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Abstract. The optimal position and minimum support sti�ness of a vibrating Timo-
shenko beam are investigated to maximize the fundamental frequency. The �nite element
method is employed. According to the maximum-minimum theorem of Courant, the
optimum position is at the zero of the second mode shape function. The intermediate
support's position and minimal sti�ness for a wide variety of slenderness proportions were
achieved. It was observed that the ideal position of intermediate support and its minimum
sti�ness are sensitive to the slenderness ratio. Also, for thick cantilever beams with
intermediate support at the optimal location, the minimum support sti�ness is less than
266.9, which was reported in the literature for the Euler-Bernoulli beam. The minimum
sti�ness of familiar end conditions of an optimally located beam is presented for a wide
range of slenderness ratios. Since, in many practical applications, it is impossible to locate
support at the optimal position, the minimum support sti�ness for a beam in which its
intermediate support is not located at the optimal position is obtained for various boundary
conditions and slenderness ratios. Furthermore, empirical evaluations were carried out,
and the �ndings were contrasted with hypothetical estimates of the initial two natural
frequencies.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

A beam is applied in several engineering structures,
such as industrial mixers and robotic manipulators,
particularly in bridges, buildings, and supporting struc-
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tures. Understanding the modal characteristics of
the beam is essential for avoiding resonance. By
adding intermediate support, we can improve its modal
characteristics.

In addition to being required to maintain a struc-
ture solidly, supports can be extremely important to
the stability and understanding of structural dynamics.
A slight change to the sti�ness or position of interme-
diate support can dramatically inuence the natural
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frequencies and critical buckling load, signi�cantly
improving the structural performance.

Courant [1] stated that the addition of n kine-
matic limitations to a system will result in new eigen-
values which satisfy the following inequalities:

�i+n � �i � �i+n+1;

�i is the ith eigenvalue of the constrained system, and
�i is the ith eigenvalue of the unconstrained system [2].
The maximum-minimum theorem of Courant indicated
how n kinematical constrained should be applied in
order for the upper limit of the above inequality to
be reached.

When the optimal position of an intermediate
support is determined, according to Courant and
Hilbert [3], the optimal point of the intermediate
support is at the zero of the unrestricted beam's second
mode shape function (ZSMS). Concerning a cantilever
beam, it is 0.7834L. Based on the maximum-minimum
theorem of Courant using intermediate support located
at the optimal position, the constrained beam's �rst
natural frequency equals the unconstrained cantilever
beam's second natural frequency.

Because constructing support containing in�nite
sti�ness is unachievable, the lowest sti�ness of sup-
port necessary for maximizing natural frequency is
of tremendous importance in engineering applications.
Akesson and Olho� [4] have shown that for an Euler-
Bernoulli cantilever beam that was imposed by an
optimally located elastic support, i.e., at 0.7834L, the
increasing of support sti�ness yields the increase of
the fundamental frequency, but after passing a critical
value which they called minimum sti�ness, increas-
ing of support sti�ness does not a�ect fundamental
frequency. They obtained this non-dimensionalized
minimum sti�ness with numerical methods as 266.9.
Wang [5] obtained a minimum value of 266.87 by the
analytical method and assumed a zero slope of mode
shape at the optimal position.

The e�ect of intermediate supports on critical
buckling loads and dynamic response are studied in
many published papers response of beams. Olho�
and �Akesson [6] investigated the inuence of di�erent
elastic support positions and sti�ness on the frequency
of the column buckling loads' greatest value. Rao [7]
provided accurate and precise frequency and mode
shape equations of the clamped both ends uniform
beams with intermediate elastic support. The ideal
support locations for a cantilever beam and a rectan-
gular cantilever plate were determined using sensitivity
analysis of eigenvalues by Won and Park [8]. With
the endpoints elastically restricted against rotation and
translation, Albaracin et al. [9] investigation focused on
the uniform beam problem with intermediate restric-
tions. The support designs for layouts that relates to

