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Abstract: This paper introduces a two-dimensional autonomous mega-stable dynamical system with 

trigonometric nonlinearities. The nonlinearity of this system is induced by tangent hyperbolic and cosine 

functions. A remarkable feature of this system is the ability to generate very rich patterns of coexisting 

attractors via the variation of its parameters. Interestingly the shapes of its coexisting attractors resemble 

some real-life objects, such as Persian rugs, nuts (mainly chestnut), fruits (especially pear), and 

vegetables (pumpkin and onion). Simulations demonstrate the coexisting attractors, basins of attractions, 

and real-life object shapes. Moreover, the fixed points of the proposed system, their stability, and the 

energy dissipation for various pairs of parameters are investigated. Finally, the feasibility of this system is 

approved by analog circuit simulations. Regarding the high flexibility of this system, producing a broad 

range of attractor patterns, it could be applied in various fields. 
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1 Introduction 

Dynamical systems produce trajectories of points in space-time with various geometric 

shapes representing the evolution of complex dynamics in physical, chemical, and 

biological fields [1]. At any instant, a dynamical system has a state that can be 

expressed by a set of real numbers as a point in a suitable state space (a geometric 

manifold) [2]. Corresponding to a slight change in the dynamical system's state, there is 
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a slight change in these numbers, which creates or modifies the geometric shapes of 

the system's states in space [3].  

In systems science, a static system means that the system's form and parameters do 

not change over time [2]. Nevertheless, a dynamical system whose behavior undergoes 

severe oscillations and fluctuations due to a tiny change in its parameters is more 

interesting. For example, the weather and climate of a geographical area have this 

typical behavior, for which a minor fluctuation in a variable, even in the fourth to sixth 

decimal places, can completely change the result of the weather forecast [4]. Linear 

systems, however, do not have this behavior, and the system's trajectories depend 

entirely on their initial states [5]. Today, the modeling of complex dynamical systems is 

developed and applied in many fields, such as meteorology [4, 6], geology [7], mass 

and heat transfer [8], oceanography, fluid mechanics [1], and gravity and cosmology [9].  

Nonlinear dynamical systems are essential frameworks for chaos theory [10, 11]. In a 

general dynamical system, an attractor is defined as a set of numerical values that the 

system's trajectory evolves towards for a wide range of initial values [12]. If the system 

is structurally stable, when the numerical values of the system's trajectory are 

sufficiently close to the attractor, even if there is a slight disturbance, the system's 

trajectory remains close to the attractor [13]. In other words, an attractor is the limit set 

of the system's solutions as time evolves long enough, mathematically approaching 

infinity [14]. An attractor is a region in the system's state space, usually having physical 

[15] or economical [16, 17] meanings, etc.  

More interestingly, a dynamical system can have coexisting attractors, which can be 

obtained from a single system with different initial conditions [18, 19]. A multi-stable 

system is a system that can produce coexisting attractors [20, 21]. Multi-stable systems 

can be roughly classified into mega-stable [22, 23] and extreme multi-stable [24, 25] 

systems. If the number of coexisting attractors is small, the system is referred to as a 

mega-stable system [26, 27], while if the coexisting attractors are numerous, the system 

is classified as an extreme multi-stable system [28, 29]. These systems have vibrant 
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dynamics compared to mono-stable ones, attracting increasing attention recently [30-

32].  

Tang et al. in 2018 [22] introduced a novel mega-stable nonlinear system called the 

carpet oscillator. This name was given to this system because of the patterns of its 

coexisting hidden and self-excited attractors, which looked like a Persian carpet. Vo et 

al. in 2019 [23] gained a giga-stable system by forcing a mega-stable system with its 

twin. In the same year, Tuna et al. reported a mega-stable hyper-jerk system with multi-

wing attractors [33]. In 2020, Akgul et al. [26] achieved mega-stability in a chaotic 

system without applying the forcing term. In the same year, Chen et al. [27] detected 

mega-stability in dynamical systems with various attractors, including torus, chaotic and 

hyperchaotic attractors. Karami et al., in 2021 [34], investigated a new mega-stable 

system with attractors that have irregular patterns; also, spatially square wave damping 

was applied to this system. Karami et al. [35] reached a new mega-stable system with 

triangular wave damping a year later. In 2022 Li et al. [36] applied a memristor to a 

mega-stable system without the forcing term, and its mega-stability depended on its 

Hamiltonian energy. Vijayakumar et al. [37] examined a similar system with repelling, 

conservative and dissipative dynamics in the same year,. 

