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Coupling renewable energy, electric vehicle and hydrogen storage is an effective way for Integrated 
Energy Systems (IES) to move toward a low-carbon approach. The uncertainties of wind power, 
Photovoltaic Panel (PV) power and load demand are considered, meanwhile, a ladder-type carbon 
trading mechanism is designed, and the model is transformed into a deterministic Mixed-Integer Linear 
Programming (MILP), while the reliability of spinning reserve power is measured by a proper 
confidence level. Meanwhile, the objective function is constructed based on the optimization strategy of 
deviation preference, and two objectives are introduced to optimize the annual comprehensive cost and 
annual carbon emission. The problem is transformed into a MILP and the optimization of the capacity 
configuration of this IES is performed. The results show that the IES has advantages in economic and 
environmental performance. The IES has significant advantages in Carbon Dioxide Emission Reduction 
(CDER); meanwhile, Electric Vehicle (EVs) show advantages in CDER and charging cost compared to 
those in the non-IES. Carbon dioxide emissions in IES are only one-fifth of those of conventional 
distribution system and the CDER effect is noticeable. Moreover, EV charging cost in the IES is 
relatively lower, while the CDER effect is an order of magnitude better than that of non-IES. 

 

 
1. Introduction  
1.1. Background and motivation 
Economic development is accompanied by an increase in 
energy demand and carbon emissions. Net CO2 Emissions 
(CDEs) from human activities must approach zero to 
stabilize the global average temperature [1]. Energy-related 
CDEs account for two-thirds of global greenhouse gas 
emissions, and energy consumption will increase by 44% 
from 2006 to 2030 [2]. Therefore, an energy transition is 
called for now to break the link between economic growth 
and rising greenhouse gas emissions. The ideal energy 
source must be affordable, accessible and sustainable [3], 
thus providing reliable, economical and environmentally 
friendly power is the focus of today's society. When the 
carbon dioxide concentration doubled, the global average 
temperature increased by 2.3 degrees [4], which provides a 
quantitative target for carbon dioxide emissions for humans 
to control rising temperatures [5]. Integrated Energy 
Systems (IES) has advantages in improving autonomic 
operation and reducing carbon emissions [6].  

