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Abstract:

In the present research article, we address the magnetically controlled thermal and solutal

Marangoni convection in the flow of self-rewetting power-law liquid over a disk, in the existence

of a space dependent heat source. The self re-wetting property of fluid is modelled by considering

a quadratic dependence of surface tension on temperature and species concentration. The afore-

mentioned problem is modelled by simplified Navier-Stokes equations. Identifying the appropriate

transform variables is essential for developing ordinary differential equations from original partial

differential equations that describe the flow conditions. The resulting ordinary differential equa-

tions are solved by using the bvp4c routine of MATLAB and numerical solutions are presented via

Graphs and tables, illustrating the impact of several factors on fluid velocity, temperature, and

concentration. Computation of the quantities of physical interest such as Nusselt and Sherwood

numbers are also done from those numerical solutions. One of the key findings of present research

work is that the Marangoni convection works differently for pseudo-plastic fluid and dilatant fluid.

On increasing thermal Marangoni convection the temperature of dilatant fluid reaches a peak value

much closer to the disk than temperature of pseudo plastic fluid.

Keywords: Marangoni convection; Magnetic field; Space dependent heat source; Power-law fluid;

self-rewetting fluid;

1 Introduction

Non-Newtonian fluids are widely used in industry and science, including microfluidic devices, oil

recovery and blood rheology, among others. Because of the nonlinear dependence of shear stress

with shear strain Sahu et al. [1], these fluids are more difficult to model than Newtonian fluids.

Non-Newtonian fluids are classified into several categories and there are different models depicting

their behaviour. This has been duly noted and explained in the works of Kumar et al. [2], Hussain

and Jamshed [3] and Kumar et al. [4]. Power law fluid is one such fluid model. It is based on the

viscosity model for time-independent coefficient of viscosity and can be used to model various fluids
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used in industrial applications. The magnitude of the power-law index determines the physical trait

of the fluid; it may behave like shear-thinning ( pseudo-plastic), Newtonian or shear-thickening

(dilatant) fluid Wang and Yu [5]. The rheological equation of state for a power-law fluid is given

as

τr = K

∣∣∣∣∂U∂Z
∣∣∣∣n−1 ∂U∂Z ,

in which K denotes flow consistency index and ∂U
∂Z gives shear rate normal to the plane of shear.

The fluid is classified as Newtonian for power-law index n = 1, a pseudoplastic when n ε (0, 1),

and a Dilatant fluid for n > 1. In recent past, a lot of studies were done to investigate power-law

fluid flow under various conditions. Nitin and Chhabra [6] considered the axi-symmetric two-

dimensional power-law fluid moving past a circular surface. The heat transport analysis for the

flow of an incompressible power-law fluid with forced convection over a heated elliptical cylinder

was done by Bharti et al. [7]. Ming et al. [8] discussed the flow of a power-law liquid over

an infinite rotating disk about the transverse direction. Li et al. [9] in their study considered

different thermal conductivity models in their investigation of two-dimensional power law fluid

flow in a circular duct. Li and Jiang [10] investigated two different models of thermophoresis

and Brownian diffusion effects on Newtonian and non-Newtonian fluid flow in a rotating groove.

Gaffar et al. [11] considered effect of the buoyancy on third grade fluid flowing over cylinder by

considering the fluid to be radiative, using Keller-Box technique. Sadiq and Hayat [12] investigated

the three-dimensional incompressible flow of a non-Newtonian Reiner-Rivlin fluid flowing over a

shrinking/streching rotating circular surface with thermophoresis, Brownian and random diffusion

effects.

The Marangoni convection may occur at a fluid-fluid interface when there is a gradient in the

interfacial tension. As a result, fluid movement is observed from regions with smaller interfacial

tension toward those with higher interfacial tension. The thermal Marangoni convection (also

known as thermocapillary convection) and/or solutal Marangoni convection appears when surface

tension relies on the thermal and/or concentration distributions. In last few decades, many re-

searchers have studied the flow due to Marangoni convection owing to their vast occurance in

natural as well as industrial phenomena such as tear of wines, evaporation-condensation cycle in

heat pipes, controlled Marangoni convection in crystal growth, etc. Also, Marangoni convection

