
1 
 

CONVECTION DRIVEN FLOW BETWEEN MOVING DISKS- A NON-LINEAR 

APPROACH FOR MODELLING THERMAL RADIATION 

Kashif ALI 
Department of Basic Science and Humanities, Muhammad Nawaz Sharif University of Engineering & Technology, Multan 60000, Pakistan. 

kashifali_381@yahoo.com  

Anique AHMAD
 

Centre for Advanced Studies in Pure & Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan. 

aniqueahmad19@gmail.com   

Shahzad AHMAD* 
Centre for Advanced Studies in Pure & Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan. 

*
Corresponding author; shahzadahmad@bzu.edu.pk     

Abstract 

Flows involving two disks have significant applications in heat exchangers, rotating machinery 

parts, data storage devices, oceanography and viscometers. In this investigation, heat and mass 

transfer characteristics are examined in Casson flow between two orthogonally moving disks, 

with nonlinear thermal radiation under the slip and convective conditions, using the powerful 

tool of similarity transformation. A MATLAB code, based on quasi-linearization, has been 

developed for the numerical study. It is observed that, when the disks are receding, the disk 

expansion ratio raises the velocity profile near the center of the region between the two disks. 

The trend is, however, reversed when the disks are approaching each other. Moreover, all the 

governing parameters remarkably elevate the fluid temperature at a central region between the 

disks, for both cases. A remarkable lowering in concentration distribution is also noted with the 

Schmidt number and the chemical reaction parameter. Finally, compared to thermal and 

concentration profiles, it is the velocity distribution which is least affected. 

Keywords: Non-linear thermal radiation, Casson fluid, Chemical reaction, Slip and convective 

boundary conditions, Expanding or Contracting disk, Numerical solution. 

1. Introduction  

Heat and mass transfer aspects in the existence of chemical reaction through various 

geometries have fascinated the interest of the researcher community due to its substantial and 

tremendous applications in numerous fields that contain the damage of crop due to freezing, 

transfer of energy distribution in a wet cooling tower, grooves of fruit trees, spreading of 

moisture in agricultural fields, and flow in a desert cooler [1]. Rotor-stator system has achieved 

great awareness for convection of heat transfer in power engineering, air cleaning machine, and 

several turbomachinery applications. Numerous researchers have put their best effort into disk-

related problems with various wall conditions. Von Karman [2] was the first who initiate the 

study of flow by a rotating disk. He converted the Navier–Stokes governing equations into 

ordinary differential equations (ODEs). Afterward, numerous researchers adopted the Karman 

transformations to investigate various problems. By employing the Successive over Relaxation 

(SOR) technique, Abbas et al. [3] studied an incompressible, viscous, and non-Newtonian flow 

over the oscillatory/rotating disk with porous media. They perceived that an increment in 

porosity parameters results in decelerating the oscillatory velocity.  

The viscoelastic nanofluid flow consists of gyrotactic microorganisms (GM) over a 

rotating stretching disk taking into account the zero mass flux and convective boundary 

conditions were studied by Abbasi et al. [4]. The influence of prominent parameters on both 
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azimuthal and radial velocities, concentration, temperature, and density of motile-

microorganisms for convective and non-convective surfaces was discussed thoroughly. 

Thermo-physical properties of Newtonian fluid over a rotating disk were investigated by Mair 

et al. [5]. The fifth-order Rung-Kutta-Fehlberg (RKF) integration technique was implemented 

to discuss the new findings. They noticed that the concentration and temperature distribution 

enhanced with thermal diffusivity and conductivity. Magnetohydrodynamics (MHD) Carreau 

fluid containing nanoparticles with GM over a heated disk with the existence of Brownian 

motion and thermophoresis were examined by Muhammad et al. [6].  

