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In this article, a novel spectral method based on the integral transform and Finite Element (FE) method 
is introduced for nonlinear thermal analysis of a hollow cylinder under asymmetric boundary 
excitations. The material properties are temperature-dependent and vary in terms of spatial 
coordinates. This dependency makes the problem to be nonlinear. The intended nonlinear heat 
conduction equation is discretized using FEs in the radial direction. Fast Fourier transform (FFT) 
technique with the uniform distribution of the harmonics in the circumferential direction, is used to 
discretize the periodic domain and boundary conditions. The use of the FFT algorithm is accompanied 
by a significant save in computational times and efforts. In such problems, the pseudo-spectral 
technique, as an evolved model of the spectral method, is utilized whenever the material properties 
vary in terms of the periodic variables or there exists a nonlinear term. The convolution sum technique 
is appropriately used to transform the nonlinear terms in the Fourier space. Thermal boundary 
conditions at the inner surface of the cylinder are considered in asymmetrical form. In compliance with 
the other analytical and numerical solutions, the present mixed-method benefits from the fast rate of 
convergence and high accuracy. 

 

1. Introduction 
Initially, Functionally Graded Materials (FGMs) are introduced 
as temperature resistance in the aerospace industries [1]. Gradual 
properties in such materials are reached by varying the volume 
fractions of constituting materials in terms of the desirable 
spatial variables. For example, the composition of a Functionally 
Graded (FG) plate is formed by varying material properties 
between two free surfaces of the plate, from ceramic towards the 
metal, gradually. Low thermal conductivity and resistance to 
high temperatures of ceramic materials make them an attractive 
choice to be used as thermal barriers. On the other hand, the 
flexibility of the metallic constituent of the FGM blend prohibits 
brittle fracture due to excessive thermal stresses. 
       In FGMs it is often observed that a highly conductive alloy 
is integrated with a low conductive ceramic. So, heat conduction 
analyses of these materials are extremely concerned by many 
scholars. Up to now, a set of advanced numerical solutions based 
on the Finite Element Method (FEM) is investigated for heat 
conduction problems [2-4]. Annasabi and Erchiqui [2] solved 
the nonlinear heat equation in terms of the Kirchhoff 

transformation, ߴ(ܶ). The coefficient of heat conduction has 
been represented by a piecewise function. Each function is 
assumed to be described by a B-spline polynomial function. 
Nonlinear governing equations have been analyzed by using 
the FE approach. In a challenging problem, an enriched FEM, 
where the basis functions are augmented with a summation of 
exponential functions, has been executed for nonlinear 
transient heat transfer in FGMs [3]. In a similar work, a novel 
Polynomial Element Differential Method (PEDM) was 
presented by Zhou et al. [4] for solving two-dimensional 
nonlinear transient heat conduction problems. New shape 
functions with respect to isoparametric coordinates were 
derived to conduct the polynomial elements with an internal 
node. The finite difference scheme was used for discretizing 
the transient term. Newton iterative method was then 
conducted in nonlinearity governing equations.  
From the physical aspect, either homogeneous or 
heterogeneous (e.g. FG) material properties are 
temperature-dependent in general. This will be prominent 
when high temperature changes are attained [5]. That is, 
the temperature dependence of material properties can be 
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ignored in the lower temperature gradients. It causes the 
governing equations to become nonlinear and analysis to 
become time consuming and complicated. Further 
complications arise, especially for heat conduction analysis of a 
hollow cylinder, as the temperature boundary conditions vary in 
terms of the circumferential spatial variable (asymmetric 
boundary conditions). 

On the authors’ knowledge, pseudo-spectral nonlinear 
analysis of heat conduction equation for an FG hollow cylinder 
under asymmetric excitations is scarce. Sladek et al. [6] could 
analyze transient heat conduction of the heterogeneous FG 
cylinder by using the local boundary integral-based 
computational method. An algorithm containing the transfinite 
element method is implemented by Azadi and Shariyat [7] to 
show that how temperature-dependent material properties 
affect the heat transfer of an FG cylinder. An approximate 
solution based on the regular perturbation method is proposed 
by Moosaie [8] to investigate steady heat transfer for an FG 
cylinder with temperature-dependent material properties. 
Shojaeefard and Najibi [9] considered highly nonlinear 
governing equations of two-directional FG cylinders with 
temperature-dependent materials. 