affects a wide range of processes occurring at a nonisothermal interface. Napolitano [13] discussed

the buoyancy as well as Marangoni convection at the interface of two immiscible fluid and per-

formed an order of magnitude analysis to ascertain different flow regime for natural and Marangoni

convection. Boeck and Thess [14] examined the two-dimensional thermocapillary convection on the

free surface with high value of the Prandtl number. Lin and Zheng [15] discussed the Marangoni

convection in the Cu-based nanofluid flowing over a porous disk. Gupta and Surya [16] consid-

ered Benard-Marangoni convection on flow of thin liquid film with linear surface tension. In a
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Maxwell power-law fluid flow, Kumari and Tripathi [17] examined the irreversibility analysis of

thermo-solutal Marangoni convection.

As discussed above, the presence of solutal and thermal gradients induce Marangoni convection.

However, a controlled Marangoni convection is required in some engineering application such as

coating of chemical on semiconductor substrate. Also, while growing perfect crystals in space-ships,

sometimes uncontrolled Marangoni convection results in the crystal of substandard quality. It has

been pointed out that controlled Marangoni convection can be achieved by applying a suitable

magnetic field Jin et al. [18]. Such requirement in the past encouraged researchers to investigate

the Marangoni convection when the flow region is influenced by magnetic field. Wilson [19] nu-

merically determined the influence of Marangoni convection as well as magnetic field in horizontal

layer of a fluid flowing over a rigid lower surface when heat flux is already prescribed. Magyari and

Chamkha [20] found exact solution of Magneto-Marangoni convection and elaborated their simul-

taneous influences on heat transfer. Abel et al. [21] contemplated the hydromagnetic treatment of

stagnation point flow of a fluid governed by power law. Jiao et al. [22] discussed Magnetohydrody-

namic flow of a fluid regulated by power law, past a surface by considering Marangoni convection

due to concentration and thermal gradients under Magnetohydrodynamic effects. Jawad et al. [23]

analysed thermo-capillary convection of Maxwell power-law nano liquid flowing over an elongating

surface while considering the heat dissipation produced by magnetic field. Nandi and Kumbhakar

[24] analyzed the flow of tangent hyperbolic nanofluid flowing over a wedge under Hydromagnetic

assumptions. Tripathi [25] discussed the flow of hybrid nano-liquid past an elongating disk by con-

sidering the effect of Marangoni convection. He found that the use of blade-shaped nano particles

in hybrid nano-liquid result in maximum heat transfer at the disk surface. Hussain [26] carried

out the quadratic regression approximation analysis for heat transport rate and flow parameters of

nanofluids. The significance of heat generation/absorption, magnetic and other parameters results

are shown graphically. Maxwell fluid flow with a thermal slip under the influence of Soret-Dufour

and second-order nonlinear stretching slips due to the presence of magnetic field were examined

by Abbas et al. [27].

Liquids generally exhibit a decrement in surface tension when temperature is increased. But

self re-wetting fluids have the property that with an increase in temperature, initially surface

tension decreases, approaches a minimum and then rises again. This behavior may be explained

by the mathematical relation σ = σ0 + γT
2 (T − T0)2. The rising surface tension at a greater

temperature can lead to a fluid being drawn toward a hot surface, where there is a dry area,

therefore improving boiling heat transfer. Since gradient in the concentration too gives rise to

variation in surface tension, therefore a mathematical relation of the form: σ = σ0 + γT
2 (T −T0)2 +

γC
2 (C−C0)2, describes a self-rewetting fluid with thermal and solutal Marangoni convection. With

such distinctive behavior, self-rewetting fluid finds applications in heat transfer devices such as heat
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pipe, which is way more efficient than other traditional technics. Encouraged by the usefulness of

self rewetting fluids, Abe and Iwasaki [28] conducted an experiment in microgravity region involving

two adjacent vapour bubbles of self-wetting fluid and observed that thermocapillary action aided

in the coalescence of two bubbles. Lim et al. [29] examined the thermo-capillary effect in the

thin film flow of a fluid whose surface tension varies quadratically with temperature. Lin and

Yang [30] studied the mass transfer Marangoni flow of a self re-wetting power-law fluid past a solid

porous surface. As per their observation, power-law exponent reduces the shear stress as well as

the velocity and concentration boundary layers. Kumari and Tripathi [31] performed a theoretical

analysis on the movement of a fluid bubble through a self re-wetting fluid by considering both

natural and Marangoni convections in the existence of a magnetic field. They observed that the

flattening of the bubble can be curbed by intensifying magnetic field.

