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Abstract. In this article the complex dynamics of a laser model, 

which externally injected class 𝐵 which is described by a system of 

three nonlinear ordinary differential equations with two parameters 

for field intensity phase and population inversion, are studied. In 

particular, we investigate the integrability and nonintegrabilty of 

laser system in three dimension. We prove that system is completely 

integrable only when the parameters are zero. Particularly, we study 

polynomial, rational, Darboux and analytic first integrals of the 

mentioned system. Moreover, we compute all the invariant algebraic 

surfaces and exponential factors of this system. We find sufficient 

conditions for the existence of periodic orbits emanating from an 

equilibrium point origin of a laser differential system with a first 

integral. 

 

1. Introduction and the main result 

 

The literature on the existence and nonexistence of first integrals or generally the integrability 

problem of a dynamical system is one of the main open problems in the qualitative theory of 

differential systems, see [1, 2, 3, 4].  Many non-linear dynamical systems arise in physical and 

electrical engineering, etc. Finding an innovative way to illustrate and analyze these systems has 

been an interesting subject in the field of differential equations and dynamical systems. Chaotic 

behavior has been appeared 
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in some nonlinear laser systems (see [5]). The two-level laser model and its time-rescaled 

variant, along with numerical results demonstrating evidence of generalized bistability, were 

introduced by the authors in [6].  The physics of deterministic chaos and integrability problems 

has been covered in many recent review contributions, both in their theoretical and experimental 

aspects [7]. The theory of integrability and invariant algebraic curves plays an important role in 

the study of the dynamics of polynomial differential systems.  

 

We will refer to an externally injected class B  which is described by a system of three nonlinear 

ordinary differential equations for field intensity phase and population inversion. When the 
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damping rate associated with the field is much greater than that of the population, as in 2CO  

laser [8-10], the equation describing a class  B   laser with injected signal is 

0   
E

ф sinф
E

   , 

0   E E E cosф  , 

                    2 21d E E      . 

The cavity field amplitude E  is normalized to its saturation value  ф  and the population 

inversion   is referred to the equilibrium value. The parameter   is the cavity mistuning 

normalized to the chosen time scale, 
k


   ,   is the damping constant and 

1

k
 is the 

relaxation time. The parameter 0E  is the Rabi frequency of the external field normalized and d  

is the pump parameter referred to the threshold value. For  =0, a suitable rescaling  of above 

system  and the equations of the model describing a class B laser with injected in Cartesian 

coordinates are  

 
                               ,x z x y a    

                           ,y y z x                    1                                             

 2 2 ,z b x y    

where  the time has been rescaled  by   ,  the field amplitude and population inversion by 
1


 , and 

the new parameters are 0

2 2
,

E d
a b

 
  ,  see for more details [9, 10, 11, 12]. System  1  is time 

reversible by the invariance of the flow under the time reversal with respect t

   : , , , , , ,x y z t x y z t     . Since the divergence of the vector field is 2z , then the phase 

space volume is not conserved. In [8] the authors proved the existence of periodic attractors and 

repellers of system  1  by a symmetry breaking bifurcation. In [9] the authors gave some 

physically motivation of system  1 . The stability of the equilibrium points in system (1) is 

investigated in [11], and numerical studies demonstrate that each of them is impacted by the 

parameters. Additionally, the system's energy is examined with the system's dynamic 

characteristics are found. Arecchi discussed the physics of laser chaos and related problems in 

[7]. For a scenario in which the polarization is adiabatically erased, the dynamical characteristics 

of a class-B laser system with dissipative strength are examined [12]. The numerical simulation 

reveals that the system contains more than one attractor and has a fold-Hopf bifurcation [12]. 

The dynamics of this system has been intensively studied; see for instance [9, 10, 12, 13, 14, 15, 

16, 17]. In this paper we investigate the topological structure of the dynamics of system  1  by 

studying its integrability of the system appears in physics of laser. 