In this paper, a two-dimensional autonomous nonlinear dynamical system is proposed, 

which has very rich dynamical behaviors in the sense that it not only can generate 

multiple coexisting attractors and thus is mega-stable but also can change the shapes 

of the attractors via parameter variations. The remainder of the paper is organized as 

follows. The next section introduces the new system. Main simulation results with 

different initial conditions are presented to show the coexisting attractors and the variety 

of the patterns of the coexisting attractors that resemble the shapes of some real-life 

objects. Afterward, the equilibrium points of the introduced system are calculated, and 

their stability is reported. Furthermore, the energy dissipation of this system is analyzed, 

and its analog circuit is implemented. The last section discusses some basic properties 

of the new system and summarizes the paper. 
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2 The Proposed Mega-stable System and Results 

The proposed mega-stable dynamical system is described by System (1). 

   

     

tanh cos                  

tanh tanh 10 cos

x y a by

y x y x

  


  
  (1) 

This system is a simple two-dimensional nonlinear autonomous system with some 

trigonometric functions, where a  and b  are real parameters that can be used to change 

the shape of the coexisting attractors, as further demonstrated below. 

The dynamical behaviors of System (1) are incredibly complex; therefore, they are 

investigated with numerical simulations. In all figures shown below, part (a) depicts the 

result of simulating the system with an arbitrary set of initial conditions shown by red 

dots. The runtime for simulations is set to 5000. The transient parts of the trajectories, 

the first 90% of the total runtime, are plotted in cyan. The last 10% of the trajectories, 

considered steady-state segments, are plotted in navy blue. Part (b) displays the 

coexisting attractors; meanwhile, the initial conditions and the transient phases are not 

shown. The attractors of this system are all limit cycles that, although they vary in size, 

are almost the same in shape and form for a particular set of parameters. Part (c) 

demonstrates each attractor and its corresponding basin of attraction in different colors. 

Part (d) illustrates the corresponding real-life objects with similar shapes as the 

coexisting attractors, which shows an interesting good match. 

In the first case, consider 1,  0.5a b  , and simulate the system with these parameters. 

The results are shown in Fig. 1. In part (a), the trajectories correspond to 21 different 

initial conditions, distributed along the x -axis from 50x    to 50x   with a step size of 

5. A small random number between zero and one, acting as a perturbation, disturbs 

their positions on the y -axis. Briefly, the system's attractors look like a Persian 

decorative rug. 
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Now, assume that parameter a  is the same as before, but parameter b  is reduced to 

0.01. The numerical results of System (1) with this set of parameters are shown in Fig. 

2. The interval of the initial conditions is the same as before. However, to better detect 

the coexisting attractors, the step size is lowered by one and now is 4. Thus, 26 

different initial conditions are used for obtaining the results shown in Fig. 2. Amazingly, 

the pattern of coexisting attractors is changed from a Persian rug to a kind of nut, i.e., 

chestnut, by just changing one of the system's parameters. 

Again, parameter a  is kept constant, but parameter b  is multiplied by 10, i.e., it is equal 

to 0.1 now. The initial conditions are like the case of Fig. 2. New results produced by 

this parameter variation are shown in Fig. 3. Although the lower part of the coexisting 

attractors has almost the same form as before, the upper part is changed prominently. 

As a result, the pattern of the attractors is entirely different from the chestnut, but it is 

transformed into pears. Interestingly, a nut shape is changed to a kind of fruit shape.  

After investigating the effect of parameter b  on the patterns of the coexisting attractors, 

parameter a  is varied next. In all previous simulations, parameter a  was fixed at 1. In 

Fig. 4, the variation of the attractors' shapes is studied by duplicating parameter a . 