Xu et al. [10] proposed a hybrid method combining the 
Galerkin Free Element Method (GFREM) and the Local 
Radial Point Interpolation Method (LRPIM) for solving steady 
and transient heat conduction problems with temperature-
dependent thermophysical properties in heterogeneous media. 
In simulation of heat conduction with temperature-dependent 
physical properties and boundary conditions, the general FEM 
instead of the conventional FEM is introduced by Yao et al. 
[11]. Numerical examples show that general FEM yields 
results with higher accuracy and stability than conventional 
FEM in simulation of transient heat conduction with 
temperature-dependent physical properties. In addition to the 
above-mentioned studies, a hybrid analytical/numerical 
approach using a mathematical framework of the Distribution 
Transfer Function Method (DTFM) is introduced for 
investigating transient heat conduction through the composite 
hollow cylinder structures [12]. A Localized Method of 
Fundamental Solution (LMFS) has been introduced to solve 
the nonlinear heat conduction problem by Wang et al. [13]. For 
this reason, Kirchhoff transforms have been used combined 
with an innovative, non-traditional, Fictitious Time Integration 
Method (FTIM). 

Spectral methods are generally classified as numerical-
based discretization techniques which are applicable to solve 
the PDEs. Especially in shells of revolution, the Fourier 
transform technique recognizes as a vigorous tool to decrease 
the computational costs. Fast Fourier Transform (FFT) gives 
numerous advantages such as available computer 
implementation and fast convergence for solving this type of 
problem. Numerical methods may be inherently accompanied 
by some deficiencies in modeling of geometry, discretization, 
and satisfaction of boundary conditions. Semi-analytical and 
mixed methods seem to be appropriate ways to alleviate these 
shortcomings. In this article, the FFT technique and the FE 
method through the Fourier spectral method are combined to 
achieve more advantages in the nonlinear thermal analysis of a 
thick hollow cylinder. In shells of revolution analysis, the 
periodic field-variable (as for example, in the circumferential 
direction) is approximated using a set of trigonometric 
functions (i.e. Fourier series). To the best of the authors’ 
knowledge, the nonlinear thermal analysis of an FG thick 
hollow cylinder using numerical hybrid FFT-FE technique is 

scarce. One can be referred to the numerical framework base 
on the FFT transform and FEM proposed for thermal analysis 
of disk brakes [14-16]. Currently, a novel combined FFT-
pFE method based on the FFT and p-version FEM has been 
introduced by Dehghan et al. [17] to thermo-electro-elastic 
analysis of a thick hollow cylinder.  

In this article, the following steps are considered. At first, a 
brief history of the pseudo-spectral method and its advantages in 
the nonlinear solution of the partial differential equations are 
explained. The convolution sum, as an auxiliary technique, is 
introduced to remedy difficulties that arise from the nonlinear 
terms in the Fourier space. In the next step, nonlinear heat 
conduction equation of the hollow cylinder considering the 
temperature-dependent heat conductivity is discretized using the 
proposed mixed FFT-FE method. It reduces the computational 
efforts of 2-D Partial Differential Governing Equations (PDGE) 
including boundary conditions into 1-D PDGE for a long 
cylinder. Finally, numerical results correspond to the asymmetric 
excitation are presented and the proposed method is validated. 

2. Pseudo-spectral methods beyond transform 
techniques  
In the spectral methods, the appropriate selection of the trial 
and test functions is most influential on the accuracy of the 
results. Basically, trial functions are considered as a 
combination of the base functions and are used to 
approximate the field variables of the problem. Meanwhile, 
weight functions are assumed to satisfy the governing 
equations and related boundary conditions. In particular 
cases, e.g. in the Galerkin method, these functions are 
named as approximate and weight functions, respectively. 
The choice of the bases (trial) functions is the main 
distinction between the early spectral method and the 
traditional numerical methods such as FEs and finite 
differences. In this section, we deal with a specific class of 
spectral methods known as the Fourier spectral method. 
Generally, the trigonometric functions are used in this 
approach as the trial and test functions. for satisfying the 
governing equations as well as the boundary conditions, the 
Galerkin approach can be employed. In the Galerkin 
spectral method, when the nonlinear terms appear or the 
coefficients of the differential equation are varying with 
respect to the periodic variable, the implementation of some 
convolution concepts is unavoidable. Products of periodic 
functions in the Fourier space are the most important reason 
for this implementation. For example, consider (ݔ)ߙ and 
 :to be periodic functions, such that we have (ݔ)ߚ

(ݔ)ߦ =  (1) .(ݔ)ߚ(ݔ)ߙ

Using an infinite series expansion, the convolution sum can 
be defined as the following: 