3 
 

The existence of a first integral in a differential system (1) reduces the dynamics analysis of this 

system in one dimension when the first integral's value is fixed. This makes things easier 

strongly the analysis of the dynamics of such systems. Moreover, if a system (1) has two 

independent first integrals then fixing these two first integrals we obtain the solutions curves. 

 

In what follows, we summarize the main results related to the generalized rational and global 

analytic first integrals of system  1  when 0a   and 0b   or 0b  .  

 

Theorem 1. Consider a polynomial laser system  1 . Then the following statement holds. 

1. If 0a b  , then system  1  is completely integrable with the following first integrals 

2 2 2

1H x y z     and 

2 2 2

2 2 2 2 2 2

2

2   

2 2

( 2  2    )

 
.

y
x y z arctan

x

H x y z z x y z

e

x y

 
   

 

     



 

2. If  0 a  and 0,b   then system  1  has generalized rational first integral  
2 2 2

2 2

x y z

b

x y

e
 


  and 

is not completely integrable with two functionally independent rational first integrals. 

 

In the second main result, related to the non-existence of polynomial and Darboux first integral 

for system (1) and characterize all the invariant algebraic surfaces and exponential factors of this 

system.   

 

Theorem 2. The following statements holds. 

i. If   0a  or   0b  , then system  1  has no polynomial first integrals. 

ii. The only irreducible invariant algebraic surfaces of system  1  with non-zero cofactor are 

  0x i y   and   0x i y   with cofactors –  i z   and  i z   respectively if and only if 0.a   

iii. If   0ab  , then 
2 2 2x y ze  

 is the only exponential factor of system  1  with cofactor 

 2     .a x b z  

iv. System  1  with  0a   has no Darboux first integrals. 

 

We compute the equilibrium points of system  1  which are of the following 
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 0E 0, ,0a   if  2b a ,  

   2 2

1E , , 
       

b a b b a bb

a a b

    
 
 
 

   and 

     2 2

2E , ,  ,
        

b a b b a bb

a a b

    
 
 
 

  with being real when  2 0b a b  . Now, we shall 

study the non-existence of analytic first integrals of system  1  when  2b a , 0a   and 

2  0a b  . Using Routh-Hurwitz criterion and the existence of attractor or repeller equilibrium 

points in order to study the non-integrability of system (1), we obtain the following results. 

Theorem 3. System  1  with 2  0a b   has no any global analytic first integrals.  

 

We now will show that in the case when for system (1) has first integral can be applied for 

proving the existence of periodic orbits. 

 

Theorem 4. If 0a b  , then for any sufficiently small positive that   any integral surface  
2 2 2 2x y z    , contains at least one periodic solution of system  1   whose period  is close 

to .    

2. Definitions and preliminary results 

Before we discuss our results we need to introduce some basic facts and preliminaries. Some 

well-known results on the Darboux theory of integrability and analytic first integrals may be 

found in [1, 2, 3, 18]. We characterize here integrability and non-integrability of system (1).  

Thus to prove the main results, we use Darboux Theorem of integrability in order to find 

invariant algebraic surfaces and exponential factors and characterize its local analytic first 

integrals of system  1  . 

 By χ  we denote the corresponding vector field of system  1  

   

 2 2

)

.

zx y a yz x
x y

x y b
z


 

     
 


 



 

A continuously differentiable function  , ,H x y z  in a neighborhood 3U    is said to be a 

first integral of the vector field  1  if  , ,H x y z  is a constant on the trajectories of  system  1

, that is 

       2 2      0.
H H H

H z x y a y z x b x y
x y z


  

        
  
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We call H  a polynomial (respectively analytic) first integral if H  is polynomial (respectively 

analytic). The existence of Darboux first integral depends on the exponential factors and on the 

invariant algebraic surfaces. Hence we recall definitions of Darboux polynomial and exponential 

factor. Let    , ,f C x y z  be a non-constant polynomial. If f  satisfy the partial differential 

equation   

     2 2        ,
f f f

zx y a yz x b x y kf
x y z

  
       

  
   

for some polynomial   k x, y,z .  We call 0f   an invariant algebraic surface (and f  a 

Darboux polynomial) of  system (1), and k  is the cofactor of f  of degree one. 