Totally 11 different initial conditions, from 10x   to 60x   with a step size of 5, are 

utilized to perform the simulations. From now on, the initial conditions are not along the 

0y   line anymore; they are along the 10y    line, subject to some slight disturbance. 

By setting 2,  0.1a b  , where the parameter b  is now kept unchanged, the attractors 

tend to form two distinct parts connected with a bottleneck. This appearance resembles 

the shape of a pumpkin, a type of vegetable. 

To show one more pattern, parameter b  is kept constant, but parameter a  is increased 

to 5. The numerical result of using ten different initial conditions from 40x   to 85x   

with a step size of 5 is depicted in Fig. 5. The initial conditions are located around the 

15y    line. With this parameter change, the upper part of the attractors in Fig. 4 

diminished, but a uniform shape was formed. In this case, the layered structure of the 

coexisting attractors is analogous to the onions.  
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3 Fixed Points Stability and Dissipation Study 

Equilibrium points of a dynamical system are points in which the velocity of all state 

variables becomes zero. These points can be obtained by setting the right-hand side of 

the system's differential equations to zero. The y  values of the equilibrium points of 

System (1) are obtained by solving the 0x   equation and then by substituting these 

values in the 0y   equation, the corresponding x  values are achieved. System (1) 

cannot be solved analytically, but some realistic assumptions can ease the problem. 

Since System (1) includes tanh  functions and this trigonometric function rapidly 

converges to 1 for positive inputs and -1 for negative inputs, all tanh  functions are 

substituted by 1 , and the equations are solved. This procedure for different values of 

parameter a  (1, 2, and 5) is shown in Eqs. (2), (3), and (4), respectively. Since the tanh  

functions converge to different values for positive and negative inputs, each parameter 

leads to various sets of solutions.   

 

 

 

 

 

2 , 0(2 1)
, 0

2 1 , 0
, :
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, 0
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k y x
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x y y
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k y x
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







     
     

     
  

      
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 (2) 
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 (4) 
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The above answers are valid only after the convergence of the tanh  functions. For 

values of , x y  in which the tanh  functions have not been converged yet, a numerical 

method is employed. This technique is based on the fact that in equilibrium points, the 

value of 
2 2Z x y   is equal to zero. Moreover, the Poincaré-Bendixon theory says 

that "every cycle or limit cycle in two dimensions must surround at least one equilibrium 

point". Hence by varying the values of , x y  in the interval corresponding to the region of 

the innermost limit cycles with a fixed step size of 0.01, the value of  Z  is calculated. 

Afterward, based on the least values of this function, a threshold is applied to the 

values, and those points with lower Z  values are considered equilibrium points. Since 

all limit cycles surround these equilibrium points, the Poincaré-Bendixon theory is 

satisfied. The results of numerical simulations for different pairs of parameters are 

depicted in  Fig. 6, 7, 8, 9, and 10. Part (a) of all these figures illustrates the Z  surface, 

and part (b) demonstrates the obtained equilibrium points by magenta color. For 

1,  0.5a b  , x  and y  are varied in  3.34, 4.53  and  4.8, 2.01 , respectively. By 

setting the threshold as 510 , ten equilibrium points are obtained and shown in Fig.6 (b). 

The results for 1,   0.01a b  , varying x  in  3.42, 4.7  and y  in  60, 2  are shown in 

Fig. 7. After applying a threshold of  710 , 45 points are obtained. If the value of a  is kept 

fixed, but the value of b  is multiplied by 10, the outcomes are like Fig. 8. In this figure, 

x  is varied in  3.4, 4.7 ,  and y  is varied in  13.1,1  .85 . In this case, just one point is 

achieved considering a threshold like the former. In Fig. 9 and 10, the value of b  has not 

been changed, but the value of a  is multiplied by 2 and 5, respectively. x  values of Fig. 

9 are varied in  10,1  1.36 ,  and y  values are varied in  20.8,1  .24 . Applying the 

threshold at  610 , results in 22 final points. In Fig. 10, the variation of x  is limited in the 

interval  39.71, 38.26 ,  and y  is limited in the interval  26.56, 0.61 . in this case, 292 

points are obtained after applying a 510  threshold. 