the optimization of boundary conditions were proposed
by Zhu and Zhang [10] after their study to increase the
structures' natural frequency. In order to reduce the
maximum bending moment and increase the natural
frequency, Wang et al. examined the best designs of
structural support placements [11,12]. Support posi-
tion optimization involving minimal sti�ness regarding
plate systems, such as support mass, was investigated
by Wang and Friswell [13] in addition to the least sup-
port sti�ness necessary to increase the plate systems'
basic natural frequency. The basic frequency of plate
was maximized by Kong [14] by analyzing the vibration
of plates under di�erent boundary and intermediate
support positions. He then determined the best po-
sition and sti�ness of discrete elastic supports. Wang
et al. [15] discovered how to adjust the basic natural
frequency of rectangular plates by locating the lowest
possible sti�ness of point support. Aydin studied
cantilever beams backed up by optimum elastic springs
to reduce dynamic deviations and surges [16] and the
most e�ective distribution of elastic springs wherever a
cantilever beam is mounted and minimizing the impact
of shear force on the beam supporting [17]. For Euler-
Bernoulli beams containing elastic support, Roncevic
et al. [18] investigated the frequency equation and mode
forms. Abdullatif and Mukherjee [19] analyzed the
e�ect of intermediate support on the critical stability
of a cantilever with non-conservative loading.

Due to the importance of the dynamic response
of the beams with intermediate supports, some stud-
ies have been done on forced and natural vibra-
tions on multi-span beams. Researchers studied the
multi-span beams' axial vibrations having concentrated
masses [20], multi-span beams' unconstrained vibration
having exible constraints [21], and the free and forced
vibration characteristics of a Bernoulli-Euler multi-
span beam carrying several di�erent concentrated el-
ements [22].

Among the studies performed to optimize the
fundamental frequency and obtain the minimum sti�-
ness of the intermediate support, providing an accurate
solution method for determining the natural frequency
and modes shape of the beam with intermediate sup-
ports for di�erent boundary conditions has been the
subject of interest to researchers. These methods have
been performed for Euler-Bernoulli and Timoshenko
beams. Laplace transform method [23], dynamic
sti�ness matrix method [24], and series expansion ap-
proach [25], the Green's Function Method (GFM) [26]
implemented to confront the beams' vibration assess-
ment having elastic supports or attachments include
these methods. To determine the Euler-Bernoulli
beams' natural frequencies and mode shapes, recent
research by Roncevic et al. [27] compared the e�ective-
ness of two analytical techniques (Laplace transform
and GFM). They expanded the investigation by thor-
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oughly addressing �fty-nine di�erent boundary-setting
combinations for beams backed up by translational
springs [18]. Given an unpredictable frequency of inter-
mediate elastic constraint, Luo et al. [28] propose a pre-
cise closed-form solution for unconstrained vibration of
discretely supported Euler-Bernoulli and Timoshenko
beams. The generalized function approach is employed
to determine the accurate eigenvalue equations and
mode shapes, extending the universal solution of mode
forms as a blend of typical trigonometric/hyperbolic
functions with incorporation constants expanded to
generalized functions.

Most of the research on optimizing fundamental
frequencies by adding intermediate support is founded
on the Euler-Bernoulli beam theory. In addition, in
many industrial applications, it is impossible to add
support in the optimal location; hence the designer has
to add support at other points. It is clear that the
maximum limit of the �rst frequency, in this case, is
the frequency corresponding to applying for the rigid
support at that point.

This paper aims to study the e�ect of placing
elastic supports at any location in thick and thin beams
on the required sti�ness and �rst natural frequency to
optimize the fundamental frequencies of a C-F Tim-
oshenko beam. The Finite Element Method (FEM)
is applied to free vibration. The validity and accu-
racy of the results are evaluated through comparison
to an analytical method and previous works. The
optimization of the fundamental frequency was carried
out by exploring the impact of the intermediate elastic
support's position and sti�ness on the fundamental
frequency. This is clear that if we add support at a
non-optimal position, the minimum sti�ness will not
exist. Therefore we considered a 5% tolerance zone to
determine the minimum sti�ness. The design curve is
presented through the minimum sti�ness and optimum
frequency at di�erent mass ratios.

This paper is organized as follows. In Sections 2,
3, and 4, we have established analytical models of the
Euler-Bernoulli, Timoshenko, and FEM, respectively.
In Section 5 the optimum position and the minimum
sti�ness of internal support based on the Timoshenko
model was found and a comprehensive discussion about
changing mode shape and variation of the second mode
is presented. In addition, we suggest a tolerance zone
to introduce a minimum sti�ness for a beam with a
non-optimally located internal support. In Section 6
experimental evaluation was done and the results were
compared with analytical calculations. Finally in
Section 7 ends the paper with some conclusions.