Let  , , ,f g C x y z  be relatively coprime. A non-constant function  

f

ge   is called an 

exponential factor of  system  1  if it satisfies the partial differential equation   

     2 2 ,zx  y a   yz x b x y    

f f f
fg g g
ge e e

L e
x y z

  
       

  
 

for some polynomial    , ,L C x y z  of degree 1. We call L  the cofactor of 

f

g .e  

A Darboux first integral, is a first integral of the form 

1 1

1 1
p qµµ

p qf f E E
   , 

where 1, , pf f  are Darboux polynomials  and  1, , qE E  are exponential factors with j   for j 

= 1,…, p and kµ  for k = 1,…, q are constants.  

The following result restricted to the invariant algebraic surfaces goes back to Darboux 

which concerning the existence of Darboux first integrals, see for the addition of the exponential 

factors for instance [2, 3, 18]. 

 

Theorem 5. Suppose that a polynomial system  1  of degree m admits p invariant algebraic 

surfaces 0if   with cofactors ik  for i = 1,…, p, and q exponential factors exp i

i

g

h

 
 
 

 with 

cofactors Lj for j = 1,…, q. Then there exist iλ  and  iµ C  not all zero such that      

p q

i i i i

i 1 j 1

λ k µ L 0
 

   , 

 

if and only if the function 
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1

1 1
1

1

exp (exp )p q

µ

µq

p

q

gg
f f

h h


   

        
    

, 

is a Darboux first integral of system  1 . 

 

Theorem 6. [2] The following statements hold. 

(a) If exp
g

h

 
 
 

 is an exponential factor for the polynomial differential system  1  and h  is not a 

constant polynomial, then 0h   is an invariant algebraic surface. 

(b) Eventually  exp g  can be an exponential factor, coming from the multiplicity of the 

invariant plane at infinity. 

 

Furthermore, we also recall some results that we will use later on. We first consider an analytic 

differential system 

           X f X ,                                 2  

where : nf U    is 2C , U  is an open subset of n  and the dot denotes the derivative with 

respect to time t .  

An equilibrium point of system  2  is an attractor if either it is asymptotically stable of system 

(2), or if it is an asymptotically stable equilibrium point of  system    X f X  . 

 

Theorem 7. [19, 20]. If system (2) has an isolated equilibrium point q which is either attractor or 

repeller, then it has no  1C  first integrals defined in a neighborhood of q. 

 

We recall that a first integral which is a rational function is called a rational first integral. A 

generalized rational first integral is a function which is the quotient of two analytic functions. 

 

We also need the following result for the existence of more than one functionally independent 

rational first integrals. 

 

Theorem 8.[20] Assume that the differential system  1  has p  as an equilibrium point and 

1 2 3, ,    be the eigenvalues of the linear part of system  1  at p .Then the number of 

functionally independent generalized rational first integrals of system  1  is at most the 

dimension of the minimal vector subspace of 3   containing the set  

   3

1 2 3 1  1 2 2 3 3 1  2 3{( , , ) :  0, , , 0,0,0 }.k k k k k k k k k        

We also need the following result concerning complete integrability of nonlinear three 

dimensional differential systems [21]. 
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Theorem 9. Assume that   , , , ,P Q R S H   and G    are meromorphic functions and there exists  a 

point   1 1,c x y .   such that         0P c Q c R c S c       and  
 

0
Q c

y





 and at least  

  0H c    or   0.G c  Then  system 

      , , ,x P x y Q x y z   

                    , , ,y R x y S x y z                                     

    , , ,z H x y G x y z   

is not completely integrable with two functionally independent rational first integrals in variables 
, , .x y z   

The following result provides the existence of periodic solutions in the case when the linearized 

system is degenerate, see [15, 22]. 