For surface tension driven flows over various geometries, researchers have either considered a

linear surface tension- temperature and/or linear surface tension- concentration relation. However,

the dependency of surface tension on temperature and/or concentration of non-linear nature has

not been discussed yet, which actually corresponds to self-rewetting fluid. Also, as discussed above,

presence of magnetic field is essential for controlling Marangoni convection, yet such an analysis

is absent from the literature. Self-rewetting fluid are an important class of fluid which have many

applications in heat transfer and also there are some applications of self-rewetting fluid in crystal

growth in the reduced gravity environment. We observed that for such important kind of fluid,

a detail study of the convection arising in reduced gravitational environment in the presence of

external heat generating source under the influence of magnetic field have not been discussed

previously. Through this article we aim to fill this gap. The research problem of this kind is very

relevant in real life heat transfer instruments such as heat pipe, in which phase change in the form

of vaporization and condensation is used to transfer heat from one point to other.

2 Mathematical Formulation

In this study, we consider a two dimensional, steady flow of a self re-wetting power-law fluid

flowing over a circular surface, induced by thermal and solutal Marangoni convection. Permeation

of the magnetic field along the transverse direction is also considered whereas the effect of induced

magnetic field is not considered. A schematic of the considered problem is demonstrated in Figure

1, in which we have made use of cylindrical-polar coordinate. Following are the assumptions that

have gone into modelling the flow situation:-

• The Marangoni convection appears at the inter-facial region of self re-wetting fluid, at Z = H,

and the thickness of the fluid layer H(t) is time-dependent, where H is denotes the thickness

of the fluid in dimensional form.
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• The temperature distribution at the disk surface is given as: T ′ = T0 + AR
1

2−n whereas the

concentration distribution at the surface is given as: C ′ = C0 +AR
1

2−n of the disk surface.

• A magnetic field of variable nature: B = B0

√
UR
U0R0

is permeating in the Z-direction.

• The energy balance equation is written in the consideration of heat source: Q = Q0

(
UR
U0R0

)
.

• Surface tension-temperature-concentration relation is expressed as σ = σ0 + γT
2 (T − T0)2 +

γC
2 (C − C0)2, where γT = ∂2σ

∂T ′2

∣∣∣
T ′=T0

, γC = ∂2σ
∂C2

∣∣∣
C=C0

, and σ0 are positive constants.

In accordance with the aforementioned assumptions, the partial differential equations for mass,

momentum, and energy transfers of self re-wetting power-law liquid over the disk surface is given

as follows:
∂U

∂R
+
U

R
+
∂W

∂Z
= 0, (1)

U
∂U

∂R
+W

∂U

∂Z
=

∂

∂Z

(
ν

∣∣∣∣∂U∂Z
∣∣∣∣n−1 ∂U∂Z

)
− χB2

ρ
U, (2)

U
∂T ′

∂R
+W

∂T ′

∂Z
=

∂

∂Z

(
α

∣∣∣∣∂T ′∂Z

∣∣∣∣n−1 ∂T ′∂Z

)
+

Q

ρcp
(T ′ − T0) , (3)

U
∂C ′

∂R
+W

∂C ′

∂Z
=

∂

∂Z

(
λ

∣∣∣∣∂C ′∂Z

∣∣∣∣n−1 ∂C ′∂Z

)
. (4)

The boundary conditions as per the assumptions are:

at Z = 0 : U = 0, T ′ = T0, C ′ = C0, (5)

at Z = H : ν

∣∣∣∣∂U∂Z
∣∣∣∣n−1 ∂U∂Z = − ∂σ

∂R
, W =

∂H

∂t
, T ′ = T0 +AR

1
2−n , C ′ = C0 +AR

1
2−n . (6)

In these equations, (U,W ) represent velocity components in R and Z directions, temperature

and species concentration are in dimensional form denoted as T ′ and C ′ respectively. Kinematic

viscosity, mass diffusivity and thermal diffusivity are each expressed as K0 = ν
∣∣∂U
∂Z

∣∣n−1, K2 =

λ
∣∣∣∂C′∂Z

∣∣∣n−1 and K1 = α
∣∣∣∂T ′∂Z

∣∣∣n−1 respectively, where ν, λ and α are positive constants. In the

above equation, σ represents the surface tension of a fluid, χ represents the electrical conductivity

of fluid, ρ represents the density of a fluid, cp represents the specific heat at constant pressure of

fluid, A is a positive constant term and n represents the power-law index of a conducting fluid.