To study the stability of the equilibrium points, the Jacobian matrix of the dynamical 

system should be obtained, and it must be linearized around the equilibrium points. The 
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real parts of the linearized Jacobian matrix's Eigenvalues indicate the equilibrium point's 

stability. The equilibrium point is stable only if all the Eigenvalues have negative real 

parts. The appearance of an Eigenvalue with a positive real part lead to unstability. 

There can be Eigenvalues with zero real parts; in these cases, the stability analysis 

cannot be conducted based on the Eigenvalues and requires more study. The Jacobian 

matrix of System (1) can be written as Eq. (5). In the last part of this equation, the 

values of tanh  functions are replaced with 1,  and their derivatives are replaced with 

zero. In Eq. (6), the characteristic equation of this matrix is obtained by setting the 

n I J  equal to zero. This characteristic equation has two zero roots that challenge 

the stability analysis of System (1)'s equilibrium points. Nevertheless, several random 

values of initial conditions were used in previous simulations, and none converged to an 

equilibrium point. Thus, all the equilibrium points of System (1) are unstable. 

  
 

  
   

 

  

 

 

2

2 2

1
0 sin

cosh 0 sin

sin 010cos1
sin tanh 10

cosh cosh 10

ab by
y ab by

xx
x y

x y

 
 

  
     

   
 
 

J J  (5) 

 

 
   2 2

sin
0 sin sin 0 0 0

sin
n

ab by
ab by x

x


   


         


I J   (6) 

The attraction ability of the cycles was observed in the previous numerical simulations 

like phase portraits and basins of attraction. This characteristic can be quantified by 

calculating the energy consumption of the dynamical system. This quantity is equal to 

the divergence of the system, i.e., the trace of the Jacobian matrix. This quantity can be 

positive, zero, or negative; the system is called explosive, conservative, and dissipative. 

If a system is dissipative, the trajectories in the state space are attractors. The 

divergence of System (1) is calculated as Eq. (7). 
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   
  

    
2

2

1
10cos 10cos sech 10

cosh 10
Tr x x y

y
   J   

(7) 

Since the divergence is state-dependent, its value cannot be obtained directly and 

requires numerical simulations. In Fig. 11, System (1) is simulated with initial conditions 

located at the origin for runtime equal to 43.5*10  and the divergence is calculated with 

the help of average values of the     
2

cos sech 10x y  term. Panels (a)-(e) portray the 

divergence of System (1) with different pairs of parameters. In all these diagrams, the 

value of the divergence converges to a negative quantity, which approves the 

dissipation of System (1). Furthermore, the cycles observed in previous numerical 

simulations are confirmed to be limit cycles. 

4 Analog Circuit Design 

In order to complete the performance study of System (1), it is necessary to conduct 

further experiments like designing its analog circuit. The analog circuit of System (1) is 

implemented in the simulation environment, and it is realized successfully. The 

designed circuit of System (1) for 1,  0.5a b   is shown in Fig. 12 ( x  state variable) 

and Fig. 13 ( y  state variable). The tanh  functions are implemented using Q2N1711 

bipolar transistors. Three tanh  blocks are used in the circuit design, but as an example, 

just the first one in Fig. 12 is discussed in detail. The mathematical formula governing 

the tanh  block is written as Eq. (8). In this equation A  is the gain that changes the 

amplitude of the resultant tanh  and is modified by 3 4 5 6 7, ,  , , R R R R R  and the value of the 

current source 1I . The coefficient of the tanh  block's input can be adjusted by 1 2,R R , 

and TV . TV  is the thermal voltage of the transistors and 26TV mV  in room tempreture.  

2

1

tanh
2

out in

T

R
V A V

RV

 
   

 
  (8) 
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The supply voltages are 15 ,  15 .CC EEV V V V    For some pairs of parameters, the state 

variables' actual amplitude can lead to the circuit's saturation and malfunction; 

therefore, the circuit design is based on scaling all state variables to one-tenth of their 

actual value. The value of other components are 1 2 3 1.1 , I I I mA   1 2 10 , C C nF 

3 4 9 10 27 28 1 ,R R R R R R K       2 18 5.2 ,R R K  

1 5 6 7 9 11 15R R R R R R R      

16 17 21 22 23 24 25 29 30 31 32 33 37 38 10 , R R R R R R R R R R R R R R K               26  R 

52 ,K 13 14 35 36 100R R R R K     . Parameter a  is adjusted by varying 12R  and 

parameter b  is modified through 10R . For 1, 2, 5,a   the value of 12R  is set to 

10 ,20 , 50K K K    and 10 1 ,1  0 , 50R K K K     result in 0.01, 0.1, 0.5b   respectively. 