Theorem 10. Let   U f U  be a dynamical system, 0U  an equilibrium point and  

 1 2: , , , : k

kC C C C M    vector valued constant of motion for the above dynamical system 

with  0C U  a regular value of C . If  

1. The eigenspace corresponding to the eigenvalue zero of the linearized system around 0U  has 

dimension k. 

2.Jacobian matrix at 0U  has a pair of imaginary eigenvalues i    with  0  . 

3. There exist a first integral  :H M    for dynamical system  with  0 0dH U   and such 

that  2

0 0
WxW

d H U  , where   1 i 0W k

i kerC U , then for each sufficiently real small  , 

any integral surface     2

0H U H U   contains at least one periodic solution of U  whose 

period is close to the period of the corresponding linear system around 0U . 

3. Proof of the main results  

 In the study of the first integrals of Darboux type of system  1 , one have find polynomial first 

integrals, all Darboux polynomials and exponential factors of system  1  and this is due to the 

fact that the Darboux first integrals can be constructed using these kind of functions.   

Proof of Theorem 1. Let 2 2 2

1H x y z   and

2 2 22   
2 2 2 2 2 2

2 2 2

( 2  2    ) 
.

y
x y z arctan

xx y z z x y z e
H

x y

 
   

     



 

It is clear that 
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     2 2      0.i i iH H H
x z y y z x x y

x y z

  
     

  
 

Therefore, the function iH  is a constant over the solutions of the system  1  for 1,2i  , and so 

system  1  is completely integrable when  0a b  . Hence this conclude the proof of the first 

statement in the theorem.  

To prove the second statement, if  0 a  and 0b  , then  2 2 0x y   is an invariant algebraic 

surface of system  1  with cofactor  2z , and 

2 2 2x y z

be
 

 is an exponential factor of system  1  

with cofactor 2z . From Theorem 5 it follows that 
2 2 2

2 2

x y z

b

x y

e
 


  is a Darboux first integral of 

system  1 . Also this first integral is a global analytic first integral. Since analytic first integrals 

is particular case of generalized rational first integrals. Then its generalized first integral.  

Comparing laser system  1  with system in Theorem 9, we obtain forms of functions 

, , , ,P Q R S H  and G , which are as follows: 

 , , , ,P y a Q x R x S y       

2 2H b x y      and 0G  . 

Since if 0a  , 0b   and    1 1, 0,0c x y   then all conditions of Theorem 9 are satisfied, we 

directly conclude that the system (1) with 0a   , 0b   is not completely integrable with two 

functionally independent rational first integrals.                                                                                             

Remark 1. i. We note that when 0a b  , then system  1  admit the  polynomial first integral  

2 2 2

1H x y z   . Then the phase spaces of these equations is foliated by the dimensional 

invariant algebraic surfaces  , ,H x y z r , with 0r  , hence  system  1  is not chaotic. This 

system is the chaotic for some special values of the parameters, see [7, 18].  

ii. Also when  0,  a b  system  1  has infinitely many equilibria  0,0,c  for all c   , which 

has three eigenvalues are 1 0   and 2,3 c i   . Suppose that 0c  , and there exist three 

integers 1 2 3, ,k k k  such that 1 1 2 2 3 3 0k k k     , then the set 

 *

1 2 3 1 1 2 2 3 3, , : 0S k k k k k k       , 

has dimension one generated by 1( ,0,0)k , hence via Theorem 8, system  1  has at most one 

generalized rational first integrals, which must be a function of 1H .  
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iii. According to Theorem 1, for 0    0a and b  , so the system (1) possess two first integrals 

1H and 2H we are able to reduce the dimension of the phase space to one. Hence solves 

completely the problem of determining its phase portraits. Also  if  0 a  and 0b  , so the 

system (1) possess one first integral   we are able to reduce the dimension of the phase space to 

two. Hence in order to get quickly insight into the dynamics of the considered system.                                                                                                                 