௞ߦ̂ = ∑  ௠ା௡ୀ௞   ௡ߚ௠̂ߙ̂ ,  (2) 

where 

(ݔ)ߙ = ∑  ஶ
௠ୀିஶ   ௠݁௜௠௫ߙ̂ (ݔ)ߚ     , = ∑  ஶ

௡ୀିஶ    ௡݁௜௡௫  (3)ߚ̂
and 

௞ߦ̂ = ଵ
ଶగ ∫  ଶగ

଴  (4)  .ݔ௜௞௫݀ି݁(ݔ)ߦ 

Here, the field variables, (ݔ)ߙ and (ݔ)ߚ, are considered as 
truncated Fourier series whose finite wave numbers are ≤
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ே
ଶ
. It is assumed that ߦ ∈ ܵଶே, whereas, related 

trigonometric polynomials belong to ܵே. The trigonometric 
polynomial space, ܵே, is considered as: 

ܵே = Span ቄ݁௜௞௫ ቚ − ே
ଶ
≤ ݇ ≤ ே

ଶ
− 1ቅ.  (5) 

|ݔ| ௞ are only admissible for the intervalߦ̂ ≤ ே
ଶ
. In the 

Fourier space, for product of Eq. (1) in the finite wave 
numbers and prescribed order, ே

ଶ
, we have: 

௞ߦ̂ = ∑  ௠ା௡ୀ௞
|௠|,|௡ቚ ஸಿమ

  ௡ߚ௠̂ߙ̂ , |݇| ≤ ே
ଶ

.  (6) 

Direct calculation of Eq. (6) yields operations of ܱ(ܰଶ) 
[18]. These operations in three dimensions are of 
ܱ(ܰସ). This is an expensive computational effort. 
Especially, when one can consider that, for the finite-
difference method, these amounts of operations are 
ܱ(ܰ) and ܱ(ܰଷ) in one and three dimensions, 
respectively. Using an integral transform method, e.g. 
the Fourier spectral method, these operations reduce to 
ܱ(ܰlogଶ ܰ) in one dimension and ܱ(ܰଷlogଶ ܰ) in 
three dimensions. For the first time, this technique has 
been introduced by Orszag [19] and Eliasen et al. [20]. 
It can be considered as the most important effort done 
to gain spectral convergence, especially for large-scale 
problems. 

The approach used in the Fourier space, ܵே, for 
evaluating Eq. (6) for ߙ and ߚ has the following steps. 
One should transform ̂ߙ௠ and ̂ߚ௡ into the real space using 
Discrete Fourier Transform (DFT). Then, the 
multiplication is done similarly to Eq. (1) in the real 
space. Afterward, the so-obtained result is transformed 
into the frequency space. For a better demonstration, the 
following discrete transforms are considered: 

௝ߙ = ∑  
ಿ
మିଵ

௞ୀିಿమ
  ௞݁௜௞௫ೕߙ̂ ,

௝ߚ = ∑  
ಿ
మିଵ

௞ୀିಿమ
  ௞݁௜௞௫ೕߚ̂ ,

 ݆ = 0,1, … ,ܰ− 1,  (7) 

and we define: 

௝ߦ = ௝ߚ௝ߙ ,         ݆ = 0,1, … . ,ܰ − 1,  (8) 

and 

௞ߦ̃ = ଵ
ே
∑  ேିଵ
௝ୀ଴   ௝݁ି௜௞௫ೕߦ , ݇ = − ே

ଶ
, … ,ே

ଶ
− 1  (9) 

where 

௝ݔ =
݆ߨ2
ܰ . 

 .௞ are discrete Fourier coefficients related to function Sߦ̃
Now, using the orthogonality relation given below: 
ଵ
ே
∑  ேିଵ
௝ୀ଴ ݁ି௜௣௫ೕ = ቄ1 if ݌ = ܰ݉,݉ = 0, ±1, ±2, …

0 other wise
  (10) 

The discrete Fourier coefficients of Eq. (9), ̃ߦ௞, lead to: 

௞ߦ̃ = ∑  ௠ା௡ୀ௞   ௡ߚ௠̂ߙ̂ +∑  ௠ା௡ୀ௞±ே     ௡ߚ௠̂ߙ̂

      = ௞ߦ̂ +∑  ௠ା௡ୀ௞±ே   ௡ߚ௠̂ߙ̂ .  (11) 
The second term in the right-hand side of the above equation is 
known as the aliasing error. This error sometimes, especially 

 
Figure 1. Asymmetric distribution of temperature field. 

 
using spectral Galerkin methods, causes inappropriate 
approximation of the differential equation. This approach 
has been introduced by Orszag in 1971 [21] as the pseudo-
spectral method. It can be easily extended the pseudo-
spectral method for computing convolution sum in the 
three-dimensional space. There are two distinct methods for 
eliminating error of Eq. (11), the padding technique and the 
phase shifts [22]. 