The capacitors' initial conditions are all set to zero. 

The designed circuit is simulated for previously used pairs of parameters, and the 

outcomes are depicted in Fig. 14. Panels (a)-(e) correspond to 1,  0.5a b  ,  

1,  0.01a b  , 1,  0.1a b  , 2,  0.1a b  , and 5,  0.1a b  , respectively. Comparing the 

circuit simulation results with previous numerical simulations proves the feasibility and 

availability of System (1). It should be noted that the attractors' shapes are like the 

innermost limit cycles obtained by numerical methods but differ in amplitude regarding 

the applied scaling. 

5 Discussion and Conclusion 

A simple two-dimensional autonomous mega-stable dynamical system was proposed in 

this paper. The system inherits its nonlinearity from hyperbolic tangent and cosine 

functions. There are two parameters in the system, and careful numerical studies 

investigated their effects on the patterns of the coexisting attractors. The mega-stability 

and ability to produce different shapes of coexisting attractors were examined with 

fascinating findings: the patterns of the coexisting attractors resemble several real-life 

objects. Besides, the equilibrium points of the proposed system were obtained, and their 

stability was analyzed. They were all unstable fixed points. To approve the attraction of 
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the observed coexisting cycles, the energy dissipation of this system was investigated, 

which led to a negative value. In other words, the system is dissipative, and all the 

cycles are limit cycles, not conservative ones. To confirm the availability of the limit 

cycles, an analog circuit simulation was conducted too, whose outcomes were 

consistent with previous numerical simulations. It is worth analyzing this newly 

introduced system's dynamical properties and unique features in the future with more 

complete and informative numerical diagrams and theoretical analysis. It is deemed that 

this highly flexible system would have a wide range of topological attractors to be 

revealed, and this unique system would have good potential for some new applications. 
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Figure 1. (a) Trajectories of System (1), with 1,   0.5a b  , for 21 different initial conditions located on a 

line ( 50 x   to   50x   with step-size 5. Random values around zero are considered for y ), which are 

shown by red dots. The runtime is set to 5000 for all trajectories. The transient parts of trajectories are 

shown by cyan dots, which cover 90 percent of the total runtime. The steady-state part of each trajectory, 

over the last 10 percent of runtime, is shown in navy blue. (b) Only the steady-state part of the trajectories 

is shown. (c) Basin of attraction. (d) A Persian decorative rug. 

Figure 2. (a) Trajectories of System (1) with 1,  0.01a b  , for 26 different initial conditions located on a 

line ( 50 x   to   50 x  with step-size 4. Random values around zero are considered for y ), which are 

shown by red dots. The runtime is set to 5000 for all trajectories. The transient parts of trajectories are 

shown by cyan dots, which cover 90 percent of the total runtime. The steady-state part of each trajectory, 

over the last 10 percent of runtime, is shown in navy blue. (b) Only the steady-state part of the trajectories 

is shown. (c) Basin of attraction. (d) A chestnut. 

Figure 3. (a) Trajectories of System (1) with 1,  0.1,a b   for  26 different initial conditions located on a 

line ( 50 x   to   50x   with step-size 4. Random values around zero are considered for y ), which are 

shown by red dots. The runtime is set to 5000 for all trajectories. The transient parts of trajectories are 

shown by cyan dots, which cover 90 percent of the total runtime. The steady-state part of each trajectory, 

over the last 10 percent of runtime, is shown in navy blue. (b) Only the steady-state part of the trajectories 

is shown. (c) Basin of attraction. (d) Two pears. 

