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Abstract 

The joint influences of variable heat source patterns and temperature-reliant viscosity on the onset of convective 

motion in porous beds in the presence of gravity variance have been investigated. The linear analysis is performed 

using normal mode analysis and the Galerkin technique is applied to analyze the impact of variable heating and 

changeable gravity field on the behavior of system stability. The exponential temperature-dependent viscosity is 

considered.  We examined three different types of heat source and gravity variance function combinations: 

Convection is accelerated by increases in viscosity and the gravity variance parameter, but decelerated by increases in 

the heat source strength.  It has been shown that the configuration is more stable when the gravity variance and heat 

source functions are combined in instance (ii), but less stable when they are combined in case (iii). 

Keywords: variable gravity; changeable heat source; temperature-reliant viscosity; Galerkin technique; critical Rayleigh 

number. 

1. Introduction 

There are many natural and industrial contexts where the study of the convective motion in a fluid-saturated 

porous bed is applicable, including hydrology, building insulation, dispersion of pollutants in the environment, 

geothermal energy extraction and reservoirs, diffuse nuclear storage, space, food processing,  and heat 

exchangers[1,2]. 

 

By using the linear stability technique, Straughan and Rionero [3] investigated the thermal convective problem in 

a porous bed with a changing internal heat source strength. Mahajan & Nandal [4] assert that different interior 

heating patterns have an impact on thermal convection. The Galerkin method and the linear stability theory were 

used by Mahabaleshwar [5] and Ananda et al. [6] to examine the effects of varying heat source patterns and gravity 

vectors. Gangadharaiah et al. [7] investigated penetrative connective motion in a porous bed. Suma et al. [8] 

investigated connective problems due to internal heating effects in a two-layered configuration with throughflow. 

Shivakumara et al. [9] examined the impacts of heat source strength in an anisotropic material with Marangoni 

effects. Different types of internal heating in a system of two layers configuration were studied by Gangadharaiah 

[10]. Manjunatha et al. [11] and Manjunatha and Sumithra [12-13] discussed constant heat sources in the presence of 

with and without magnetic field in a two-layer system. Nouri-Borujerdi et al. [14] looked at the impact of internal 

heating in a porous bed using a thermal model. Many scholars have looked at the effect of temperature-dependent 
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viscosity issues on thermal convection in recent years (Gangadharaiah and Ananda [15], Barletta and Nield [16]]).  

In addition, the effect of temperature-dependent viscosity is vital for the regulation of convective mechanisms in 

science, geophysics, manufacturing, etc. However, the study of variable heat sources, gravity with temperature-

dependent viscosity, is very restricted. Suma et al. [17] and Gangadharaiah et al.[18] examined the joint impact of 

the internal heating and gravity variance on the device stability using the perturbation technique. Regardless, 

nonlinear gravity field variety with profundity can happen in sedimentary bowls, orogenic and epeirogenic 

developments of the crustal designs and Earth's outside  (Shi et al. [19],  Nagarathnamma et al.[20], Kiran et al.[21], 

and Ananda et al. [22]).  The ferrofluid saturated porous layer convection problem is investigated in the changeable 

gravitational field by Mahajan and Parashar [23]. Srinivasacharya and Dipak [24] investigated the effects of a Soret 

parameter, a changing gravity field, and viscous dissipation on the stability of a vertical throughflow. In a porous 

medium with variable gravity and throughflow, Tripathi and Mahajan [25] investigated the linear and nonlinear 

stability assessments for the double-diffusive convection problem. Yasiri et al. [26] used a 3-D approximation to 

examine the validity of the linear instability limits. Ragoju et al. [27] look at the impact of internal heat and a 

fluctuating gravity field on convection in a porous layer. The analysis of the exponential kind of heat source on 

parabolic flow on non-Newtonian fluid was studied by Samrat et al.[28]. For the composite layers, the double-

component convection with profiles and a heat source was studied by Manjunatha et al. [29] and the triple-

component convection with temperature gradients and a heat source was studied by Yellamma et al. [30]. They 

obtained the Marangoni effects for a two-layer configuration. All of the works mentioned above assume the internal 

heat source term to be uniform. However, the nature of the heat source patterns is often non-uniform in real issues 

and applications due to a variety of internal elements, including heat release from chemical reactions occurring in 

fluids, heat source created by radiation from an external medium, radioactive decay, and others. 