Equations 1 to 4 along with condition 5 and 6 are written in dimensional form. In order to

convert these equations in non-dimensional form, following non-dimensional variables are used:

u =
U

U0
, r =

R

R0
, z =

Z

R0
Re

1
n+1 , w =

W

U0
Re

1
n+1 , C =

C ′

C0
, T =

T ′

T0
, h =

H

R0
Re

1
n+1 , (7)
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After incorporating Equation 7, governing Equations 1 to 4 are rewritten into dimensionless form,

given below:
∂u

∂r
+
u

r
+
∂w

∂z
= 0, (8)

u
∂u

∂r
+ w

∂u

∂z
=

∂

∂z

(∣∣∣∣∂u∂z
∣∣∣∣n−1 ∂u∂z

)
− χB2R0

ρU0
u, (9)

u
∂T

∂r
+ w

∂T

∂z
=

1

Pr

∂

∂z

(∣∣∣∣∂T∂z
∣∣∣∣n−1 ∂T∂z

)
+

QR0

ρcpU0
(T − 1) , (10)

u
∂C

∂r
+ w

∂C

∂z
=

1

Sc

∂

∂z

(∣∣∣∣∂C∂z
∣∣∣∣n−1 ∂C∂z

)
. (11)

The non-dimensional form of boundary conditions are given as:

at z = 0 : u = 0, C = 1, T = 1, (12)

at z = h :

∣∣∣∣∂u∂z
∣∣∣∣n−1 ∂u∂z =

1

n− 2

[
MaT
Pr

+
MaC
Sc

]
Re

−3
n+1 r

n
2−n , w = u

∂h

∂r
, (13)

T = 1 +
A

T0
R

1
2−n

0 r
1

2−n , C = 1 +
A

C0
R

1
2−n

0 r
1

2−n ,

where the dimensionless parameters Re =
U2−n

0 Rn
0

ρν , Pr = ρν

αU1−n
0 Tn−1

0

and Sc = ρν

λU1−n
0 Cn−1

0

are

Reynolds number, Prandtl number and Schmidt number respectively. MC
a = γCA

2

λ
R

n
2−n

+n

0

U0C
n−1
0 Re

3−n
n+1

and MT
a = γTA

2

α
R

n
2−n

+n

0

U0T
n−1
0 Re

3−n
n+1

represent the solutal and thermal Marangoni numbers respectively.

In order to solved partial differential Equations 8 to 11 along with conditions 12 and 13, we

convert them into ordinary differential equations by using suitable similarity variables, which are

given as:

η = C2z, u = C1r
1

2−n f ′(η), w = −C1

C2

3− n
2− n

r
n−1
2−n f(η), T = 1 +

A

T0
R

1
2−n

0 r
1

2−n θ(η),

C = 1 +
A

C0
R

1
2−n

0 r
1

2−nφ(η), B2 = B2
0C1r

n−1
2−n , Q = Q0C1r

n−1
2−n ,

where

C1 =

(
A

C0
R

1
2−n

0

)
, C2 =

(
A

C0
R

1
2−n

0

) 2−n
n+1

.