2. Euler-Bernoulli analytical model

A cantilever beam with intermediate elastic support

Figure 1. Cantilever beam with elastic intermediate
support [5].

is located at a distance xk from the clamp end, as
shown in Figure 1. Based on Euler-Bernoulli theory,
the governing equation for the vibration of the beam is
as follows [29]:

EI
@4w(x; t)
@x4 + �A

@2w(x; t)
@t2

= 0; (1)

where E, I, A, �, and w(x; t) represent the elastic
modulus, inertia moment, cross-section domain, den-
sity, and the deection of the beam at cross-section x
at time t, respectively. Considering simple harmonic
motion, the solution of Eq. (1) is assumed as follows:

w(x; t) = W (x)ei!t; (2)

where W (x) represents the mode shape function, and !
is the natural beam frequency. After replacing Eq. (2)
with Eq. (1), the corresponding eigenvalue problem can
be formulated as follows:

W (4)(x)� �4W (x) = 0; (3)

where �4 = !2�A=EI is the dimensionless frequency
parameter; the sub-functions in Eq. (3), the general
solution of mode shapes can be written as:

W1(x) = C1 sin(�x) + C2 cos(�x) + C3 sinh(�x)

+C4 cosh(�x); 0 � x � xk; (4)

W2(x) = C5 sin(�x) + C6 cos(�x) + C7 sinh(�x)

+C8 cosh(�x); xk � x � L: (5)

The non-dimensionalized natural frequencies as � are
de�ned throughout the paper either in the Timoshenko
model or the Euler-Bernoulli model. To obtain con-
stant coe�cients C1 to C8 and natural frequencies,
we have four boundary settings at both ends of the
beam and four continuity and jump conditions at the
junction point xk. At the clamped end, the deection
and the slope are zero. The shear force and the bending
moment are zero at the free end. As a result, the end
boundary conditions of the beam will be as follows:

W1(0) = W1
0(0) = W2

00(L) = W2
000(L) = 0: (6)
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At point xk, where the elastic support is located, the
deection, slope, and bending moment are continuous,
and the shear force has a jump. Four boundary
conditions at the junction point are:

W1(xk) = W2(xk); W1
0(xk) = W2

0(xk);

W1
00(xk) = W2

00(xk);

W1
000(xk)�W2

000(xk) =
k
EI

W1(xk): (7)

Appling eight boundary conditions (6) and (7) to
Eqs. (4) and (5) and establishing the corresponding
characteristics equation, the natural frequencies and
mode shapes will be found. For known values of
and b, natural frequencies can be obtained from the
characteristic equation.

3. Timoshenko model

The following are Timoshenko beam's unrestricted
vibration equations [29]:

�A
@2w(x; t)
@t2

� �AG
�
@2w(x; t)
@x2 � @ 

@x

�
= 0; (8a)

�I
@2 (x; t)
@t2

� EI @2 (x; t)
@x2

��AG
�
@w(x; t)
@x

�  (x; t)
�

= 0; (8b)

where � the shear correction factor, w and  is indicate
the beam axis's deection and bending slope, respec-
tively. Appling separation of the variable method, the
mode shapes lead to:�

W (x)
	(x)

�
=
�
C1
D1

�
sin(ax) +

�
C2
D2

�
cos(ax)

+
�
C3
D3

�
sinh(bx) +

�
C4
D4

�
cosh(bx);

(9)

where W (x) and 	(x) indicate the modal functions
explaining the deection and exion slope, respectively.
The coe�cients � and b are related to !, given by [29]:

a =

24 �!2

2�G
+

s�
�!2

2�G

�2

+ �!2

351=2

;

b =

24� �!2

2�G
+

s�
�!2

2�G

�2

+ �!2

351=2

: (10)

The sub-functions of the spatial solution can be written
as:

�
W1(x)
	1(x)

�
=
�
C1
D1

�
sin(ax) +

�
C2
D2

�
cos(ax)

+
�
C3
D3

�
sinh(bx) +

�
C4
D4

�
cosh(bx);

0 � x � xk;�
W2(x)
	2(x)

�
=
�
C5
D5

�
sin(ax) +

�
C6
D6

�
cos(ax)

+
�
C7
D7

�
sinh(bx) +

�
C8
D8

�
cosh(bx);

xk � x � L: (11)