By incorporating the optimal homotopic analysis method (HAM), Adil et al. [7] 

discussed the impact of thermal and velocity slip in Darcy-Forchheimer flow in a rotating disk 

taking into account the viscous dissipation. They found that the skin friction is accelerated by 

the velocity slip parameters and the heat transfer rate is augmented with the thermal slip and 

Eckert number. Mamatha et al. [8] studied the characteristics of heat transfer between porous 

and nonporous rotating disks with graphene as nanoparticle in water and ethylene glycol-based 

fluid. The RK method based on shooting technique was implemented to find the characteristics 

of sundry variables. They found that augmentation in Hartman number decelerates the wall 

friction in tangential and radial directions.  

Jawad et al. [9] studied the unsteady Maxwell fluid due to horizontal rotating disks in the 

existence of nanoparticles. A finite-difference-based computational scheme was incorporated 

for the solution procedure. They concluded that nanofluid film thickness decelerated with the 

magnetic parameter, unsteadiness parameter, and Deborah number. Moreover, the rate of mass 

transfer was augmented with the thermophoresis. Babu et al. [10] investigated the numerical 

modelling of activation energy in MHD Casson fluid flow via stretchable rotating disk. For the 

understanding of complex interaction of Lorentz and Coriolis forces in EMHD power law fluid 

inside a micro-channel was investigated by Ali et al. [11].  

A new kind of non-Newtonian fluid (Reiner-Rivlin) over a rough rotating disk under 

different slip conditions was studied by Syed et al. [12]. They observed that for a large wall 

slip, a higher value of torque was required under continuous rotating disk. Iqbal et al. [13-14] 

studied the mass and heat transport aspects in unsteady electrically conducting MHD nanofluid 

between two porous moving disks.  

Buongiorno’s model for the assessment of transient flow in Maxwell nanofluid through 

a vertically moving disk were presented by Masood et al. [15]. Additionally, the influence of 

Lorentz force produced by magnetic field acted normally to the direction of flow was also 

investigated. They found that the disk motion (upward or downward) exerts a similar effect to 

that of the injection/suction through the wall and the heat transfer rate raises remarkably with 

the spin. Muhammad et al. [16] studied the heat transport phenomenon in viscous fluid flow 

due to flexible rotating disks with the Dufour and Soret effect.  

Thermal radiation assumes a major contribution in manufacturing industries for atomic 

power plant designing and modeling applications. Due to its important applications, numerous 

scientists and engineers have given their deliberation to thermal radiation impact. Moreover, 

heat convection plays a dynamic role in industrial applications such as solar ponds, and metal 

solidification processes. Heat convection is also used in several biomedical fields such as the 

destruction of tumors and laser treatment of the cornea. Taza et al. [17] discussed the thermal 

analysis of a hybrid nanofluid between a cone and a disk under the effect of the imposed 
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magnetic field. Two distinct types of hybrid nanoparticles such as copper and magnetic ferrite 

were considered in this novel study. They found that an increment in volume fraction increases 

the rate of thermal diffusion. Talat et al. [18] considered the unsteady revolving fluid flow 

generated by a rotating porous disk with temperature-dependent viscosity. Two different 

numerical schemes such as modified finite difference and the collocation method were 

employed to find the solutions of the problem. They found that variable thermal conductivity 

considerably alters the heat transfer rate and drag coefficient. 

Khan et al. [19] examined the hybrid nanofluid flow near the stagnation point with the 

arched surface. Hussain et al [20] studied the hybrid base nano watery flow over an 

exponentially rotating stretching sheet with the convective boundary conditions. Li et al. [21] 

investigated the transport of heat and mass in MHD Williamson nanofluid over an 

exponentially permeable elongating sheet. The heat transfer characteristics and skin 

friction for stagnation point flow with two types of carbon nanotubes (single‐ walled and 

multi‐ walled carbon nanotubes) based nanofluid flowing over a curved surface was 

deliberated by Khan et al. [22].  

Casson fluid model has been broadly used for studying diverse applications concerning 

the flow of yield stress fluids. Casson fluid belongs to a non-Newtonian fluid because of its 

rheological nature relating to the shear stress and strain relationship. The general model of 

liquids that shows the characteristics of Casson fluid are human blood, soup, orange juice, and 

tomato sauce. Activation energy in Darcy–Forchheimer flow of non-Newtonian fluid with 

nanoparticles (Titanium dioxide and Graphene oxide) in a permeable medium was studied by 

Naveen et al. [23]. Mathematical problem was solved by implementing the RKF-45 method 

along with the shooting technique. They found that an increment in the Casson parameter 

remarkably decelerates the fluid velocity. 