After applying the similarity variables, governing Equations 8 to 11 are changed into following

non-linear equations:

(
1

2− n

)
f ′2 −

(
3− n
2− n

)
ff ′′ =

∂

∂η

(
|f ′′|n−1 f ′′

)
−Mf ′, (14)
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(
1

2− n

)
f ′θ −

(
3− n
2− n

)
fθ′ =

1

Pr

∂

∂η

(
|θ′|n−1 θ′

)
+Q∗θ, (15)

(
1

2− n

)
f ′φ−

(
3− n
2− n

)
fφ′ =

1

Sc

∂

∂η

(
|φ′|n−1 φ′

)
. (16)

Converted boundary condition are given as:

at η = 0 : f ′ (0) = 0, θ (0) = 0, φ (0) = 0, (17)

at η = β : f ′′ (β) =
(
MT
a +M c

a

) 1
n , f (β) = −C2

(
2− n
3− n

)
∂h

∂r
rf ′ (β) , θ (β) = 1, φ (β) = 1,

(18)

where magnetic parameter is defined as M =
χB2

0R0

ρU0
, heat generation or absorption coefficient is

defined as Q∗ = Q0R0

ρCpU0
. The thermal and solutal Marangoni numbers MT

a and M c
a, are given as:

M c
a =

1

n− 2

MaC
Sc

Re−
3

n+1 (C1C2)
−n

, (19)

MT
a =

1

n− 2

MaT
Pr

Re−
3

n+1 (C1C2)
−n

. (20)

2.1 Quantities of physical interest

The Nusselt number Nur estimates the heat transfer rate and the Sherwood number Shr presents

a measure of mass transfer rate at the disk surface. These two quantities are defined as follows:

Nur =
rqz

K1(T0 − Th)
, (21)

Shr =
rCz

K2(C0 − Ch)
, (22)

where τz the radial shear stress, K1 is the thermal diffusivity of the fluid, K2 is mass diffusivity, qz

and Cz are the heat and mass transfer rates from the surface respectively, and they are given by

qz = −K1
∂T

∂z

∣∣∣∣
z=0

, (23)

Cz = −K2
∂C

∂z

∣∣∣∣
z=0

. (24)

The dimensionless form of Nusselt number Nu and Sherwood number Sh are:

Nu =
Nur
C2r

= −θ′(0), (25)

Sh =
Shr
C2r

= −φ′(0). (26)
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3 Solution Methodology

A numerical solution of system of Equation 14 to 16 constraint to conditions 17 and 18 can be

obtained by bvp4c method. In order to make use of bvp4c method, the similarity expression for

velocity, temperature and concentration are given in terms new set of variables yi, i = 1 : 7, to

define variables f, f ′, f ′′, θ, θ′, φ and φ′ and writing Equations 14 to 16 in the following form:

y′1 = y2, (27)

y′2 = y3, (28)

y′3 =
1

n|y3|n−1

(
y22

2− n
+My2 −

(
3− n
2− n

)
y1y3

)
, (29)

y′4 = y5, (30)

y′5 =
Pr

n|y5|n−1

(
y2y4
2− n

−Q∗y4 −
(

3− n
2− n

)
y1y5

)
, (31)

y′6 = y7, (32)

y′7 =
Sc

n|y7|n−1

(
y2y6
2− n

−
(

3− n
2− n

)
y1y7

)
. (33)

The above system is solved subject to conditions given in Equations 17 and 18, by taking initial

guesses for each variable with the help of bvp4c routine of MATLAB.

4 Validation of numerical solution

To judge the precision of numerical method, we have realized an assessment for the numerical

values of velocity f(0) and concentration φ(0) with MT
a = 0, M c

a = 0 M = 0, Q = 0 against n and

reversible boundary conditions at η = 0 and η = β with those of Lin and Yang[30]. An excellent

agreement is found between our result and that of Lin and Yang [30], which is shown in Table

1. This ensures that our numerical approach is trustworthy and that it may be utilized for the

computation of further results.

5 Result and Discussion

On finding the solution of system of 1st-order simultaneous Equations 27 to 33 subject to the

conditions at the boundary in given Equations 17 to 18 using method explained above, results for

velocity, temperature, concentration as well as quantities of physical interest i.e. Nusselt number

Nu and Sherwood number Sh, are obtain and have been presented in Figures 2 to 15 along with

the Tables 2 and 3. In these figures, the effect of pertinent flow parameters MT
a ,M

C
a ,M,Q, Pr, Sc
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and n, on velocity, temperature and concentration, are shown.