The coe�cients Ci and Di are related to each other.
Similar to the previous section, eight boundary condi-
tions can be written as follows:

W1(0)=	1(0)=	2
0(L)=�AG

�
W2
0(L)�	2(L)

�
=0;

W1(xk) = W2(xk);

	1(xk) = 	2(xk);

	1
0(xk) = 	2

0(xk);

�AG
�
W1
0(xk)�	1(xk)

�� �AG�W2
0(xk)

�	2(xk)
�

= kW1(xk): (12)

Consequently, the characteristic equation can be de-
rived by imposing boundary conditions (12) to mode
shape functions (11). The natural frequency and
mode shape are obtained by solving the characteristic
equation.

4. Finite Element Model (FEM)

In this section, the FEM is used to evaluate natural
frequencies. For the Euler-Bernoulli beam, the defor-
mation vector and shape functions are as follows [2,30]:

qe = fwe; �e; we+1; �e+1gT ; (13)

Nw =
1
h3
e

2664(x� xe+1)2(2x� 3xe + xe+1)
he(x� xe)(x� xe+1)2

�(x� xe)2(2x+ xe � 3xe+1)
he(x� xe)2(x� xe+1)

3775 ; (14)

he = xe+1 � xe; (15)
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Nw =

26666664
� (x�xe+1)

(xe�xe+1)
(2�x2��xxe+1��x2

e+1+12)�3�xe(x�xe+1)
(�x2

e�2�xexe+1+�x2
e+1�12)

� (x�xe)(x�xe+1)(�xxe+1��xxe��x2
e+1+�xexe+1+6)

(xe�xe+1)(�x2
e�2�xexe+1+�x2

e+1�12)
(x�xe)

(xe�xe+1)
(2�x2��xxe��x2

e+12)�3�xe+1(x�xe)
(�x2

e�2�xexe+1+�x2
e+1�12)

(x�xe)(x�xe+1)(�xxe��x2
e��xxe+1+�xexe+1+6)

(xe�xe+1)(�x2
e�2�xexe+1+�x2

e+1�12)

37777775 ; (17)

N =

2666664
� 6�(x�xe)(x�xe+1)

(xe�xe+1)(�x2
e�2�xexe+1+�x2

e+1�12)
(x�xe+1)
(xe�xe+1) + 3�(x�xe)(x�xe+1)

(�x2
e�2�xexe+1+�x2

e+1�12)
6�(x�xe)(x�xe+1)

(xe�xe+1)(�x2
e�2�xexe+1+�x2

e+1�12)

� (x�xe)
(xe�xe+1) + 3�(x�xe)(x�xe+1)

(�x2
e�2�xexe+1+�x2

e+1�12)

3777775 : (18)

Box I

we, �e, we+1, and �e+1 are deection and slope at node
\e" and \e + 1" respectively. For Timoshenko Beam,
deformation vector and shape functions are [30]:

qe = fwe;  e; we+1;  e+1gT ; (16)

Nw and N are calculated as shown in Box I, where
� is �AG=EI. Expressing a weak form of governing
equations and imposing boundary conditions, one gets
the equation for a single �nite element in the following
form:

me�qe + keqe = 0: (19)

Elemental matrixes for the Euler-Bernoulli model are:

ke =
Z xe+1

xe
EI

d2Nw
dx2

d2NT
w

dx2 dx; (20)

me =
Z xe+1

xe
�ANwNT

w dx: (21)

Elemental matrixes for the Timoshenko model are:

ke =
Z xe+1

xe

�
�AG

�
dNw
dx
�N 

��
dNw
dx
�N 

�T
+EI

dN 
dx

dNT
 

dx

�
dx; (22)

me =
Z xe+1

xe

�
�ANwNT

w + �IN NT
 
�
dx: (23)

Obviously, the presence of elastic support will change
the sti�ness matrix of the corresponding element to
which the spring is connected. Since the elastic support
is not necessarily located at nodes, the additional ele-
mental matrix corresponding to the element to which
the elastic support is attached to will be as follows:

kSpringe = k
�
NwNT

w
���
x=xk

: (24)

This matrix should be added to the elemental matrix
of the corresponding element. After the assembling
process, one gets the following expression:

M �Q+KQ = 0; (25)

where, Q is the global deformation matrix for Euler
Bernoulli and Timoshenko model. M and K are global
mass and sti�ness matrices, respectively. The solution
of Eq. (25) is assumed to be harmonic as:

Q = ~Xei!t; (26)

where ~X is the vector of amplitudes, and ! is the
natural vibration frequency. Finally, the corresponding
eigenvalue problem is:�

[K]� !2
i [M ]

� ~Xi = ~0: (27)

The natural frequencies are the solution of the following
characteristic equation:

det
�
[K]� !2 [M ]

�
= 0: (28)

5. Numerical results and discussion

For simplicity of numerical investigations and con-
venience of discussions, dimensionless parameters are
introduced as follows:

Ks =
kL3

EI
; � =

xk
L
:

Figure 2 depicts the �rst mode shape of a cantilever
beam having an intermediate elastic supporting with
Ks = 300 at � = 0:7834. Mode shape was plotted
for two L=R ratios, where R is the radius of the
gyration of a cross-section. As is clear from the �gure
for thin beam, all models, including the analytical
and FEM of Timoshenko and Euler-Bernoulli theories,
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Figure 2. First mode shape of cantilever beam on
intermediate elastic support.

are coincident. Nevertheless, there is a remarkable
di�erence between Timoshenko and Euler-Bernoulli's
models for thick beams. It might be surprising having
a node in �rst mode shape.

5.1. Optimum position of elastic support
Courant's maximum-minimum theorem states that if
rigid support is added at the beam ZSMS, the restricted
beam's initial natural frequency equals the unrestricted
beam's second natural frequency. We have considered
rigid intermediate support at position b. Figure 3
depicts the �rst non-dimensionalized natural frequency
versus the position of rigid support for a cantilever
beam for various slenderness ratios.

It is known that the optimum position of a rigid
support on a cantilever beam for Euler-Bernoulli beams
is � = 0:7834 regardless of the L=R ratio. However,
in the Timoshenko model, the optimum position is
dependent on the slenderness ratio. Table 1 shows the
value of a cantilever beam's �rst and second natural
frequencies for an unconstrained beam. Optimum
positions for other boundary conditions are tabulated
in Table 2 for various values of slenderness ratios.

5.2. Minimum sti�ness at the optimum
position

As mentioned before, adding rigid intermediate sup-
port at the optimum position, listed in Table 2, for
instance, C-F beam with optimum position 0.7834,

Figure 3. Based on the rigid support �rst natural
frequency.

Figure 4. The �rst natural frequency versus support
sti�ness for cantilever beam.

the restricted beam's basic frequency equals the un-
restricted beam's second natural frequency (�L)2 =
3:5030 ! 21:4862. Akesson and Olho� [4] have shown
that the support does not need to be rigid to increase
natural frequency to its maximum level. They showed
that if the support sti�ness is more signi�cant than a
\minimum sti�ness" value, the fundamental frequency
will be maximized.

As Figure 4 depicts, for the ratio L=R = 20 and
Ks = 0, the natural frequency equals (�L)2 = 3:4370.
As the sti�ness of the intermediate support increases,
the natural frequency increases nonlinearly. For a

Table 1. Natural frequencies of Cantilever unconstrained beam.

Timoshenko's model Euler-Bernoulli model
L=R First mode Second mode First mode Second mode

10 3.2326 14.5588

3.5160 20.035420 3.4370 19.1576
50 3.5030 21.4862
100 3.5128 21.8971
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Table 2. Optimum position of intermediate support (�).

End
condition

L=R Timoshenko
model

Euler-Bernoulli
model

C-F

10 0.7773

0.7834
20 0.7805

50 0.7829

100 0.7833

C-S

10 0.5292

0.5575
20 0.5463

50 0.5553

100 0.5569

C-C

10 0.5

0.5
20 0.5

50 0.5

100 0.5

S-S

10 0.5

0.5
20 0.5

50 0.5

100 0.5

critical value of sti�ness called \minimum sti�ness,"
Ks = 140, the value of the natural frequency equals the
second natural frequency of the unconstrained beam,
(�L)2 = 19:1576. We call this point knee point. After
the knee point, increasing support sti�ness does not
a�ect the natural frequency, and it remains constant
regardless of any sti�ness change. In addition, the
minimum sti�ness values vary for di�erent L=R ratios
and must be calculated for each case.