3. Nonlinear heat conduction formulation 
3.1. Governing equation 
In the previous section, a brief review of the pseudo-
spectral method as well as the convolution sum technique 
has been presented. Now, a novel pseudo-spectral method 
as a combination of the FFT and FE method is utilized to 
investigate the nonlinear heat conduction phenomenon for 
an FG hollow cylinder with temperature-dependent material 
properties exposed to an asymmetric thermal excitation, as 
schematically depicted in Figure 1. Such asymmetric 
thermal excitation can be seen in the fluid flow within pipes 
subjected to thermal asymmetrical boundary conditions 
which take place in many real industrial situations such as 
those related to solar thermal devices, aerial pipelines 
subjected to external temperatures, etc. Other examples and 
attempts to solve this problem can be seen on [23-26]. 
Firstly, a graded model is introduced to indicate that how 
the material properties vary with respect to the thickness 
direction. The coefficient of heat conduction for a cylinder 
whose material properties are graded in the radial direction 
can be defined as ߣ = ,ܶ)ߣ  where T is the temperature ,(ݎ
field and r refers to the radial coordinate of the cylinder.  

Micromechanics models of FGMs consisting of the 
Voigt model (in accordance with the mixed models of 
volume fraction), self-consistent method and Mori–Tanaka 
scheme have been introduced in the past few decades. The 
Mori–Tanaka model is applicable to a discontinuous 
particulate phase [27], whereas the Voigt model is more 
simple and more convenient in approximating FG material 
properties. Volume fraction is a spatial function in thickness 
or radius direction ( ௠ܸ(ݎ), ௖ܸ(ݎ)). ௖ܸ and ௠ܸ are the ceramic 
and metal volume fractions and they can be expressed by 
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௖ܸ + ௠ܸ = 1. The effective coefficient of thermal 
conductivity is considered to be in the following 
generalized form [28]: 

(ܶ,ݎ)௘௙௙ߣ = [1− ௠ܸ(ݎ)]ߣ௖(ܶ) + (ܶ)௠ߣ ௠ܸ(ݎ)  

,(ܶ)௠ߣ,(ܶ)௖ߣ]݂+                       ௠ܸ(ݎ)].  (12) 
It is assumed in Voigt method that ݂[ߣ௖ ௠ߣ, , ௠ܸ(ݎ)] is 
negligible. According to the Mori–Tanaka scheme, thermal 
conductivity can be expressed by Shen [29]: 

(ܶ,ݎ)௘௙௙ߣ − (ܶ)௠ߣ
(ܶ)௖ߣ − (ܶ)௠ߣ =

[1− ௠ܸ(ݎ)]

1 + ௠ܸ(ݎ) (ܶ)௖ߣ − (ܶ)௠ߣ
(ܶ)௠ߣ3

 (13) 

In FG structures, the mechanical properties of constituent 
materials are assumed to be temperature-dependent and can 
be expressed as a nonlinear function of temperature:  

eܲff = ଴ܲ(ܲି ଵܶିଵ + 1 + ଵܲܶ + ଶܲܶଶ +  ଷܶଷ)  (14)݌

where ଴ܲ, ܲି ଵ, ଵܲ, ଶܲ  and ଷܲ  are the constant coefficients of 
the temperature. (noting that ܲି ଵܶିଵ usually can be ignored 
under high temperature circumstances). Substituting Eq. 
(14) into (12) for thermal conductivity the following 
general form can be obtain: 

௘௙௙ߣ = (ݎ)଴ߣ + ܶ(ݎ)ଵߣ + ଶܶ(ݎ)ଶߣ + ଷܶ(ݎ)ଷߣ +⋯ (15) 

For better demonstration of the present pseudo-spectral 
method, a simplified form of the above equation is 

considered as ߣeff = ଴ߣ) − ଵܶ)ቀߣ ௥
௥೚
ቁ
௟
. In which ߣ଴ and ߣଵ 

are material constants and ݎ଴  is the outer radius of the 
cylinder. 
Here, the steady-state equation of heat conduction in the 
cylindrical coordinate system is considered for a hollow FG 
cylinder. Considering the principle of energy conservation 
as well as the Fourier law of heat conduction along with the 
general dependency of materials to the spatial variables and 
temperature field, above mentioned equation can be 
derived. So, the following field equation can be concluded: 