Proof of Theorem 2 i. Let    
1

, , , ,
n

i

i

H x y z h x y z


  be a polynomial first integral of degree 

n  of system  1 , where each  , ,ih x y z  is a homogeneous polynomial of degree i and  0nh  ,

  1n  . Then H  satisfies  

       2 2    0 .     3
H H H

x z y a y z x b x y
x y z

  
       

  
 

The terms of degree  1n   in  3  satisfy 

  2 2    0.n n nh h h
x z y z x y

x y z

  
   

  
 

The solution of this linear partial differential equation we get 

2 2 2,n n

y
h h x y z

x

 
   

 
, 

where nh  is a function in the variables ,x y  and z . 

Since nh  is a homogenous polynomial of degree 1n  , we conclude that 

 2 2 2 2

n

n nh c x y z   , 

where nc  is a constant. Similarly computing the homogenous terms of degree n  in  3  we get 

 
1

2 2 2 2
1 1

n

n nh c x y z


    , 

where 1nc   is a constant. Now computing the terms of degree  1n   in  3  yields 

 2 22 2 2

1 1

   

0.

n n n

n n n n

h h h
x z y z x y

x y z

h h h h
y x a b

x y x z

  

 

  
   

  

   
   

   

 

Solving it we obtain 



10 
 

 

 

1
2 2 2 2 2 22

2 1

2

21
2 2 2 2

2

2

ln ,

1  

arctan

,

1  

n

n n

n

n

y
h x y z nbc x F x y z

x

y
x

xx y z nac
z

y

x







 
       

 

 
 

  
 











 

where 1F  is an arbitrary function. From the hypothesis   0a  or   0b   and taking into account 

that 2nh    must be a polynomial, we conclude that   0nnc  . This is a contradiction and hence the 

result follows.   

        

 Proof of Theorem 2 ii. It is easy to show that when 0a   after straightforward computations       

0x iy   and 0x iy   are two irreducible invariant algebraic surfaces of system  1  with 

respective cofactors –  i z   and  i z . First we show that the cofactor of invariant algebraic 

surface of system  1  is of the form   ,z   for some  and   .  

Since system  1  is quadratic then the cofactor must be of the form    k x y z      

where ,  , , .      Let    
1

, , , ,
n

i

i

f x y z f x y z


  be an invariant algebraic surface of system (1) 

of degree 1,n   where each  , ,if x y z  is a homogeneous polynomial of degree i . Then it 

satisfies the partial differential equation 

     

 

2 2   

    .

f f f
x z y a y z x x y b

x y z

x y z f   

  
      

  

   
 

Computing the terms of degree 1n   in the above equation and from the Euler’s Theorem of 

homogenous function  for   , ,nf x y z   we obtain 

   
 

   

2 2 2
, ,

  , ,     

    , , .

n

n

n

f x y z
nz f x y z x y z

z

x y z f x y z  


   



 

 

Solving this linear differential equation, we obtain  

   

 

 

2 2

2 2

   
 

 
 2 2 2 2

1, , , ,

z
arctanh y x

x y
n

x y

nf x y z z x y e F x y

 



 
  
  




    

where 1F  is a polynomial function. Since nf  is a polynomial then we must μ δ 0   and 
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 α ,β .    

 We now show that system  1  has no irreducible invariant algebraic surfaces of degree 

two or more. By the change of variables  u x i y   and   ,v x i y   system (1) becomes  

 

          u  i i z u a    , 

                          v   i z v  ,                    4  

z  b uv   . 

 

Let  , ,f u v z  be an invariant algebraic surface of system  1  with cofactor  k z     where 

, ,   then it must be satisfies  

 

     

     

 1  

    .   5

f f
i z u a i z v

u v

f
b uv z f

z
 

 
    

 


  



 

First if  0a  , then 0u    and 0v    are invarint algebraic surfaces of system  4  with 

cofactors 1  i z  and    i z  respectively, then we can write system  4  restricted to 

0, 0u v  : 

u 0 , 

v 0 , 

z b . 