Zhao et al. [24] examined the entropy generation analysis in MHD flow of Ree-Eyring 

fluid between two rotating disks. From this study, it is observed that the Bejan number and 

entropy generation have totally contradictory trends against higher values of Weissenberg 

number. Ghaffar et al. [25] studied an unsteady laminar incompressible flow between two disks 

and different physical quantities of interest were discussed in detail. Rheological features of 

Casson-Maxwell nanofluids over stretchable rotating disk was studied by Shehzad et al. [26]. 

Moreover, a well-known Buongiorno theory of nanomaterials was employed to illustrate the 

thermophoresis and Brownian motion effect. To explore the features of peristaltic pumping of 

MHD Casson fluid in a channel geometry with slip conditions was presented by Ali et al. [27].  

Energy conversion to improve the heat production during the flow of ternary hybrid 

nanofluid contained nanoparticles over a spinning disk by considering the radiation and Hall 

current impacts was reported by Shamshuddin et al. [28]. Ahmad et al. [29] demonstrated the 

steady MHD boundary layer flow of an electrically conducting micropolar fluid over an 

inclined surface. Jawad et al. [30] studied the unsteady non Newtonian fluid between two 

orthogonally moving porous disks. To solve the coupled nonlinear equations, the RK method is 

utilized. Various parameters effects are discussed in detail. 

Further relevant research regarding the flows driven by the moving disks can be seen 

through the investigations [13-14] and the references therein. To the authors’ best knowledge, 

no mathematical modeling and the consequent numerical solution has been obtained for 

understanding the cumulative impact of nonlinear thermal radiation, viscous dissipation, and 
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chemical reaction on unsteady MHD Casson fluid between two orthogonally moving porous 

disks. Furthermore, velocity slip and thermal convective conditions at the boundary are 

imposed in this model. The highly nonlinear PDEs are transmuted into ODEs via similarity 

transformation and then numerically solved by incorporating the quasi-linearization technique 

in the MATLAB environment. Our numerical technique is also different from the usual 

shooting methodology being employed by many researchers. Results reveal that the fluid flow 

is affected by preeminent parameters. Outcome of the present investigation not only provides 

essential information to mechanical applications, but also discusses the suitability of our 

computational approach for the self-similar flow problems. 

2. Problem formulation 

Take a two-dimensional unsteady electrical conducting hydromagnetic viscous and 

incompressible Casson fluid flow between two orthogonally moving porous disks, in the 

existence of an applied magnetic field. Here, we considered that the induced magnetic field is 

small related to the imposed one. We also supposed that the magnetic Reynolds number is very 

small. It is also considered that there is no polarization and thus no electric field. Since both 

disks have similar permeability, to uniformly move up or down at a time-dependent rate  L t . 

The upper and lower disks are at the specific distance of  L t  and  L t from the horizontal 

axis respectively as shown in Figure 1. A suitable cylindrical polar coordinates system is 

established at the center of the two disks. The velocity components are 1u and 3u  in the r and 

z directions, respectively.  

For an isotropic flow, the equation of the rheological state of a Casson fluid can be 

demonstrated as: 
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In Equation (1), ij ije e  , here ije is the  ,
th

i j  deformation rate component. This implies the 

definition of  which is the product of the deformation rate with itself and the critical value for 

this product based is c  . Also, yP  and B  are the yield stress and the fluid dynamic viscosity. 

Momentum, heat and mass transfer equations in cylindrical polar coordinates system  , ,r z

under slip and convective conditions taking chemical reaction, viscous dissipation, and 

nonlinear thermal radiation into accounts are 
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here e is the electrical conductivity,  is the density, 0B represented as the applied magnetic 

field, the thermal conductivity is denoted by ,  is the kinematics viscosity, T and C are 

illustrated as fluid temperature and concentration, respectively. 