 

The combined influence of variable heat and variable viscosity pattern on the beginning of convective moment in a 

porous bed with gravity variance is therefore examined in this work. We considered the three types of combinations 

of heat  source and gravity  field: case(i):    ,z z z z     , case(ii):  z z   ,    1zz e    , case(iii): 

  3z z   ,   2z z   . The variables viscosity parameter, gravity variance parameter, and heat variance 

parameter have all been examined in the computations. 

 

2. Conceptual Model 

Figure 1 demonstrates the physical structure of the current study. The horizontal porous matrix is bounded 

between planes at 0 &z   z d  with downward gravity  .g z  We presume that the viscosity depends 

exponentially on the temperature of the form  0 0exp ,A T T       and the gravity vector g  is,  

 0
ˆ( ) 1 ( ) .g z g z k  

 
 

 

               
 

 
The appropriate basic equations of the asymmetric arrangement of the porous matrix are  

 

0,V                                                 (1)        

 
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                                                        (2)
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  

                                                                                   (3)

   

 

where V  is the velocity vector, , K  and p are viscosity, permeability, and pressure,  respectively.  

It is supposed that the basic state of being time-independent and of the form: 
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   0, , , , 0,0, , ( ), ( ) ,b bu v w p T w p z T z
                

                                                     (4) 

Then, for basic temperature bT , Eq.(3) can be written as: 

 
2

2

1
0,bd T

Q z
dz 

                                                                                                                                                       (5) 
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Using   the boundary conditions, we obtain 

   
0

0

1
,

z

b lT z Q d d C z T



  



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Where    
0

0

1 1
.

d

l uC T T Q d d
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

  


      

The perturbed quantities are  

 , ( ) , ,b bp p z p T T zV V    
  

                                                                                                                  (8) 

Applying Eq. (8)  into Eqs.(1)-(3), the linear stability equations become: 

     2 2 '1 ( ) ,m hm

w
f z w f z R z T

z



    


                                                                                   (9) 
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Where max
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1
( ) exp , .

2
f z B z B


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The solution is assumed to be of the form 

 ,w T =      
, ,

i lx my
W z z e


                                           

                                                                                   (11)
                  

              
                                

 

Substituting Eq.  11  into Eqs.    9 10 , we arrive   

       2 2 2 1 ,f z D a w f z Dw Ra z                                                            
 
(12)

                  
              

                               

   2 2 1 ( ) ,D a z W     
                                                          

(13) 

Where   is the disturbed temperature amplitude and   3 /l uR g T T d     is the Rayleigh number.  

The required boundary positions are as: 

0W     at 0, 1.z                                                                 (14)
   

3. Method of Solution 
To solve the system of Eqs. (12) and  (13), we use the Galerkin weighted residuals approach. Consequently &W 

are considered as 

1

,

n

i i

i

W A W




1

,

n

i i

i

B



                                                                                                    (15) 

With trial functions 

 sin ,i iW i z                                          (16) 
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Using the governing parameters  , , ,B a the eigenvalue cR  can be obtained.  

 

4. Results and Discussion 

 
The combined influence of a changeable heat source and temperature-dependent viscosity on the convective 

moment in a porous bed in the presence of gravity variance is investigated using the Galerkin process. Three 

different types of heat and gravity source combinations are considered, with the viscosity variation being of the 

exponential type. In the present analysis, the governing parameters considered are the viscosity parameter ( )B , 

gravity variance parameter ( )  , and heat variance parameter ( ) . The stability of the configuration is attained in 

terms of cR  and ca  by referring to different values  ,B    and   . The results obtained for constant viscosity and 

without an internal heat source were compared to those indicated by Rionero and Straughan [3] in Table 1 to 

validate the current analysis. 

 

The effects of the viscosity parameter on the stability of the configuration are shown in Figs. 2(a, b, c) for all three 

types of combinations of heat and gravity source variations.  The effect of increasing  B  is to increase the marginal 

curves in all types of heat source variations, and hence the system is stabilized. In addition, the configuration is more 

unstable for the case (iii) combination and more stable for the case (ii) combination of heat source and gravity 

variance. 