∇ ⋅ ݍ = 0,  (16) 

where ∇ and ݍ are the nabla operator and the heat flux 
vector, respectively. Substituting for heat flux using Fourier 
law of heat conduction yields: 

∇ ⋅ (ܶ∇ߣ) = 0,  (17) 

and related boundary conditions are considered to be: 

ݎ)ܶ = (௜ݎ = ௜ܶ ݎ)ܶ, = (௢ݎ = ௢ܶ ,  (18) 

in which ݎ௜ and ݎ௢ are related to the inner surface and outer 
surface of the cylinder, respectively.     
3.2. FFT-FE discretization 
A new model of the Fourier spectral method containing a 
combination of the integral transform and the FEM along 
with the pseudo-spectral concept is used for nonlinear 
analysis. Due to the periodicity of the geometry under 
consideration, we can gain the ability of the trigonometric 
approximate functions and Fourier transform to discretize 
the problem domain. The FFT technique as a vigorous 
numerical-based algorithm of the Fourier transform is 
accompanied by some advantages such as high accuracy, 
ease of implementation, and super-algebraic convergence 

rate in the approximation of the periodic functions. In this 
regard, we use the ability of the spectral method, as an 
appropriate foundation, for combining the different 
classical and traditional numerical methods, i.e. FFT 
technique and FEM. 
In the Fourier spectral methodology, the partial differential 
equations are primarily discretized in the transformed 
Fourier space. Then, the so-obtained results are 
retransformed into the real space. It should be noted that, in 
nonlinear differential equations and the cases where the 
coefficients are varying in terms of the periodic spatial 
variables, the use of the pseudo-spectral method is 
obligatory. In the following, we show how one can analyze 
the nonlinear heat conduction problem under asymmetric 
thermal excitations by using the proposed pseudo-spectral 
FEM. 
Assuming the temperature filed ܶ(ߠ,ݎ) as: 

ܫ̃ = ,(ߨ0,2) ܫ = (0.5,1), Ω = ܫ ×  (19)  ,ܫ̃

we have: 

∇ ⋅ (ܶ∇ߣ) = 0       in Ω.  (20) 

All the functions are assumed to have period of 2ߨ in the 
circumferential direction, ߠ. Mutually, boundary conditions 
are considered to be as Eq. (18). Considering a Sobolev 
space ܪఊ(ܳ)(ߛ ≥ 0) with the corresponding norm of 
ܳ ௡ and desired infinity domain[(ܳ)ఊܪ] ⊂ ܴ௡(݊ = 1 or 2), 
the field variable of temperature is defined as bellow: 

ொଵ(Ω)ܪ = {ܶ ∈ ଵ(Ω)ܪ ∣ (ߠ,0.5)ܶ = ௜ܶ   (ߠ,1.0)ܶ,

             = ௢ܶ ߠ∀, ∈ (ߠ,ݎ)ܶ;ܫ̃ = ,ݎ)ܶ ߠ + ݎ∀(ߨ2 ∈   ,{ܫ
(21) 

And 

ܹ = ொଵ(Ω)൧ܪൣ
ଶ
.  (22) 

For the field variable ܶ ∈ ܹ, the weak form of the Eq. (20) 
as a bilinear form becomes: 

(ݓ∇,ܶ∇ߣ) = ݓ∀ 0 ∈ ܹ.  (23) 

Now, we should consider an appropriate space to 
approximate the field variable in the non-periodic domain. 
For this purpose, according to the FE assumptions, the 
subdomain ܫ is divided into the intervals ܫ௝ =
൫ݎ௝ିଵ, ,௝൯ݎ (1 ≤ ݆ ≤ with equal lengths of ℎ௝ (ܬ = ௝ݎ −  .௝ିଵݎ
As shown in Figure 2, the cylinder cross-section is 
discretized by using ܰ harmonics in the ߠ-direction and ௥ܰ  
 

 
 
Figure 2. Discretized geometry of the FG hollow cylinder 
using FFT-FE method. 
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FE-nodes along the ݎ-direction. If ݉ is assumed to be any 
non-negative integer and ௠ܲ to be a set of polynomials 
(from the Lagrange family) with degrees equal or less than 
݉, the space of analysis in the radial direction is defined as 
the following set: 

௠,௛ܮ = ቄ߮ ∈ ூೕ|߮|(ܫ)ଵܪ  be polynomial of degree ≤ mቅ.  (24) 

The approximate space regarding periodic domain is 
introduced by: 

ேܮ = Span൛݁௜௞ఏ ∣ −ܰ ≤ ݇ ≤ ܰൟ,  (25) 

where the interpolation points are introduced via: 
௝ߠ = ଶగ௝

ଶே
(0 ≤ ݆ ≤ 2ܰ).  