 
     Decarbonization by shifting to Renewable Energy 
Power Generation (REPG) is an essential solution to 
address the energy crisis in the transition. How to 
coordinate and optimize the use of various energy sources 
is a subject of planning, design and operation in the IES. 
Deploying REPG technologies is a promising effort that 
humans can make to reduce the dramatic impact of climate 
change on our lives. However, REPG is mostly intermittent 
and fluctuating, to overcome the uneven distribution and 
dynamic availability of REPG, supplemental generation or 
storage is needed to keep balance. As the REPG capacity 
connected to the grid increases, so does the need for energy 
storage to avoid curtailment to match non-concurrent 
demand. Indeed, there are important synergies between 
hydrogen and renewable energy, as hydrogen significantly 
increase the growth potential of the renewable energy 
market. The Hydrogen Energy Storage System (HESS) is 
capable of storing energy on a large-scale, cross-seasonal 
and efficient way. The collaborative operation of the HESS 
effectively improves the utilization of REPG and meet the 
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demand of various types of loads. Hydrogen storage will 
become more competitive when the demand for energy 
interaction increases in the long term [7]. Compared with other 
energy storage, HESS has the strengths of green and clean, 
high-energy density, high utilization efficiency, convenient 
transportation, and high-volume storage [8], which is believed 
to be a promising candidate to lead to a new hydrogen 
economy [9]. The cost of hydrogen storage is at least an order 
of magnitude lower than the cost of electric storage in large-
scale energy storage. HESS is used not only to store hydrogen 
but also to provide hydrogen for Fuel Cells (FCs) or chemical 
production [10]. Moreover, EVs are becoming increasingly 
popular as the fuel prices increase and the policies support of 
government on EVs [11]. By absorbing the power generated 
by REPG into the HESS and unlocking the potential of REPG, 
the flexibility of the IES is improved. 
     The targets will be achieved by selecting suitable 
equipment types and configuration capacities to fully utilize 
the REPG, meet the energy needs of various loads, and reduce 
the Annual Comprehensive Cost (ACC) and Carbon Dioxide 
Emissions (CDEs). 
1.2. Literature review 
IES, consisting of REPG, Combined Cooling Heating and 
Power (CCHP) CCHP, HESS and the Auxiliary Equipment 
System (AUES), has attracted many scholars. As for the 
optimization models, a multi-objective model for biomass IES 
was established to configure capacity to improve the 
comprehensive performance of energy, economy and 
environment [12]. The optimization of hybrid REPG was 
developed to meet the specific daily residential load situation 
in remote areas [13]. A bi-level optimal dispatch model for the 
community IES with an EV charging station in multi-
stakeholder scenarios was proposed [14]. A machine learning 
based approach was proposed in renewable microgrids based 
on remote switching of tie and sectionalizing considering a 
reconfigurable structure [15]. A capacity configuration model 
of the biogas IES was constructed and the capacity of the 
Pareto curve for the construction of the rural IES was obtained 
[16]. Off-grid communities were constructed to meet both 
electricity and thermal load demands simultaneously [17]. A 
REPG model was developed to meet the electrical load 
demand of a large reverse osmosis desalination plant [18]. The 
economics of three grid-independent hybrid renewable energy 
systems, proposed for co-generated electricity and heat for 
small-scale loads, were scrutinized [19]. 
     As for the optimization tools, a framework with deep 
coupling of electricity-gas networks was constructed, using a 
game-theoretic approach and a Particle Swarm Optimization 
(PSO) algorithm to derive an energy dispatch strategy [20]. A 
ant lion optimizer was proposed to solve the problem of 
optimal sizing and placement of distributed generation in a 
distribution system [21]. A bi-level model approach was used 
for a coupled cogeneration multi-energy system and a 
correlation model was developed for configuration and 
operation optimization [22]. An operation strategy was 
designed to solve the optimal operation schedule of CCHP, the 
optimal maintenance schedule of gas engines and the optimal 
capacity configuration of CCHP [23]. An optimal planning 

framework considering compressed air energy storage and 
sliding time window for electric-thermal Integrated Demand 
Response (IDR) to optimize the system capacity configuration 
and energy management strategy was proposed [24]. An 
optimization model with coordinated optimization of PV-
battery systems with Photovoltaic Panel (PV) arrays and 
batteries under smooth scenarios was proposed [25]. A multi-
objective genetic algorithm in a CCHP system was 
constructed with objectives including primary energy saving, 
Life Cycle (LC) cost reduction, Carbon Dioxide Emission 
Reduction (CDER), comprehensive evaluation index [26]. A 
heuristic optimization approach was proposed to make a 
transactive strategy in distribution networks for purposeful 
pricing of distributed energy resources [27]. Multi-Objective 
Particle-Swarm Optimization (MOPSO) algorithm was taken 
to analysis the benefits of the exergy, exergo-economic, and 
exergo-environmental result in a waste-to-energy power plant 
[28]. The optimal size was determined in a hybrid system 
comprising WT/PV/diesel generator/battery using Mixed 
Integer Nonlinear Programming (MINLP) method and GAMS 
[29]. 
     On the demand side, there are studies on customer 
preferences, demand load and Demand Response (DR). A 
stochastic optimization model considering the dynamic 
characteristics of the network and psychological preferences 
was proposed, focusing on the influence of consumers’ 
psychological preference factors, the results showed that the 
psychological preferences have a great influence [30]. EV will 
be an essential demand load of an IES in the future. An optimal 
hybrid energy selection method was proposed for hybrid EVs 
that include an ultracapacitor and a FC with a battery unit [31]. 
It was proposed to incorporate EV load into distributed energy 
systems and to adopt a two-stage collaborative optimization 
algorithm for capacity configuration and operation 
optimization of zero-energy community systems [32]. A two-
stage optimization method was presented for a coupled 
capacity planning and operation problem in a regional IES 
[33]. On DR, an optimal planning model considering price-
based DR and incentive-based DR was proposed to evaluate 
and validate the environmental and economic benefits of DR 
strategies in grid-connected IES [34]. The concept of DR was 
extended and a double objective operation optimization model 
considering IDR mechanism with electric and thermal loads, 
a multi-objective operation optimization model with the 
objectives of economic efficiency and integrated energy 
efficiency were proposed [35]. In addition, a bilevel 
programming model for multi-regional IES was developed by 
solving the real-time pricing to maximize social welfare [36]. 
A bi-level programming model for integrated energy was 
developed to maximize the utilities of the players by a fuzzy 
max-min approach [37]. Recent research on optimizing the 
capacity configuration of IESs is summarized in Table 1. 
      Most previous studies have not adequately addressed the 
diversity of device types, lack IES coupling REPG with HESS 
considering multiple uncertainties, rarely considered both 
renewable energy and load uncertainty, spinning reserve, 
electric vehicles as flexible loads, and interaction with the 
external main grid. In our work, all these factors are 
considered. 
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Table 1. summarizes some of the recent studies on capacity configuration optimization in IES. 

