 

 

Table 6. Response table of S/N ratios for production cost 

Level OR LT ID PP NT PS NS IP 

1 -34.40 -40.75 -32.87 -34.45 -34.45 -36.67 -34.08 -34.35 

2 -34.48 -32.65 -34.55 -34.46 -34.45 -34.25 -34.48 -34.41 

3 -34.50 -29.98 -35.96 -34.48 -34.48 -32.46 -34.82 -34.62 

Delta 0.09 10.77 3.09 0.03 0.04 4.20 0.73 0.28 

Rank 6 1 3 8 7 2 4 5 

Impact 0.46% 56.01% 16.07% 0.16% 0.21% 21.84% 3.80% 1.46% 

 

Table 7. Analysis of variance response for tensile strength 

Source DF Adj SS Adj MS F-

Value 

P-

Value 
Model 7 2917191 416742 33.00 0.000 

Linear 4 2722785 680696 53.91 0.000 

LT 1 95689 95689 7.58 0.013 

ID 1 1028621 1028621 81.46 0.000 

NS 1 1539135 1539135 121.89 0.000 

IP 1 59340 59340 4.70 0.043 

Square 2 134364 67182 5.32 0.015 
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ID×ID 1 44204 44204 3.50 0.077 

IP×IP 1 90160 90160 7.14 0.015 

2-Way 

interaction 
1 34511 34511 2.73 0.115 

LT×ID 1 34511 34511 2.73 0.115 

Error 19 239921 12627   

Total 26 3157112    

 

Table 8. Analysis of variance response for dimensional error 

Source DF Adj SS Adj MS F-

Value 

P-

Value 
Model 2 0.26921 0.134603 55.72 0.000 

Linear 2 0.26921 0.13460  55.72 0.000 

LT 1 0.21112 0.211123 87.40 0.000 

ID 1 0.05808 0.058084 24.04 0.000 

Error 24 0.05798 0.002416   

Total 26 0.32718    

 

Table 9. Analysis of variance response for production cost 

Source DF Adj SS Adj MS F-

Value 

P-

Value 
Model 9 76.8704 8.5412 203.07 0.000 

Linear 4 64.0999 16.0250 380.99 0.000 

LT 1 50.9662 50.9662 1211.72 0.000 

ID 1 4.3654 4.3654 103.79 0.000 

PS 1 8.4071 8.4071 199.88 0.000 

NS 1 0.3222 0.3222 7.66 0.013 

Square 2 5.6615 2.8308 67.30 0.000 

LT*LT 1 5.4277 5.4277 129.04 0.000 

PS*PS 1 0.2338 0.2338 5.56 0.031 

2-Way 

Interaction  

3 4.4093 1.4698 34.94 0.000 

LT*ID 1 1.4338 1.4338 34.09 0.000 

LT*PS 1 2.6501 2.6501 63.01 0.000 

ID*PS 1 0.3254 0.3254 7.74 0.013 

Error 17 0.7150 0.0421     

Total 26 77.5854    
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Table 10. Response table for optimal Pareto front of the case study 