Boundary conditions are: 
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is a slip velocity, the wall permeability is H , and the prime represents the 

derivative w.r.t time t, 1T , 2T  demonstrate the fixed temperatures (with 1 2T T ), 1 2,h h  represents 

the coefficient of convective heat transfer and 1C , 2C represents a fixed concentration, 

respectively. We consider the temperature difference along the flow such that 4T  can be 

written as a linear function of the temperature. By expanding 4T  through Taylors series 

expansion around T and truncating higher-order expressions as, 
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here * and *k are the Stefan-Boltzmann constant and absorption coefficient.  

Following similarity transformations are proposed for the conversion of PDEs into the 

corresponding non-linear ODEs. 
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here , , Re, Pr, , ,  and M Sc Ec Nr  are non-dimensional parameters called, respectively, the wall 

expansion ratio, magnetic field parameter, Reynolds number, Prandtl number, Schmidt 

number, Eckert number, thermal radiation, and chemical reaction. 
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By putting Equation (15) into Equation (2), the continuity equation is satisfied and 

consequently velocity field signifies the fluid motion. Now by setting, Ref F  and assuming 
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3. Methodology 

We apply the quasi-linearization method to solve the converted Equations (17) – (19). For this 

intention, we make vector sequences of the transformed functions         , and
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converge to the approximate solution of a dimensionless system.  
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We thus obtain the system of differential equations which, on the introduction of central 

differences for the derivatives, yield the following linear algebraic system: 

   ( ) ( 1) ( )
1. ,p p p

n n nG f f H f
                        (22) 

with n being the number of grid points (resulting into giving rise to the n n algebraic system. It 

is to point out that no linearization effort is required  for the heat and mass treansfer equations, 

as the two equations are already linear for their corresponding unknowns. Therefore,  

the sequences    ( ) ( )andp p   are given by: 

     
2 2

1 1( 1) ( 1)( 1) 24 1
1 Pr 2Re Re 1 Pr 0,

3

p pp pp
rN f Ec f Mf     



       
         

    
            (23) 

 ( 1) ( 1)( 1) ( 1)2Re 0,
p pp pSc f Sc                                (24) 

with 
( 1)pf 

 being considerd as the known solution of Equation (21). The overall algorithm may 

be outlined as below: 

a) A starting guess for 
     0 0 0

, andf   is supplied; 

b)  1
f is obtained as a solution of Equation (22); 

c)  1 and 
 1

 are found from Equations (23) and (24) while assuming 
 1

f , being the 

solution of  Equation (22), as a known vector; 

d)  Assuming
 1

f ,  1 and 
 1

 as knowns, the sequences      ( ) ( ) ( ), andp p pf    are 

constructed which convergent to the solutions of Equations (17) – (19); 

e) The processes is halted once the criteria 

( 1) ( ) ( 1) ( ) ( 1) ( ) 6max , , 10p p p p p p

L L L
f f    

  

    
   

  
 is met. 

Finally, it is worth mentioning that the pentadiagonal matrix n nG  is not diagonally dominant, in 

general, and therefore a direct method is more suitable. We have chosen the Guassian 

elimination technique with full pivoting, for this purpose in the present study.   

4. Results and discussion 

Current part is fermented for demonstrating the solution of the problem in the form of graphs 

and tables. Quantities of curiosity are the rate of shear stress, rate of heat, and mass transfer at 

the disks. We are confident to analyze the effect of various physical dimensionless constraints 

in the present work such as Magnetic field parameter M, Wall expansion ratio α, Reynolds 

number Re, Radiation parameter Nr, Prandtl number Pr, Casson parameter  , Eckert number 

Ec, Slip parameter , Schmidt number Sc, and the Chemical reaction parameter γ on 

temperature, velocity, and concentration distributions. It is essential to mention here that when 

the moving disks are approaching each other we take α < 0 (contracting) and when the disks 

are moving away from each other we take α > 0 (expanding). Here we shall also gain the 

knowledge for the numerical values of the rate of skin friction  1f   , rate of heat transfer  1  , 

and rate of mass transfer  1   at the upper and lower disk. Table 1 illustrates the validity of 

our numerical technique as the step size decelerate, which gives us self-assurance on our 

computational procedure. Table 2 demonstrates the effect of governing parameters on the 
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coefficient of skin friction. It is found that the external magnetic field, Reynolds number, and 

Prandtl number augmented the shear stress whereas an opposite trend is seen for wall 

expansion ratio. Influence of rate of heat transfer on various parameters is depicted in Table 3. 