Ref. Year Main components of IES Optimization objectives Optimization tools 

[12] 2021 Biomass + solar energies ATCSR+CDERR+PESR NSGA-II 

[13] 2020 PV/Wind/Diesel/ Battery Economic, environmental and reliable 
power supply 

HOMER Pro + cyclic charging 
algorithm 

[14] 
2021 
 

CIES with an EVCS in multi-stakeholder 
scenarios 

Upper level: the CIES net operating 
cost; Lower-level: the EVCS net 
operating cost 

SOT with CCP, MILP+CPLEX 

[15] 2021 Renewable microgrids The total operation cost A machine learning based 
approach based on dragonfly 

[16] 2021 A biogas-based IES Annual total cost, annual carbon 
emissions and exergy efficiency 

Augmented ε-constraint method 
to obtain the Pareto curve 

[17] 2022 Thermal power plant + WT/PV Plant Social welfare Reinforcement learning 

[18] 2020 PV/WT/diesel/battery/inverter system Net present cost, renewable fraction, 
cost of energy and CO2 emission Homer Pro 

[19] 
2021 Grid-independent hybrid renewable-based 

systems 
Techno-economic-environmental and 
reliability Homer Pro 

[20] 2022 IES with a deep coupling of power-gas 
network 

Total income of IES+ energy-saving 
+environmental protection Game theory + PSO 

[21] 2018 A distribution system 
Purchased energy cost + reliability + 
DGs’ application cost + DS losses + 
voltage deviation 

Ant lion optimizer 

[22] 2018 CCHP coupled multi-energy system Annual operating cost 
Sequence control +sequential 
quadratic programming + 
feedback correction mechanism 

[23] 2021 CCHP with gas engines Operation plan of CCHP +maintenance 
plan of the gas engines 

The load balance of each piece 
of equipment+ the elapsed time 
axis to optimize actual 
maintenance activities 

[24] 2021 Compressed air energy storage and sliding 
time window The total cost PDF of the risk variable 

[25] 2021 A PV-battery system with multi-type PV 
arrays and multi-type batteries The total cost   The smoothing scenario 

[26] 2020 A CCHP system 
Primary Energy Saving (PES)+ LC Cost 
Reduction (LCCR)+ CDER+ 
Comprehensive Evaluation Index (CEI)  

GA 

[27] 2022 In distribution networks Loss and emission reduction 

Group Search Optimizer with 
Adaptive Covariance matrix 
and Chaotic search 
(MGSOACC) 

[28] 2021 In a waste-to-energy power plant 
The total exergy efficiency of the cycle 
+ fuel, exergy destruction, equipment, 
and environment 