Index 
Inputs 

 
Outputs 

 Normalized 

Outputs 

LT ID PS NS IP  𝑌𝑐 𝑌𝑑  𝑌𝑐
∗ 𝑌𝑑

∗ 

1 0.219 12.02 52.66 2 2  0.7893 0.00432  0.2463 1.000 

2 0.194 11.54 52.35 2 2  0.8381 0.00406  0.2615 0.9413 

3 0.214 10.84 52.99 3 2  0.9135 0.00390  0.2850 0.9030 

4 0.193 11.48 52.78 3 2  0.9732 0.00371  0.3037 0.8606 

5 0.174 10.35 53.16 3 2  1.0613 0.00352  0.3311 0.8147 

6 0.185 10.42 53.28 4 2  1.1276 0.00336  0.3518 0.7775 

7 0.174 10.82 53.22 4 2  1.2054 0.00327  0.3761 0.7565 

8 0.166 10.26 53.62 4 2  1.2570 0.00318  0.3922 0.7365 

9 0.164 10.46 52.98 4 2  1.2870 0.00317  0.4015 0.7333 

10 0.159 10.26 52.92 4 2  1.3269 0.00312  0.4140 0.7226 

11 0.154 10.32 53.36 4 2  1.3804 0.00306  0.4307 0.7100 

12 0.148 10.34 53.07 4 2  1.4503 0.00301  0.4525 0.6972 

13 0.145 10.25 53.36 4 2  1.4752 0.00298  0.4603 0.6904 

14 0.142 10.31 53.19 4 2  1.5236 0.00295  0.4754 0.6826 

15 0.138 10.19 53.36 4 2  1.5661 0.00291  0.4886 0.6730 

16 0.132 10.34 53.30 4 2  1.6543 0.00285  0.5162 0.6593 

17 0.128 10.34 53.01 4 2  1.7308 0.00280  0.5400 0.6478 

18 0.121 10.24 53.30 4 2  1.8258 0.00272  0.5697 0.6298 

19 0.115 10.34 53.28 4 2  1.9383 0.00265  0.6048 0.6132 

20 0.110 10.29 53.50 4 2  2.0206 0.00258  0.6305 0.5987 

21 0.107 10.18 53.39 4 2  2.0844 0.00254  0.6503 0.5883 

22 0.104 10.20 52.82 4 2  2.1517 0.00251  0.6714 0.5813 

23 0.101 10.20 53.18 4 2  2.2137 0.00246  0.6907 0.5698 

24 0.098 10.27 53.22 4 2  2.2664 0.00243  0.7071 0.5624 

25 0.094 10.27 53.44 4 2  2.3382 0.00237  0.7295 0.5502 

26 0.092 10.33 53.24 4 2  2.3891 0.00235  0.7454 0.5444 

27 0.088 10.18 53.35 4 2  2.4702 0.00228  0.7707 0.5293 

28 0.085 10.36 53.58 4 2  2.5310 0.00225  0.7897 0.5210 

29 0.083 10.33 53.41 4 2  2.6021 0.00220  0.8119 0.5105 

30 0.081 10.27 53.53 4 2  2.6331 0.00218  0.8215 0.5041 

31 0.080 10.17 52.98 4 2  2.6705 0.00216  0.8332 0.5005 

32 0.078 10.26 53.45 4 2  2.6995 0.00213  0.8423 0.4940 

33 0.076 10.21 53.40 4 2  2.7626 0.00209  0.8620 0.4833 

34 0.071 10.19 53.43 4 2  2.8813 0.00200  0.8990 0.4632 

35 0.067 10.17 53.40 4 2  2.9928 0.00192  0.9338 0.4441 

36 0.066 10.18 52.94 4 2  3.0320 0.00191  0.9460 0.4413 

37 0.065 10.16 52.84 4 2  3.0643 0.00188  0.9561 0.4363 

38 0.064 10.21 52.87 4 2  3.0996 0.00186  0.9671 0.4306 

39 0.062 10.18 52.76 4 2  3.1497 0.00182  0.9827 0.4220 

40 0.060 10.16 52.69 4 2  3.2050 0.00178  1.0000 0.4121 

 

Table 11. The optimal setting, according to the customer’s requirements 

Layer Thickness Infill Density Print Speed Number of Shells Infill pattern 

0.11 (mm) 10.3% 53.5 (mm/s) 4 Liners 
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Figure 1. Test specimen type Ⅰ (dimensions are in millimeters) 

 

Figure 2. Infill patterns that are used in experiments (Infill density is constant in all three cubes) 

 

Figure 3. a) FDM 3D printing of the specimen on Quantum 2025 and b) all specimens printed based on the designed experiments 

 

Figure 4. The loaded specimen in the tensile strength test 
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Figure 5. Main effects plot of a) S/N ratios and b) means for tensile strength   

 

Figure 6. Main effects plot of a) S/N ratios and b) means for dimensional accuracy 

 

Figure 7. Main effects plot of a) S/N ratios and b) means for production cost 
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Figure 8. Optimal Pareto front obtained for the fitness function based on the customer demands 

 

Figure 9. Normalized optimal Pareto front 
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