Let  0,0,g z  be an invariant algebraic surface of the above system with cofactor  k z   ,  

where ,   . Then 

 
      

dg z
b z g z

dz
   , 

its solution is give by  g z =

 2   

2 
1

z z

bc e

 

, where  1c  is a constant. Since g  i s a polynomial then 

must be 0.    Hence has no irreducible invariant algebraic surfaces of degree two or more 

with non-zero cofactor. 

Second if 0,a   we restrict equation  5 ,  to   0v   and we obtain  

  
 

 
 

 

, ,
 

    .

f u z f u z
i i z u a b

u z

z f 

 
     

 



 

Solving the above  equation we obtain 

   

 

21 2   

2
2   1

2 2
1

2     
1

, ( ( ))
2  

,
2 erf 2

2 

z I z

b
z z

b b

u e b

f u z F e e
z Ib a
b

 

 

 



 
 

     
   
  
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where 1F  is  an arbitrary function and erf is an error function. Since    ,f u z  is not polynomial, 

then has no invariant algebraic surfaces if 0a  .This completes the proof of the theorem.                                                

   

 

Proof of Theorem 2 iii. From Theorems 2 ii and 6 we can write the exponential factors of 

system  1  of the form 
 , ,g x y z

E e , where  , ,g x y z  is a polynomial in its variables. Since 

system  1  is quadratic, then the cofactor must be of the form L x y z       ,where

,  , , .      First we suppose that g  be a polynomial of degree 3.n  Let 

   
0

, , , ,
n

i

i

g x y z g x y z


 , where each  , ,ig x y z  is a homogeneous polynomial of degree i  

and 0.ng   Then E  satisfies the partial differential equation 

     2 2      .
g g g

ge e e
x z y a y z x x y b Le

x y z

  
       

  
 

Hence  

     2 2      .(6)
g g g

x z y a y z x x y b L
x y z

  
       

  
 

Computing the terms of degree 1n   in equation  6  we obtain  

       , , , , , ,2 2 0.
n x y z n x y z n x y z

g g g
xz yz x y

x y z

  
   

  
 

It is general soution is 

2 2 2,n n

y
g g x y z

x

 
   

 
. 

Since  ng  is a homogenous polynomial of degree n ,we must take  2 2 2 2
1( )

n

ng k x y z    , 

where 1k  is a constant. Concerning the terms of degree n  in equation  6  we obtain  

 

     

     

1 , , 1 , , , ,

, , 1 , ,2 2 0,

n x y z n x y z n x y z

n x y z n x y z

g g g
xz yz y

x y x

g g
x x y

y z

 



  
  

  

 
  

 

 

and therefore 2 2 2

1 1 , .n n

y
g g x y z

x
 

 
   

 
 

In the same way as the previous  we must take 
1

2 2 2 2
1 2( ) ,

n

ng k x y z


     

2where   is a constantk . 

From equation  6 , the equation of degree  1n   is 
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     

     

   

2 , , 2 , , 1 , ,

1 , , , , , ,

2 , ,2 2 0.

n x y z n x y z n x y z

n x y z n x y z n x y z

n x y z

g g g
xz yz y

x y x

g g g
x a b

y x z

g
x y

z

  





  
 

  

  
  

  


  



 

Solving it we obtain  

     

 

2
1

2 2 2 2
12 , , 22

2

2

21
2 2 2 2

1

2
2 2 2

1 2

1
(   ln 1

  
1

 

1  
  

   
  

, 1 ,
  

n

n x y z

n

y
g x y z k n b x

xy

x

y
x

x
ak n x y z arctan

z

y y
F x y z

x x







    



 
 

   
 
 
 

 
    

 

 

where 1F  is an arbitrary function. Since 2ng   is a polynomial and 0, 3ab n  , then must be 

1 0k  , therefore 0ng  , which is a contradiction . Hence  , ,g x y z  is a polynomial of degree 

at most two satisfying equation  6 . Easy computation we get that 2 2 2g x y z   . Then 

2 2 2x y ze    be the only exponential factor of the system  1  with cofactor  2     .a x b z                        

 
 

We now prove our main result. 