Consequently, the approximate space of the problem is 
defined as below: 

ܹ = ௠,௛ܮ ேܮ⊗ .  (26) 

We rewrite Eq. (23) for an FG thick cylinder to extract the 
weak form of the governing equation. It reads: 

∫  ௥బ௥೔  ∫  ଶగ
଴  ቄܟ ቂଵ

௥
డ
డ௥
ቀߣݎ డ்

డ௥
ቁ+ ଵ

௥మ
డ
డఏ
ቀߣ డ்

డఏ
ቁቃቅ ߠ݀ݎ݀ݎ = 0,  (27) 

in which ܟ is the vector of weight functions from the 
Lagrange family and assumed to be sufficiently smooth and 
differentiable. In the approximate space of ܮே, the 
following approximation functions are defined for the field 
variable of temperature and its derivatives: 

ܶே = ෍  

ே
ଶ

௞ୀିேଶ

  ܶ̂௞(ݎ)݁௜௞ఏ , 

ேߣ = ଴ߣ) −  (ݎ)݂(ଵܶேߣ

      = ෍  

ே
ଶ

௞ୀିேଶ

  ቀߣ଴ − ଵߣ ௞̂ܶ(ݎ)ቁ݂(ݎ)݁௜௞ఏ , 

߬ே =
߲(ܶே)
ߠ߲ = ෍  

ே
ଶ

௞ୀିேଶ

 ݅݇ܶ̂௞(ݎ)݁௜௞ఏ , 

ℋே =
߲ଶ(ܶே)
ଶߠ߲ = ෍  

ே
ଶ

௞ୀିேଶ

 − ݇ଶܶ̂௞(ݎ)݁௜௞ఏ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(28) 

Substituting the above approximations into Eq. (27) in the 
Fourier space, we have: 

න  
ஐ೐
 wቐ

1
ݎ
߲
ݎ߲ ቎

ݎ ൬
ݎ
௢ݎ
൰
௟
ቈߣ଴

߲(ܶே)௞∧

ݎ߲
− ଵߣ ቆܶே

߲(ܶே)
ݎ߲

ቇ
௞

∧

቉቏ 

+
1
ଶݎ ൬

ݎ
௢ݎ
൰
௟

∧଴(ℋே)௞ߣ] − ∧ଵ((߬ே)ଶ)௞ߣ  −  ଵ(ܶேℋே)௞∧]ቋߣ

ݎ݀ݎ     = 0 (29) 
For discretizing of the nonlinear terms (e.g. ((߬ே)ଶ)௞∧ ) in 
the above equation, the pseudo-spectral method needs to be 
accomplished as described in Section 2. According to the 
pseudo-spectral method and by using the convolution sum 
technique, the nonlinear terms are initially transformed into 
the real space. Afterward, the multiplication is done and the 
desired product is then immediately transformed into the 
Fourier space. The FEM has an important role in the 

discretization of the transformed governing equations. 
Accordingly, the following approximation functions of the 
field variables are defined in the Fourier space: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
௠ݓ⎧ = ߮௠(ݎ),

ܶே(ݎ) = ෍  
ேೝ

௠ୀଵ

 ߮௠(ݎ)(ܶே)௠ ,

߬ே(ݎ) = ෍  
ேೝ

௠ୀଵ

 ߮௠(ݎ)(߬ே)௠ ,

ℋே(ݎ) = ෍  
ேೝ

௠ୀଵ

 ߮௠(ݎ)(ℋே)௠ ,

 (30) 

where ߮௠ are linear shape functions from the Lagrange 
family. Using the integration by part technique and 
approximation functions of Eq. (30), the weak formulation 
of Eq. (29) can be derived as below: 

න  
௥೚

௥೔
 ൞ݎ

݀߮௜
ݎ݀

଴ߣ൮(ݎ)݂ − ଵߣ ቎෍  
ேೝ

௠ୀଵ

 ߮௠(ܶே)௠቏

(௦ିଵ)

൲ 

቎෍  
ேೝ

௠ୀଵ

 
݀߮௠
ݎ݀

(ܶே)௠቏

(௦)