Figures 3(a, b, c) and 4(a, b, c)  illustrate the elucidates the deviation of the  
cR  and ca  with  B   for different 

values of   and    for three unique instances of difference of the gravity and heat effects: case(i)  z z   , 

 z z    case(ii)  z z   ,    1zz e    , case(iii)   3z z   ,   2z z   , respectively. These results 

show that changes in the heat variance parameter value have a destabilizing influence on the configuration. With an 

increase in the heat source parameter, the critical Rayleigh number 
cR  drops. As a result, when the energy of the 

heat source drops, large values are required for the beginning of convection. Viscosity and gravity parameters, 

therefore, have a stabilizing effect on the device. Additionally, it can be shown from these figures that they have 

dual effects on the two parameters. In addition, from Figure 5, the fluidic system is noted to be more inconsistent for 

the case (iii) combination and more stable for the case (ii) combination (see Figure 5). 

 

5. Conclusions 
Convective unsteadiness in a porous matrix is mathematically studied, along with the joint effects of a changing heat 

source and a changing gravity source with varying viscosity. The investigation was directed at three unique patterns 

of heat and gravity source variations: case(i):    ,z z z z     , case(ii):  z z   ,    1zz e    , and 

case(iii):   3z z   ,   2z z   .  The key outcomes of the study of linear stability are defined as follows: 

 

 Stabilization of the porous convection is achieved by increasing the viscosity and gravity variance 

parameters and decreasing the internal heat variance parameter. 

 

 It is noted that the convective moment is more consistent for case(ii) the combination of heat source and 

gravity variance functions, while the fluidic system is more inconsistent in case(iii) the combination of heat 

source and gravity variance functions. 
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 The variable heat source parameter    and gravity fluctuation parameter   are stabilizing impacts on 

stationary convection. 

 

Nomenclature 

 
a   wave number 

B     viscosity parameter 

D  differential operator d dz  

g    gravity vector 

K    permeability 

p  pressure 

R       Rayleigh number 
T    temperature 

V    velocity  vector   

W     perturbed vertical velocity 

2      Laplacian operator    
( )f z    variable viscosity function   

( )z   variable heat source function 

( )z    variable gravity function
 

           fluid viscosity
 

    gravity  parameter 

    thermal diffusivity 

      perturbed temperature
 

       heat variance parameter 

       slip parameter 

       dynamic viscosity   
2
h     horizontal Laplacian operator  
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Figures and Table captions 

 

Figures 

 

Figure 1. Physical configuration of the problem 

 

Figure 2(a, b, c) The plot of critical Rayleigh number
cR  versus critical wavenumber ca    with 0.1    for 

different values of   1, 2, 5, 10B     for all three cases. 

 

Figure 3(a, b, c) The plot of critical Rayleigh number
cR  versus viscosity parameter B  with 0   for various values 

of   0.1,0.3,0.5    for all three cases. 

 

Figure 4(a, b, c) The plot of critical Rayleigh number
cR  versus viscosity parameter B  with 0.5   for various values 

of   0.1,0.3,0.5    for all three cases. 

 

Figure 5 The plot of critical Rayleigh number
cR  versus  with 0.5& 5  B  for all three cases comparison.  

 

Tables 

Table 1. Critical Rayleigh number 
cR  and critical wavenumber ca  with gravity parameter   in the case of constant 

viscosity case ( 0)B   and nonexistence of internal heating ( 0)   for  ( )z z    compared with Rionero and 

Straughan [3]. 

 

 

 
 

 

 

 Figure 1 
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 Figure 2(a) Figure 2(b) 

 
 Figure 2(c) 
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Table 1 
 

 
     Present study 

     
( )z z    

Rionero and 

Straughan [3] 

  cR  2

ca  cR  2

ca  

0 39.47 9.87 39.47 9.87 

1 77.076 10.20 77.02 10.20 

1.5 132.01 12.30 132.00 12.31 

1.8 189.96 17.17 189.98 17.19 

1.9 212.25 19.45 212.28 19.47 