Figures 2 -4 show how magnetic field M affects velocity f ′(η), temperature θ(η) and concen-

tration φ(η). It’s seen that on increasing magnetic parameter M , the velocity of fluid decelerates,

while the temperature and concentration of fluid increase. Such behavior of velocity, temperature,

and concentration can be attributed to the property of magnetic field, which creates resistance

to fluid velocity and generates a type of resistive force. Thus, intensifying magnetic field results

in increased temperature and concentration. Figures 5 and 6 illustrate the influence of thermal

Marangoni parameter MT
a on velocity f ′(η) and temperature θ(η). In their study, the effect of

thermal Marangoni parameter was exactly opposite to our finding in this research. Such an out-

come is due to self re-wetting property of the fluid. Figures 7 and 8 show the impact of solutal

Marangoni parameter M c
a on velocity f ′(η) and concentration φ(η). When the solutal Marangoni

parameter increases, velocity of fluid decreases, while the opposite is observed for concentration.

Figure 9 illustrates the influence of heat source parameter Q on temperature θ(η). It is seen that

increment in Q triggers a rise in temperature. Specifically, for an elevated value of Q, the heat

source processes become more powerful, which leads to more heat entering the liquid and thus the

higher temperature θ(η). Figure 10 illustrates the influence of Pr has on temperature θ(η).This

graph demonstrates that as Pr is raised, temperature rises as well. Figure 11 illustrates the influ-

ence that power-law index n has on velocity f ′(η). We observe that an increase in the value of n

form 0.4 to 0.8 results in a continuous decrement in the velocity. Since an increase in n strength-

ens the dimensionless shear stress, hence we observe a decrement in fluid velocity f ′(η) when n

increases. Figure 12 illustrates the influence that Sc has on concentration φ(η). Upon increasing

Schmidt number Sc, φ(η) increases. Basically, the value of concentration raises due to a reduction

in mass dissipation.

Figure 13 illustrates the effect of thermal Marangoni number MT
a on the velocity f ′(η) while

neglecting the solutal Marangoni convection i.e. by taking M c
a = 0. As the value of MT

a increases,

the fluid velocity decreases. In order to see the difference between effects of Marangoni parameters

on pseudo-plastic fluid and that on dilatent fluid. We have drawn Figures 14 and 15. These figures

illustrate the impact of thermal and solutal Marangoni number on temperature and concentration

of dilatent fluid respectively. We see that increase in MT
a leads to rise in temperature, whereas

an increase in M c
a tends to increase the concentration. On comparing Figures 6 and 14), we see

that a peak in temperature of dilatent fluid is observed before the peak in temperature of pseudo-

plastic fluid, also there is a more pronounced effect of thermal Marangoni parameter on dilatent

fluid. A comparison of Figures 7 and 15 show that the effect of M c
a on pseudo-plastic fluid is more

pronounced then the effect of M c
a on dilatent fluid.

The rates with which the transfer of heat and mass at the surface of disk take place, are given

in terms of Nusselt number and Sherwood number respectively. Their estimates against different
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parameter are shown in Tables 2 and 3. It is perceived from Table-2 that an elevation in the

parameter M tends to diminish the Nusselt number. The magnetic field induces a force that

reduces the fluid velocity, due to this intermolecular friction between fluid layers diminishes, so

the heat transfer rate gets dropped and the Nusselt number decreases. We also observed that

the thermal and solutal Marangoni parameters as well as the power-law index affect the Nusselt

number adversely. This can be explain in the context of effect of Marangoni parameter on fluid

velocity. It is observed from Figure 5 and Figure 7 that an increase in MT
a and M c

a reduces the

fluid velocity and also, different layers move with varying velocities. This leads to an increase in

the friction between different layers and as a result Nusselt number decreases. We see that when

the value of parameters Pr and Q are increased, the Nusselt number decreases.

It’s ascertained from Table-3 that an elevation in the parameter M tends to diminish the

Sherwood number. It means that Sh is decreased by increasing the concentration of a fluid. We

also observe that the solutal Marangoni parameters as well as the power-law index affect the

Sherwood number adversely. Such effect of solutal Marangoni parameter on Sherwood number

can be explain in the view of effect of M c
a on concentration profile since increasing M c

a result

in increment of concentration profile through the boundary layer and this result in decreased

concentration gradient and therefore, we observe reduced Sherwood number on increasing M c
a.