 

+
1
ݎ
௜߮(ݎ)ଵ݂ߣ ቎෍  

ேೝ

௠ୀଵ

 ߮௠(߬ே)௠቏

(௦ିଵ)

቎෍  
ேೝ

௠ୀଵ

 ߮௠(߬ே)௠቏

(௦)

 

−
1
ݎ
଴ߣ௜൮߮(ݎ)݂ − ଵߣ ቎෍  

ேೝ

௠ୀଵ

 ߮௠(ܶே)௠቏

(௦ିଵ)

൲ 

቎෍  
ேೝ

௠ୀଵ

 ߮௠(ℋே)௠቏

(௦)

ݎ݀ൢ − ቈ߮௜ ቆߣݎே
߲ܶே

ݎ߲
ቇ቉

௥೔

௥౥

= 0
ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ

ொ̂ಿ

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(31) 

Now, the FEM and the direct iteration technique as efficient 
methods is used to solve the nonlinear system of governing 
equations. During the iterative process, values correspond 
to the temperature field at the s-th iteration can be obtained 
via: 

൫{ܶே}(௦ିଵ)൯൧{ܶே}(௦)ܭൣ = ൛ܳ̂ேൟ (32) 

The coefficients matrix K at each iteration can be achieved 
by substituting the temperature values of the previous time 
step. Initial values correspond to the field variable, {ܶே}(଴), 
are considered to be the solution of the linear equation. 

4. Numerical demonstrations 

In this section, a numerical description of the nonlinear heat 
transfer analysis of an FG hollow cylinder is presented. In 
order to verify the solution procedure of the mixed FFT-FE 
method, a simple linear heat problem is considered with the 
following boundary conditions: 

ܶ(ܽ, (ߠ = 60cos(2ߠ)∘C, 
(ߠ,ܽ)௥௥ߪ = 0, (ߠ,ܽ)௥ఏߪ = 0, 
(ߠ,ܾ)௥ݑ = ,ܾ)ఏݑ        ,0 (ߠ = 0.  

(33) 
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Figure 3. 2D nonsymmetric distribution of the temperature across the cylinder section: (a) present FFT-FE solution and (b) analytical 
solution [30]. 

 

 
Figure 4. Convergence rate of the FFT-FE method in thickness 
direction. 

 
2D distribution of the temperature field is shown in Figure 3. In 
this figure, the left-hand side pic is belonging to the FFT-FE 
results. A simple comparison indicates that the obtained results 
are in good agreement with the exact solution of Ref. [30]. The 
convergence rate obtained by using linear elements is shown in 
Figure 4. It is observed from the log-log representation that 
increasing the number of elements in the radial direction is 
accompanied by a linear convergence behavior. Mutually, fast 
convergence behavior and high accuracy of the present Fourier 
spectral method is depicted in Figure 5. Here, some periodic 
functions are assumed to be as the inner surface boundary 
conditions of the hollow cylinder. As shown, the rate of 
convergence varies by varying the complexity of the periodic 
functions. As expected, for ܶ(ߠ) = sinߠ, the desired method 
can appropriately attain machine precision in finite harmonics. It 
is obvious from the figure that FFT technique has an 
exponentially varying convergence behavior. 

 
Figure 5. Logarithmic representation of the relative error versus 
the number of wavenumbers in the FFT technique. 

 
According to the prescribed flowchart of Figure 6, the 
nonlinear pseudo-spectral analysis of the FG cylinder is  
done using both the FFT-FE discretization and direct 
iteration technique. To assure the accuracy of the 
suggested mixed method in the nonlinear heat transfer 
analysis of the hollow cylinder, the obtained results, for 
different FGM power indexes, are compared with those 
extracted from the analytical perturbation method [31] 
and are depicted in Figure 7. The related boundary 
conditions and material constants are considered as: 

௜ܶ = 0∘C,   ௢ܶ = 1000∘C, 
଴ߣ = 50.16 W/m∘C, ଵߣ     = 0.0293 W/m∘Cଶ. (34) 

Afterward, two distinct examples considering different 
temperature intensities on the outer surface of the 
cylinder are analyzed by means of the proposed FFT-
FE method. In this regard, the following asymmetric 
boundary conditions are assumed: 

Example 1: 

௜ܶ = 0.0∘C,    ௢ܶ = 500݁ୱ୧୬(ଶఏ)∘C,  
଴ߣ = 50.16 W/m∘C, ଵߣ       = 0.0293 W/m∘Cଶ. (35) 
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Figure 6. FFT-FE discretization flow diagram of nonlinear heat 
transfer analysis. 