Figure 4. (a) Trajectories of System (1) with 2,  0.1,a b   for 11 different initial conditions located on a 

line ( 10 x  to   60x   with step-size 5. Random values around 10  are considered for y ), which are 

shown by red dots. The runtime is set to 5000 for all trajectories. The transient parts of trajectories are 

shown by cyan dots, which cover 90 percent of the total runtime. The steady-state part of each trajectory, 

over the last 10 percent of runtime, is shown in navy blue. (b) Only the steady-state part of the trajectories 

is shown. (c) Basin of attraction. (d) A pumpkin. 

Figure 5. (a) Trajectories of System (1) with 5,  0.1a b  , for 10 different initial conditions located on a 

line ( 40 x  to   85 x  with step-size 5. Random values around 15  are considered for y ), which are 

shown by red dots. The runtime is set to 5000 for all trajectories. The transient parts of trajectories are 

shown by cyan dots, which cover 90 percent of the total runtime. The steady-state part of each trajectory, 

over the last 10 percent of runtime, is shown in navy blue. (b) Only the steady-state part of the trajectories 

is shown. (c) Basin of attraction. (d) Onions. 
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Figure 6. (a) 
2 2Z x y   surface of System (1) with 1,   0.5a b  , while x  is in the interval 

3.34 x   to   4.53x   and y  is in the interval 4.8 y   to   2.01y   with steps equal to 0.01. (b) 

The points of the Z  surface whose distance from the 0Z   plane is less than the threshold of 510  are 

shown by magenta dots (10 points). 

Figure 7. (a) 
2 2Z x y   surface of System (1) with 1,   0.01a b  , while x  is in the interval 

3.42 x   to   4.7x   and y  is in the interval 60y    to   2y   with steps equal to 0.01. (b) The 

points of the Z  surface whose distance from the 0Z   plane is less than the threshold of 710  are 

shown by magenta dots (45 points). 

Figure 8. (a) 
2 2Z x y   surface of System (1) with 1,  0.1a b  , while x  is in the interval 

3.4 x   to   4.7x   and y  is in the interval 13.1 y   to   1.85y   with steps equal to 0.01. (b) The 

points of the Z  surface whose distance from the 0Z   plane is less than the threshold of 710  are 

shown by magenta dots (one point). 

Figure 9. (a) 
2 2Z x y   surface of System (1) with 2,  0.1a b  , while x  is in the interval 

10 x   to   11.36x   and y  is in the interval 20.8 y   to   1.24 y  with steps equal to 0.01. (b) The 

points of the Z  surface whose distance from the 0Z   plane is less than the threshold of 610  are 

shown by magenta dots (22 points). 

Figure 10. (a) 
2 2Z x y   surface of System (1) with 5,  0.1a b  , while x  is in the interval 

39.71 x   to   38.26x   and y  is in the interval 26.56 y   to   0.61y   with steps equal to 0.01. (b) 

The points of the Z  surface whose distance from the 0Z   plane is less than the threshold of 510  are 

shown by magenta dots (292 points). 

Figure 11. Divergence diagram of System (1) with initial conditions    0 0x ,  y 0,  0  and parameters (a) 

1,  0.5a b  , (b) 1,  0.01a b  , (c) 1,  0.1a b  , (d) 2,  0.1a b   and (e) 5,  0.1a b  . The 

number to which the diagrams have converged indicates the energy consumption rate of the System (1) 

with these parameters. The energy consumption of System (1) for all pairs of parameters is a negative 

value, and thus it is a dissipative system. 
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Figure 12. Analog circuit implementation of the x  state variable of System (1) for 1,  0.5a b   and 

initial conditions    0 0x ,  y 0,  0 .  

Figure 13. Analog circuit implementation of the y  state variable of System (1) for 1,  0.5a b   and 

initial conditions    0 0x ,  y 0,  0 . 

Figure 14. The simulation results of the analog circuit based on System (1). (a) 

10 1250 ,  10R K R K    , (b) 10 121 ,  10R K R K    , (c) 10 1210 ,  10R K R K    , (d) 

10 1210 ,  20R K R K    , and (e) 10 1210 ,  50R K R K    . The initial conditions of all capacitors 

are zero. The shape of the results is consistent with the innermost limit cycles in numerical simulations, 

but their amplitude is one-tenth of the actual attractors.  
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