 

Proof of Theorem 2 iv.  Suppose that H  is a Darboux first integral of system  1 . From 

Theorems 2 iii and 5 then 
 2 2 2µ x y z

H e
 

   where µ .  So H  satisfies  

 

     2 2 0.
H H H

xz y a yz x x y b
x y z

  
       

  
 

Then  2     0µ a x b z H  , since 0a  , then must be 0.µ   Therefore  H  is a constant, this is 

contradiction.                                                                                                                                       

 

System  1  has a rational first integral if it is has two different invariant algebraic surfaces with 

the same cofactor. From above analysis then system  1  has no rational first integrals via 

Theorems 1 and 2 when  0.b                
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Proof of Theorem 3.  First suppose that 2b a   with 0a  . Then  0, ,0a  be the only 

equilibrium point  of system  1 . We transform the equilibrium point  0, ,0a  to  0,0,0   by 

the change of variables , , ,X x Y y a Z z     hence system  1  becomes 

x xz y  , 

                         y   x z y a   ,     7                                      

          2 2z 2  a y x y   , 

where we have written again  , ,x y z  instead  , ,X Y Z .Suppose that  
0

, ,i

i

H H x y z


  is a 

local analytic first integral of system  7 , where  iH  is a homogenous polynomial of degree i   

for 0,1,2,  .i    Thus H  must be satisfy  

 

    

 2 2

 

2   0.

H H
x z y x z y a

x y

H
a y x y

z

 
    

 


   



   (8)                 

We now use mathmatical induction to show that 0iH    for 1,2,3,i   . 

The homogenous parts of degree one in equation  8  is a partial differential equation  

 1 1 1  ) 2 0
H H H

y x a z ay
x y z

  
   

  
. 

The general solution of this equation is  

 

  2 2 2 2

1 1 2 ,2 2 2 ,H F z ax a x a ax z x x y        

 

where 1F  is an arbitrary function. Since 1H is a homogenous polynomial of degree one, then 

 1 1 2H z ax  , where 1  is a constant. 

Similarly computing the homogenous parts of degree two in equation (8) satisfy 

 

 

 

2 2 2

2 2

1

  ) 2

2   0.

H H H
y x a z ay

x y z

ax z x y

  
  

  

   

 

 

By the hypothesis 0a  , then the above equation has a polynomial solution of degree 2 only if 

1 0   and we get 1 0, H   in this case 

    
2 2 2 2 2

2 2 22 2  2 2 ,H z ax a x a ax z x x y          
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where 2  and 2  are constants. Now computing the homogenous parts of degree three in 

equation  8  satisfy 

 

   

  

3 3 3
2

2 2

3

  ) 2 ( 4 2

4 2 2 0.

H H H
y x a z ay xz a z ax

x y z

a x a ax z x x





  
     

  

     

  

In the same way the above equation has a polynomial solution of degree 3 only if 2 2 0    

and we get 2 0H  , in this case  3

3 3( 2 )H z ax  , where 3  is a constant. Suppose that 

 1 2 1 0nH H H    . We consider two cases. 

Case 1. If n  is even number, then 

 2
n

n nH z ax  +   2 2 2 2 2  2  2 2
n

n a x a ax z x x y      , 

 

where n  and n  are constants. So the terms of degree  1n   in equation  8  satisfy 

 

 

 

1 1 1

2 2

  ) 2

  0.

n n n

n n n

H H H
y x a z ay

x y z

H H H
xz z y x y

x y z

    
   

  

  
   

  

 

 

The above equation has a polynomial solution only if 0n n   , and we get 0nH    and 

 
1

1 1 2
n

n nH z ax


   , where 1n   is a constant. 