 
Figure 7. Distribution of the nonlinear temperature field of FG 
hollow cylinder. 

 
Example 2: 
௜ܶ = 0.0∘C, ௢ܶ = 500݁ଶ ୱ୧୬(ଶఏ)∘C, 
଴ߣ = 50.16 W/m∘C,          ߣଵ = 0.0293 W/m∘Cଶ 

(36) 

 
Figure 8. Asymmetric variations of the boundary temperature of 
the cylinder. 

 
Figure 9. Linear and nonlinear temperature distribution in 
different harmonics (Example 1). 

 
Figure 10. Linear and nonlinear temperature distribution in 
different harmonics (Example 2). 

A visual view for Circumferential variation of the boundary 
temperature field of Eqs. (35) and (36) is depicted in Figure 
8. Considering these boundary conditions, the desired 
nonlinear heat equation can be solved by using the pseudo-
spectral method. In the following, nonlinear results of the 
temperature-dependent heat equation in compliance with 
the linear ones are presented at different harmonics and are 
depicted in Figures 9 and 10. 
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       2D linear and nonlinear distribution of the temperature 
field of Example 1 are presented in Figures 11 and 12, 
respectively. As depicted, the pseudo-spectral method can 
appropriately solve the nonlinear heat conduction equation 
of a thick hollow cylinder. By considering the boundary 
conditions of Eq. (36), the linear and nonlinear numerical 
results of the heat equation are obtained and presented in 
Figures 13 and 14.   

 
Figure 11. 2D distribution of the temperature field for the linear 
regime (Example 1). 

 
Figure 12. 2D distribution of the temperature field for nonlinear 
regime (Example 1). 

 
Figure 13. 2D distribution of the temperature field for linear 
regime (Example 2). 

 
14. 2D distribution of the temperature field for nonlinear regime 
(Example 2). 

5. Conclusion 
In this paper, the pseudo-spectral method through a 
combination of the Discrete Fourier Transform (DFT) and 
Finite Element Method (FEM) was successfully 
implemented for nonlinear heat transfer analysis of a 
hollow Functionally Graded (FG) cylinder while the 
material properties vary in terms of the temperature field. 
The Fourier spectral approach, as well as the convolution 
sum technique, are used to discretize the governing 
equation and related nonlinear terms. According to the 
convolution sum technique, the nonlinear terms are 
transformed into the real space, the multiplication  
operation is done, then the product of two field variables (or 
their derivatives) is retransformed into the Fourier space. In the 
radial and circumferential directions, the FEM method and FFT 
technique are used to discrete governing equations, respectively. 
The proposed mixed method benefits low computational cost of 
the FFT method as well as the ability of the FEM to model the 
complicated geometries and boundary conditions. Basically, the 
DFT needs 2ܰଶ operations which are done using matrix-vector 
multiplications, whereas the Fast Fourier Transform (FFT) 
technique can decrease this amount of operations up to (5/
2)ܰ logଶ ܰ. From a numerical point of view, the proposed method 
is quite efficient. Asymmetric boundary conditions are considered 
and the so-obtained results were validated using exact solutions. It 
is concluded from the investigations that the heat conductivity 
constant ߣଵ has a major influence on the numerical convergence of 
the direct iterative method. The presented hybrid method can be 
extended to the three-dimensional analysis of homogeneous, 
composite, and FG thick shells of revolution with temperature-
dependent and circumferentially varying material properties. 

 

Nomenclature 

 Arbitrary periodic functions ߚ,ߙ
ܰ Wave numbers 
ܵே Trigonometric polynomial space 
 ௞ Convolution sumߦ̂
௝ݔ  Variables in periodic domain 
ܶ Temperature field 
 Coefficient of heat conduction ߣ
 eff  Effective coefficient of thermal conductivityߣ
௖ܸ , ௠ܸ Ceramic and metal volume fractions 
௜ܲ Constant coefficients of the temperature 
 Heat flux vector ݍ
∇ Nabla operator 
 Periodic domain ܫ̃
 Radial domain ܫ

 ொଵ(Ω)ܪ
Sobolev space in which the field variable is 
defined 

 ௠,௛ܮ
Appropriate space to approximate field 
variable 

ܶே 
Approximation function related to the 
temperature field 

߬ே 
Approximation function related to first 
derivative of the temperature field 

ℋே 
Approximation function related to second 
derivative of the temperature field 
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 Coefficient matrix ܭ
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