For the Euler-Bernoulli beam, the minimum sti�-
ness for the cantilever beam was reported as 266.9 by
Akesson and Olho� [4] and 266.87 by Wang [5]. Using
the Timoshenko model, the minimum sti�ness value
depends on the slenderness ratio. Table 3 shows the
minimum sti�ness for di�erent boundary conditions
and slenderness ratios.

When the sti�ness increases after the knee point,
the �rst natural frequency, and corresponding mode
shape remain �xed, the question is, what is the e�ect
of increasing sti�ness above the knee point? Figures 5
and 6 show the variation of �rst and second frequencies
and corresponding mode shapes of a cantilever beam
for various values of intermediate support sti�ness. It
is astonishing that before the knee point, the second
frequency remains constant, and the �rst frequency
changes, but after the knee point, the �rst frequency
remains �xed, and the second frequency varies.

Figure 5. First and second frequencies for L=R = 100
and rigid support at � = 0:7834 for the cantilever beam.

Figure 6. Comparison of �rst and second mode shape for
sti�ness value of C-F beam.

5.3. Minimum sti�ness at an arbitrary
position

One of the present study's most critical issues is deter-
mining the value of support sti�ness to optimize the
�rst natural frequency by placing the elastic support
at an arbitrary position, which can be very useful in
practical design because of practical limitations.

In many practical applications, locating support
at the optimal position is impossible. In this section,
we look forward to the e�ect of an intermediate support
located at an arbitrary position.

Figure 7 shows the fundamental frequency of a
cantilever beam versus support sti�ness for di�erent
values of � and L=R = 50. Figure 7 depicts that for
values of � di�erent to 0.7834, there is no knee point,
and as the sti�ness increases, the natural frequency
asymptotically increases to its maximum value. The
maximum value corresponds to a rigid support, less
than the second frequency of the unconstrained beam,
as courant's theorem states.
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Table 3. Minimum sti�ness and raised frequency for Timoshenko model.

End
condition

L=R Minimum
sti�ness

Unconstrained
frequency

Constrained
frequency

C-F

10 138.5 3.2258 3.2258

20 216.6 3.4351 19.0974

50 257.08 3.5028 21.4772

100 264.6 3.5129 21.8989

1 267 3.5160 22.0330

C-S

10 887.55 11.0667 27.0633

20 1113 13.8518 39.0804

50 1320.67 15.1344 47.5689

100 1366.61 15.3506 49.3654

1 1377.65 15.4182 49.9646

C-C

10 705.57 13.8079 28.4544

20 1271.83 18.8285 44.3008

50 1702.60 21.6767 57.4991

100 1800.17 22.2055 60.6146

1 1833.67 22.3733 61.6728

S-S

10 1017.96 8.3816 25.3097

20 945.23 9.4095 33.5394

50 982.4 9.7917 38.2838

100 992.25 9.8511 39.1851

1 995.91 9.8696 39.4783

Figure 7. Frequency variation in elasticity for position
support points in di�erent locations.

Here we are faced with a challenge, how can we
de�ne a minimum sti�ness for non-optimally located
support? We have considered a 5% tolerance zone. We
de�ne the minimum sti�ness as a sti�ness value that
increases the �rst frequency to 95% of its maximum
value.

Figure 8. Introducing tolerance zone.

Figure 8 shows the tolerance zone for a cantilever
beam with L=R = 50 and � = 0:5. Considering 5%
tolerance, the minimum sti�ness and natural frequency
obtain Ks = 1111 and (�L)2 = 9:1690, respectively.
After this point, increasing sti�ness from 1111 to 2500
yields a slight increase in the frequency of about 0.3.
As mentioned before, since the support position is not
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Figure 9. Design curves for C-F boundary condition.

Figure 10. Design curves for C-C boundary condition.

at the optimum position, the sti�ness curve has no knee
point.

Figures 9{12 show the design curve based on this
tolerance zone for di�erent boundary conditions.

6. Experimental validation

Hypothetical �ndings are contrasted with empirical
data in this section. The experiments were performed
on the C-F beam, as shown in Figure 13. The dimen-
sions of the beam specimens are 1600 and 1200 mm
in length and 10 mm in diameter. The experimental
setup includes an impulse hammer (Model no: 086D05
and sensitivity: 0.23 mV/N), accelerometer (Model
no: IMI603 and sensitivity: 100 mV/g), and data
acquisition (DAQ) board (Model no: NI4431), and
signal analysis software.