6 Conclusions

For the purpose of this research, we examined the thermal and solutal Marangoni convection in

the self-rewetting power-law fluid flowing over a disk surface, while a magnetic field pervade the

concerned domain and heat source affects the thermal distribution. A summary of important

findings based on results obtained can be found below:

• Intensifying magnetic field ramps-up the temperature and concentration of liquid, which in

turn decelerates the fluid velocity.

• A rise in the rate of thermo-capillary convection tends to increase the temperature of a liquid

whereas fluid velocity decelerates. Both the thermal and solutal Marangoni convections have

noteworthy influence at the interfacial region. It shows positive impact on heat transfer rate

due to which fluid velocity increases. Also on increasing the Marangoni parameters, thickness

of fluid film reduces.

• The influence of both kind of convections at the interface affect the dilatant fluid and pseudo-

plastic fluid differently. On enhancing the thermo-capillary convection, the temperature

of Dilatant fluid shoots-up rather quickly as compared to pseudo-plastic fluid. However

concentration of pseudo plastic fluid is more sensitive to solutal Marangoni convection than

that of dilatant fluid.

10



• There is a smooth increment in the concentration of liquid when n > 1, whereas for n = 1,

the increse in concentration is rather quick.

7 Future Work

• Researchers have not explored the unsteady induced magnetic field effect with hybrid nanoflu-

ids on a circular surface with nonlinear radiation parameters in the past, we would like to

work on this.

• Researchers have not investigated the self-rewetting power law fluid with Arrhenius activation

energy in the presence of induced magnetic field yet. We would like to carry out this work

in the future.

• Researchers are yet to discuss the Soret and Dufour effects on a self-rewetting power law

fluid flow over a circular disk with homogeneous and heterogeneous reaction.
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Apendix-(i)

Fig. No. Figure Caption
Figure 1 Geometry of the problem
Figure 2 This graph illustrates the relationship between velocity f ′(η) and magnetic pa-

rameter M .
Figure 3 This graph illustrates the relationship between temperature θ(η) and magnetic

parameter M .
Figure 4 This graph illustrates the relationship between concentration φ(η) and Magnetic

parameter M
Figure 5 This graph illustrates the relationship between velocity f ′(η) and Thermal

Marangoni parameter MT
a .

Figure 6 This graph illustrates the relationship between temprature θ(η) and Thermal
Marangoni parameter MT

a .
Figure 7 This graph illustrates the relationship between velocity f ′(η) and Solutal

Marangoni parameter M c
a.

Figure 8 This graph illustrates the relationship between concentration φ(η) and Solutal
Marangoni parameter M c

a.
Figure 9 This graph illustrates the relationship between temperature θ(η) and heat source

parameter Q.
Figure 10 This graph illustrates the relationship between temperature θ(η) and Prandtl num-

ber Pr
Figure 11 This graph illustrates the relationship between velocity f ′(η) and power-law index

number n.
Figure 12 This graph illustrates the relationship between concentration φ(η) and Schmidt

number Sc
Figure 13 This graph illustrates the relationship between velocity f ′(η) and Thermal

Marangoni parameter MT
a .

Figure 14 This graph illustrates the relationship between temprature θ(η) and Thermal
Marangoni parameter MT

a .
Figure 15 This graph illustrates the relationship between concentration φ(η) and Solutal

Marangoni parameter M c
a.

Table 1 Comparison of values of f(0) and φ(0) for various values of n with published results
for MT

a = 0, M c
a = 0, M = 0, Q = 0 with reversible boundary conditions

Table 2 Nusselt number Nu for distinct parameters
Table 3 Sherwood number Sh for distinct parameters
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Figure 1: Geometry of the problem
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Figure 2: This graph illustrates the relationship between velocity f ′(η) and magnetic parameter
M .
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Figure 3: This graph illustrates the relationship between temperature θ(η) and magnetic parameter
M .
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Figure 4: This graph illustrates the relationship between concentration φ(η) and Magnetic param-
eter M .
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Figure 5: This graph illustrates the relationship between velocity f ′(η) and Thermal Marangoni
parameter MT

a .
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Figure 6: This graph illustrates the relationship between temprature θ(η) and Thermal Marangoni
parameter MT