The rate of heat transfer amplifies with Reynolds number and Eckert number while a reverse 

trend is seen for radiation parameter, Casson parameter, and wall expansion ratio. Table 4 

demonstrates the impact of Schmidt number and chemical reaction on rate of mass transfer. 

The rate of mass transfer shows a declining behavior with Schmidt number and chemical 

reaction for both the cases. 

To authenticate the precision of our numerical method, an assessment for the calculated values 

of skin friction  1f   at the lower disk with 1  is made to that of Ghaffar et al.  [25], and 

Jawad et al. [30] (for 𝑀 = 0 and 𝛽 → ∞), in Figure 2 and close conformity is found. Therefore, 

we are sure that the current results are very precise. Figure 3 shows the streamlines of our 

governing flow problem. 

Figures 4(a)-(d) depict the magnetic effect on the velocity and temperature distributions. In the 

middle part of the two moving disks, the velocity distribution reduces with M, and a 

contradictory behavior is obtained for temperature in both cases of wall expansion ratio 0 

and 0  . Physically, when a magnetic field is imposed on non-Newtonian fluid, viscosity of 

such fluids escalated due to the particle chain formation. Due to an augmentation in viscosity, 

the velocity of the fluid particle decelerates that can be perceived in the region 0 0.2.   

Furthermore, induce external magnetic field gives kinetic energy (K.E) to the particles, and 

consequently velocity enhances near the disks. These results in Casson fluid flow between 

moving disks can be restricted by incorporating the external magnetic field that can be used in 

many control-based applications such as MHD power generation, and ion propulsion. Effect of 

Lorentz force is the creation of heat energy, enhancing the temperature of the fluid remarkably. 

Impact of Reynolds number Re  on the velocity, temperature, and concentration is illustrated 

in Figures 5(a)-(f). It should be observed that for velocity and concentration distribution, the 

Reynolds number has a contradictory effect of M, whereas a similar impact on temperature is 

observed, whether the disks are expanding ( 0  ) or contracting ( 0  ). Impact of  on 

distribution of velocity and temperature is shown in Figures 6(a)-(b). At the center of the disks, 

the velocity increases, and a maximum peak is attained at  0.4   after that the fashion of the 

velocity profile shows a declining behavior near the disk. Moreover, the temperature profiles 

are lowered near the disks and moves up for a smaller portion. Figures 7(a)-(d) represent the 

impact of the Prandtl number on velocity and temperature distribution. The velocity profile 

shows an increasing fashion with the growing values of Prandtl number in both cases. 

Physically, Prandtl number in dimensionless form is distinct as the ratio of the viscosity and 

fluid thermal diffusivity. And so, temperature profiles rise, when the Prandtl number increases. 

The dominant feature of viscosity with a rapid augmentation in Prandtl number is the main 

cause for temperature rises. 

Figures 8(a)-(b) demonstrate the influence of the viscous dissipation on temperature for both 

cases 0   and 0  . It is observed that the viscous dissipation astonishingly shows an 

increasing trend across the disks for the temperature distribution. Physically, Eckert's number 

is the relationship of K.E and change in enthalpy. Due to the drag forces, the heat energy is 
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deposited in the fluid and K.E is augmented with the Ec. As a result, the fluid temperature 

grows. The impact of thermal radiation Nr on temperature is presented in Figures 8(c)-(d). It is 

noticeable that the initial values of Nr , the temperature rise but the large values of Nr , profiles 

start decreasing. The reason behind this fact is that when the values of thermal radiation 

increase, the absorption coefficient of the Casson fluid shows a declining trend. In these 

circumstances, the fluid between the surfaces of the disk absorbs a small amount of radiation, 

and hence the fluid temperature between the disks is bounded and vanishes remarkably. 