The accelerometer was placed on the beam's free

Figure 11. Design curves for C-S boundary condition.

Figure 12. Design curves for S-S boundary condition.

end to record the acceleration signals, and a hammer
was used to excite the beam at 0.8L. The mass of the
accelerometers is assumed to have a negligible e�ect.
The Fast Fourier Transform (FFT) technique can be
employed to process the acceleration signals once they
are digitalized by the DAQ device.

Five tests are conducted. The FFTs for the case
with L = 1:2 m are plotted in Figures 14{16. The
neutral frequencies are obtained and summarized in
Table 4 to further comprehend the discrepancies. A
thin, long beam was employed in the tests. Due to low
bending sti�ness, vibration in di�erent directions, and
accelerometer measurement error at low frequencies,
the natural frequency measurements have signi�cant
errors in the unsupported beams, particularly the one
with a 1.6 m length. The di�erence between the
experimental and numerical frequencies became neg-
ligible with intermediate support and increased system
sti�ness. It was observed that the middle support
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Figure 13. Experimental test setup cantilever condition.

Table 4. Comparison of experimental results and FEM.

Natural frequency (Hz)
Test no. L (m) � xk (m) FEM Experimental Di�erence (%)

1 1.6 0 0 2.804 2.4 14.40
2 0.625 1 11.80 13.5 14.40

3 1.2 0 0 5.005 3.9 22.07
4 0.58 0.7 18.17 18.9 4.01
5 0.83 1 30.07 30.5 1.43

Figure 14. The frequency spectrum of the tip beam
without support.

increased the initial natural frequency. The frequency
of the beam with a length of 1.2 m was calculated to
be 3.9 Hz (22% error). A place of support at 0.58L
from the clamp end raised the natural frequency to

Figure 15. The frequency spectrum of the tip beam with
support located at 0.7 m from the clamp end.

18.9 Hz. A change in the support location from 0.58L
to 0.83L increased the natural frequency from 18.9 to
30.5 Hz. The negligible di�erence between the results
could be attributed to the weight of the accelerometer.
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Figure 16. The frequency spectrum of the tip beam with
support located at 1 m from the clamp end.

A shift in the support location toward the second-
mode node of the unconstrained beam (i.e., 0.7834L)
changed the frequency closer to the unrestricted beam's
second natural frequency (31.24 Hz). The experimental
results supported both Courant's maximum-minimum
principle and numerical model. This ensures that
the proposed graphs can be employed as a reference
in designing beams with intermediate support under
di�erent boundary conditions.

7. Conclusions

This paper is studied the maximizing of the �rst natu-
ral frequency associated with the transverse vibrations
of a Timoshenko's beam with rigid and elastic inter-
mediate support. Using Courant's maximum-minimum
theorem, an additional constraint was imposed on the
beam. Motion equations were solved analytically and
numerically using the �nite element method. After
validating the results through comparison to an ana-
lytical method and previous works, the impacts of the
slenderness ratio and the position and sti�ness of inter-
mediate elastic supports on the fundamental frequency
were investigated. It was observed that after a value
of the minimum sti�ness, the �rst natural frequency
remains constant, which is completely di�erent from
the reported result of the Euler-Bernoulli beam. In
many practical applications, it is not possible to add
support at the optimum position. It was shown that,
in this case, the frequency versus sti�ness diagram has
no knee point. For a 5% tolerance zone to determine
the minimum sti�ness and optimal frequency at dif-
ferent slenderness ratios and boundary conditions, the
design curve was presented. These curves give us the
minimum sti�ness and raised natural frequency for an
arbitrary position of intermediate supports.

Ultimately, empirical testing was carried out, with
the �ndings contrasted with hypothetical estimations
of the initial two natural frequencies. A great agree-

ment in frequency values was seen when comparing the
�ndings.

Nomenclature

A Beam cross-section area
E Elastic modulus
G Shear modulus
� Density
L Beam length
I Area moment of inertia
� Shear correction factor
k Support sti�ness
Ks Dimensionless support sti�ness
t Time
x Distance along the x axis
xk Location of the elastic support
� Dimensionless length
w(t) Lateral deection of the beam
 (t) Bending slope of the beam
! Frequency
� Dimensionless frequency
Prime Di�erentiation with respect to x
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