a .
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Figure 7: This graph illustrates the relationship between velocity f ′(η) and Solutal Marangoni
parameter M c

a.
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Figure 8: This graph illustrates the relationship between concentration φ(η) and Solutal Marangoni
parameter M c
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Figure 9: This graph illustrates the relationship between temperature θ(η) and heat source pa-
rameter Q.
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Figure 10: This graph illustrates the relationship between temperature θ(η) and Prandtl number
Pr.
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Figure 11: This graph illustrates the relationship between velocity f ′(η) and power-law index
number n.
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Figure 12: This graph illustrates the relationship between concentration φ(η) and Schmidt number
Sc.
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Figure 13: This graph illustrates the relationship between velocity f ′(η) and Thermal Marangoni
parameter MT
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Marangoni parameter M c
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Table 1: Comparison of values of f(0) and φ(0) for various values of n with published results for
MT
a = 0, M c

a = 0, M = 0, Q = 0 with reversible boundary conditions
Power Law in-
dex n

Lin and Yang
f(0)

Present paper
for velocity

Lin and Yang
φ(0)

Present paper
for concentra-
tion

0.3 0.631403 0.631429 0.936506 0.936509
0.5 0.621587 0.621585 0.919006 0.919008
0.7 0.611383 0.611378 0.899606 0.899627
1.0 0.566154 0.566109 0.881908 0.881987
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Table 2: Nusselt number Nu for distinct parameters
M MT

a M c
a n Pr Q −θ′(0)

1 0.0371
2 0.0215
3 0.3 0.3 0.4 6 0.1 0.0083

0.1 0.3229
0.2 0.1784

1 0.3 0.3 0.4 6 0.1 0.0371
0.1 0.3229
0.2 0.1784

1 0.3 0.3 0.4 6 0.1 0.0371
0.4 0.0371
0.5 0.0252

1 0.3 0.3 0.6 6 0.1 0.0133
5 0.1345
6 0.0371

1 0.3 0.3 0.4 7 0.1 0.0015
0 0.3840
0.1 0.0371

1 0.3 0.3 0.4 6 0.2 0.0002

Table 3: Sherwood number Sh for distinct parameters
M MT

a M c
a n Sc −φ′(0)

1 0.4954
2 0.4602
3 0.3 0.3 0.4 5 0.4158

0.1 0.8366
0.2 0.6995

1 0.3 0.3 0.4 5 0.4954
0.1 0.8366
0.2 0.6995

1 0.3 0.3 0.4 5 0.4954
0.4 0.4954
0.5 0.4469

1 0.3 0.3 0.6 5 0.4206
1 0.9102
2 0.8146

1 0.3 0.3 0.4 3 0.7131
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Apendix-(ii)

Nomenclature

Dimensional forms Non-Dimensional forms

R,Z Radial and Transverse direction, m r,z Radial and Transverse direction

U,W Velocity component in radial and trans-

verse direction, m/s

u,w Velocity component in radial and trans-

verse direction

T ′ Temperature K T Temperature

C ′ Concentration C Concentration

Q Heat generation/absorption parameter Q∗ Heat generation/absorption parameter

H Fluid thickness, m h Fluid thickness

MHD Magnetohydrodynamics 2-D Two dimensional

R0, Q0 Positive constant T0 Temperature at the disk surface

n Power-law index t Time, s

Greek Symbols

Re Reynolds number ν Kinematic viscosity, m2/s

Shr Sherwood number M Magnetic parameter

Pr Prandtl number σ Surface tension, m/s2

τz Shear stress of the fluid, Pa qz Surface heat flux, W/m2

λ Magnetic Prandtl number σ0 Initial surface tension

MT
a Thermal Marangoni number χ Electrical conductivity

MC
a Solutal Marangoni number B0 applied magnetic field

cf Skin friction coefficent, Nu Nusselt number

γT ,γC surface tension coefficients for temperature

and concentration

β Film thickness

µe Magnetic diffusivity ρ Density of the fluid, kg/m3

α Thermal diffusivity, m2/s K Flow consistency index

cp Specific heat at constant pressure,

J/(kgK)

K0,K1,K2

Positive constant
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