In the governing equations, the presence of the parameter   shows a non-Newtonian rheological 

nature of Casson fluid. Figures 9(a)-(d) depict the effect of   on velocity and temperature 

distribution for 0   and 0  . Velocity profiles increase with the enhancement in numerical 

values of the Casson parameter but a reverse trend is seen for temperature profiles. This 

interesting phenomenon explains that the Casson parameter is distinct to demonstrate the 

strength of yield stress and viscous forces. Strength of yield stress decreases with  . Therefore, 

under a particular pressure gradient, the non-Newtonian Casson fluid flows more freely. That is 

why the fluid velocity is augmented, the convection of heat transfer is strengthened because of 

better mixing of the fluid, and the outcome is the lessening of fluid temperature. Figures 10(a) 

and 10(b) demonstrate the influence of Schmidt number and chemical reaction on the 

concentration distribution. Schmidt number has a converse relationship with mass diffusion 

and augmenting values lead to a decline in concentration. The rate of mass transfer shows a 

declining behavior with the increase in chemical reaction parameters at both disks. Velocity 

distribution for numerous values of slip parameter is seen in Figures 11(a) and 11(b). The 

velocity distribution reduces with the enhancement in slip factor. 

5. Conclusions 

In the current work, a mathematical model has been developed to study the convective driven 

unsteady non-Newtonian Casson fluid flow between two orthogonally moving disks. The 

Quasilinearization technique was used to obtain the numerical solution of the flow and heat 

transfer phenomenon. Influence of the encountered parameters has been discussed in detail 

through graphs and tables. During the thorough analysis of the problem, following points have 

been revealed: 

1. For the case of purely Newtonian flow and in the absece of magnetic force (that is, 𝑀 = 

0 and 𝛽 → ∞), our current numerical results are found in excellent conformity with the 

existing scientific literature (Ghaffar et al. [25] and Jawad et al. [30]). 

2. The absence of no slip boundary condition may be regarded as an extra ordinary 

situation for controlling the flow and shear stress in moving disks. Therefore, the slip 

effects cannot be simply ignored.  

3. Velocity profile enhances in the middle of the domain and reduces near the disks, for 

the case when the disk expansion ratio is positive (which corresponds to the situation 

when the two disks are moving away). However, an opposite trend is encountered when 

the two disks are approaching each other. 

4. All the governing parameters remarkably enhance the fluid temperature at a central 

region between the disks. 

5. Shear stress at the two disks is raised with the parameters ,Re,andPrM  whereas an 

opposite trend is noted for   whether the disks are receding or approaching. 
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6. Heat transfer rate at either of the disks is found to be an increasing function of the 

Prandtl number and the Eckert number. A reverse trend is however encountered for the 

thermal radiation and the casson nature of the fluid. 

7. Finally, a significant decrease in the concentration profile and the mass transfer rate (at 

the disks) has been noticed for both the Scmidth number and the chemical reaction 

paarameter.  

6. Nomenclature 

Dimensional Parameter 

0B    Applied magnetic field  

pc    Specific heat at constant pressure  

 L t  Distance between disk 

e    Electrical conductivity 

1 2,h h Coefficient of convective heat transfer 

ije the  ,
th

i j  component of deformation rate 

  product of the component of deformation 

rate 

yP Fluid yield stress 

H   Wall permeability 

T    Fluid temperature  

C    Fluid concentration 

1 2,T T Fixed temperatures 

1 2,C C Fixed concentrations 

1 2 3, ,u u u  Velocity components of fluid  

, ,r z  Cylindrical polar coordinates 

  thermal conductivity  
  Density of the fluid  

B  Dynamic viscosity of a non-Newtonian 

fluid 

 

 