 

Case 2. If n  is odd  number, then   2
n

n nH z ax  , where n  is a constant. So the terms of 

degree  1n   in equation (8) satisfy 

 

   

    

1 1 1

2 2

  ) 2

2 1   2

1 2 0.

n n n

n

n

n

n

H H H
y x a z ay

x y z

n a xz z ax

n x y z ax





    
   

  

  

   

. 

Also the above equation has a polynomial solution of degree 1n   only if 0n   and we get 

0nH  . We have by induction under the degree of homogeneity that 0kH   for all k 1, then 

we obtain H  is constant, hence system (1) has no local analytic first integrals at the equilibrium 

point    0, ,0a , so the result follows.                                                                                   
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Second if 2  0a b  , the characteristic equation of the Jacobian matrix at the equilibrium point  

2E  of system  1  is given by 

   

 

2 2 2

3 2

2

2 2

     

2 0.

b a b b a

b b

b a b

  
 

  

 

 

Reversing time in system  1 , we have the following system 

   x z x y a   , 

                             y y z x  ,                  9  

        2 2z x y b   , 

 

we obtain that the characteristic equation of the Jacobian matrix at the equilibrium point 1E  of 

system  9  is given by 

   

   

 

2 2 2

3 2

2

2 2

     

2 0.

b a b b a

b b

b a b

  
 

  

 

 

By the hypothesis and Routh-Hurwitz criterion, the zeros of the above two characteristic 

equations  have negative real parts, hence the equilibrium point  1E   is  attractor and 2E   is  

repeller, so system (1) has no local analytic first integrals at the equilibrium points 1E  and 2E , 

by Theorem 7, and consequently the system  1  with 2  0a b   has no any global analytic first 

integrals.                                                                                                                                                                                                  

 

Proof of Theorem 4. We now suppose that 0a b  , then  system  1   has straight line of 

equilibrium point  0,0,m  and its characteristic equation of system  1  at   0,0,m  is 

 3 2 22      1 0m m      , 

so the eigenvalues of Jacobian matrix at   0,0,m   are  zero and m i . Hence eigenvalues are 

pure imaginary if and only if 0.m  The eigenspace corresponding to  eigenvalue zero is  

0

0

0

1

V Span

  
  

   
  
  

.Via Theorem 1, 2 2 2

1H x y z    is a first integral l of system  1  and 
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satisfies  1 0,0,0 0dH   and   2

1 0,0,0 6 0
WXW

d H   , where 

0 1

1 , 0

0 0

W Span

    
    

     
    
    

.Then 

satisfies all conditions of Theorem 10, so for any sufficiently small    the energy surface 
2 2 2 2x y z     contains at least one periodic solution of system (1) whose period  is close to 

.                                                 

 

4. Conclusion 

 

This study analyzed the existence of Darboux and analytic first integrals of three dimensional 

chaos laser systems. Firstly, we proved that system (1) is completely integrable when   0a b   

and is not completely integrable with two functionally independent rational first integrals for 

0 a  and 0b  . We also shown that the laser differential system  near to origin, the reduced 

dynamics has, for each sufficiently small value of the reduced energy, at least 1- periodic 

solution whose period is close to   when the parameters 0a   and 0 b  (see Theorem 4). 

 Moreover we proved that system (1)  has only two irreducible Darboux polynomials, when the 

parameter a  is zero. We also showed that the system has neither a polynomial first integral nor a 

rational first integral where 0a   or 0b  . Subsequently, we  proved that the system contains 

only one exponential factor when ab  is not zero. Additionally, we proved that the system is not 

Darboux integrable when the parameter a  is not zero. We also proved the existence of periodic 

orbit emanating from the origin when 0a b  .  Finally we verified that the system has no local 

analytic first integrals in a neighborhood at the equilibrium points of system (1) where 
2 , 0b a a   or  2 0.a b  Hence system  1  with 2  0a b   has no any global analytic first 

integrals. We also proved the existence of periodic orbits via first integral. 
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