Non-Dimensional Parameter 

  Wall expansion ratio 

   Similarity variable  

F  Dimensionless stream function 

f   Dimensionless velocity 

   Dimensionless temperature 

   Dimensionless concentration 

   Kinematic viscosity  
*  Stefan-Boltzmann constant 
*k  Mean absorption coefficient 

fC   Local Skin friction coefficient 

xNu Local Nusselt number 

xSh  Local Sherwood number 

M   Magnetic field parameter 

Ec   Eckert number 

  Casson parameter 

Pr   Prandtl number 

    Slip parameter 

Sc   Schmidt number 
    Chemical reaction parameter  

Re   Reynolds number 

Nr  Radiation parameter 
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Figure 5. Variation of  f  ,    and    with  Re for 0   and 0   
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Figure 6. Variation of  f   and     with  0   and 0   
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Figure 7. Variation of  f   and     with different values of  Pr for 0   and 0   
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(c) 

 

(d) 

 

Figure 8. Variation of     with  Ec and Nr for 0   and 0   
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Figure 9. Variation of  f   and    with different values of   for 0   and 0   
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(a) 

 

(b) 

 

Figure 10. Variation of    with different values Sc and  of  for 0   
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Figure 11. Variation of  f  with different values   for 0   and 0   
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Table 1. Dimensionless velocity  f  on three different grid sizes and extrapolated values for 

Re 2, 2, 10,Pr 1,M Sc Nr           0.1, 2,Ec   0.5,and 1.5.    

 

       1   1    

M  Re    Pr         1f    1f     1f    1f    

0       -1.36578 0.89062 -2.24390 0.87604 

2       -1.67028 0.86443 -2.53757 0.86183 

4       -1.94601 0.84979 -2.80568 0.85260 

6       -2.19960 0.84114 -3.05321 0.84635 

8       -2.43532 0.83585 -3.28363 0.84197 

 -1      -1.81962 0.85901 -2.92340 0.85595 

 -3      -1.60438 0.86275 -2.29047 0.86259 

 -5      -1.57048 0.85142 -2.03006 0.85553 

 -7      -1.57799 0.83865 -1.91471 0.84470 

 -9      -1.58973 0.82898 -1.85329 0.83536 

  -4     -4.10643 0.85580 -4.10643 0.85580 

 

 

 -2     -3.02968 0.86014 -3.02968 0.86014 

  0     -2.08301 0.86324 -2.08301 0.86324 

  2     -1.30256 0.86556 -1.30256 0.86556 

  4     -0.70713 0.86869 -0.70713 0.86869 

 

 

  0.2    -1.65266 0.87191 -2.51411 0.86779 

   0.4    -1.65814 0.86972 -2.52060 0.86617 

   0.6    -1.66286 0.86776 -2.52666 0.86464 

   0.8    -1.66688 0.86601 -2.53230 0.86320 

   1.0    -1.67028 0.86443 -2.53757 0.86183 

    0.1   -2.00292 0.94731 -2.15158 0.94105 

    0.3   -1.92493 0.92915 -2.26321 0.91826 

    0.5   -1.87091 0.91749 -2.32457 0.90559 

    0.7   -1.83367 0.90907 -2.36468 0.89730 

    0.9   -1.80678 0.90270 -2.39304 0.89143 

           

     1  -1.67028 0.86443 -2.53757 0.86183 

     2  -1.51742 0.54107 -2.43131 0.50552 

     3  -1.45507 0.39300 -2.38972 0.35820 

     4  -1.42141 0.30858 -2.36758 0.27783 

     5  -1.40037 0.25412 -2.35383 0.22726 

      1 -1.55095 0.91471 -2.41272 0.89931 

      2 -1.67028 0.86443 -2.53757 0.86183 

      3 -1.79523 0.81367 -2.66627 0.82404 

      4 -1.92644 0.76235 -2.79915 0.78591 

      5 -2.06460 0.71041 -2.93659 0.74739 

 

Table 2. Numerical values of Skin friction coefficient for Re 2, 2, 10,M     0.1, 2,Ec  

Pr 1,Sc Nr      0.5,and 1.5.    
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       1   1    

M  Re    Pr    Nr  Ec   1   1    1   1   

0       -0.74209 -0.16129 -1.04910 -0.19291 

2       -1.10104 -0.02010 -1.52327 -0.04223 

4       -1.55181 0.13100 -2.10464 0.12250 

6       -2.10377 0.29620 -2.80110 0.30408 

8       -2.76461 0.47794 -3.61795 0.50437 

 -1      -0.98274 -0.16610 -1.32079 -0.18986 

 -3      -1.46206 0.21372 -2.02551 0.19181 

 -5      -3.30923 1.07308 -4.31252 1.03761 

 -7      -9.12029 3.02801 -10.62976 2.89487 

 -9      -23.74409 7.32225 -25.20129 6.87779 

  -4     -2.35951 -0.06456 -2.35951 -0.06456 

 

 

 -2     -1.77586 -0.05085 -1.77586 -0.05085 

  0     -1.29813 -0.03210 -1.29813 -0.03210 

  2     -0.93208 -0.00578 -0.93208 -0.00578 

  4     -0.67564 0.03214 -0.67564 0.03214 

 

 

  0.2    -1.31351 -0.18824 -1.39318 -0.19722 

   0.4    -1.27435 -0.14008 -1.43842 -0.15547 

   0.6    -1.22399 -0.09624 -1.47468 -0.11577 

   0.8    -1.16535 -0.05636 -1.50273 -0.07805 

   1.0    -1.10104 -0.02010 -1.52327 -0.04223 

    0.1   -15.16779 3.22801 -17.60692 3.53405 

    0.3   -3.79045 0.66507 -4.81522 0.71112 

    0.5   -2.47426 0.34499 -3.22708 0.35601 

    0.7   -2.00340 0.22459 -2.64944 0.22324 

    0.9   -1.76429 0.16178 -2.35384 0.15434 

     1  -1.10104 -0.02010 -1.52327 -0.04223 

     2  -1.51060 -0.09108 -1.80767 -0.10869 

     3  -1.71418 -0.12237 -1.93800 -0.13617 

     4  -1.83339 -0.13991 -2.01200 -0.15114 

     5  -1.91124 -0.15111 -2.05957 -0.16055 

      0.1 -1.10104 -0.02010 -1.52327 -0.04223 

      0.2 -1.92089 0.18974 -2.55085 0.16297 

      0.3 -3.02411 0.43666 -3.84794 0.40024 

      0.4 -4.45969 0.72673 -5.44258 0.67352 

      0.5 -6.26305 1.06534 -7.35016 0.98615 

 

Table 3. Numerical values of Nusselt number for Re 2, 2, 10,Pr 1,M Sc Nr          

Re 2, 2, 10,M     0.1, 2,Ec   Pr 1,Sc Nr      0.5,and 1.5.    
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   1    1   

Re  Sc     1   1    1   1   

-1   -0.31298 -1.56620 -0.30226 -1.57332 

-3   -0.57354 -2.43762 -0.53613 -2.46209 

-5   -0.78168 -3.70103 -0.73268 -3.73126 

-7   -0.80686 -5.38065 -0.76427 -5.40449 

-9   -0.66960 -7.36157 -0.63976 -7.37498 

 0.5  -0.48857 -1.17611 -0.47285 -1.18655 

 1.0  -0.43852 -1.95907 -0.41391 -1.97557 

 1.5  -0.36800 -2.82149 -0.34045 -2.84050 

 2.0  -0.29338 -3.73898 -0.26680 -3.75797 

 2.5  -0.22501 -4.69238 -0.20146 -4.70964 

  0.0 -1.30136 -0.71834 -1.22475 -0.76648 

  0.5 -0.85209 -1.28317 -0.80320 -1.31442 

  1.0 -0.59782 -1.66735 -0.56399 -1.68946 

  1.5 -0.43852 -1.95907 -0.41391 -1.97557 

  2.0 -0.33193 -2.19624 -0.31339 -2.20900 

 

Table 4. Numerical values of Sherwood number for Re 2, 2, 10,M     0.1, 2,Ec  

Pr 1,Sc Nr      0.5,and 1.5.    
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