MOPSO 
 

[29] 2020 In a hybrid system comprising 
WT/PV/diesel generator/battery 

Annual cost (investment + maintenance 
+ fuel consumption of diesel generator) MINLP and GAMS 

[30] 2020 
IES stochastic optimization considering the 
network dynamic characteristics and 
psychological preference 

Comprehensive cost (thermal power 
unit + gas source output+ penalty + 
investment+ maintenance) 

Auto-Regressive and Moving 
Average (ARMA) time series 
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Table 1. Summarizes some of the recent studies on capacity configuration optimization in IES (continued). 

Ref. Year Main components of IES Optimization objectives Optimization tools 

[31] 2021 Hybrid EVs comprising ultracapacitor (UC) 
and Fuel Cell (FC) 

Initial cost, weight, running cost and 
cost associated with source degradation. 

Improved BOA 

[32] 2021 A distributed energy system that combines 
multi-energy storage considering 3 types of 
energy storage and EVs load 

The annual cost savings rate; the 
primary energy savings rate 

A two-phase collaborative 
optimization method 

[33] 2019 In a regional integrated energy system Energy and environmental cost 
+achieve the optimal operation scheme 

Two-stage optimization 
with NSGA-II and MILP 

[34] 2020 An optimal planning model on the grid-
connected IES considering PBDR and IBDR 

The total annual cost MILP 

[35] 2020 An electro-thermal IES with a DR mechanism 
considering electric load and thermal load 

Economic benefits and comprehensive 
energy efficiency  

NSGA-II 

[36] 2021 Multiple RIESs with energy production, 
storage, conversion configurations and various 
loads 

The upper level is the profits of the 
supplier, the lower level is the RIESs' 
welfare. 

The RTP algorithm based 
on IDR 

[37] 2020 In the day-ahead market The upper level is the profit, the lower 
level is energy and spinning reserve 
procurement cost 

A fuzzy max-min approach 
through fuzzy utility 
functions 

1.3. Contributions 
The main contributions are summarized below: 

1. The IES is complex and realistic. HESS effectively
solve the waste of REPG. CCHP supports various 
cooling and heating loads, while AUES ensures 
energy supply in certain periods to meet the demand 
of various loads; 

2. Multiple uncertainties are considered. In this IES,
stochastic EV loads, intermittent REPG and 
fluctuating load demand are studied;  

3. The economic and environmental performance is
compared and evaluated. Meanwhile, the carbon 
emissions of IES and non-IES are compared, and 
the economic and environmental performance of the 
EVG is also evaluated;  

4. Various scenarios are analysed to show the effects
on economy, environment and reliability, by setting 
the confidence level of the appropriate spinning 
reserve constraint, a trade-off between economy and 
reliability is achieved; 

5. A ladder-type carbon trading mechanism is
designed by constructing a piecewise linear 
function, meanwhile, carbon tax policy is analysed. 

2. Mathematical model
The structure of the constructed natural wind-PV-hydrogen-gas-
EV IES is shown in Figure 1, which contains four main 
subsystems: REPG, HESS, CCHP and AUES. The energy flows 
include natural gas, hydrogen, electricity, thermal and cooling 
energy. Hydrogen is suitable for production in centralized 
facilities in remote areas, power parks, fuel stations, distributed 
facilities, rural areas and customers’ sites. However, the high 
cost of hydrogen energy production is still one of the critical 
obstacles to its widespread application. Therefore, IES should 
be prioritized for the following industrial parks: 

i. It contains various loads to facilitate nearby energy
consumption; 

ii. Rich wind and solar resources, available to develop REPG;
iii. Near the main roads and chemical plants, available for the

transportation of hydrogen energy.
The industrial park's electrical load is supplied by PVs, Wind 
Turbine (WTs), Gas Turbine (GTs), and FCs, while also meeting 
the stochastic charging needs of EVs; the thermal load is 
supplied by Gas Boiler (GBs) and Waste Heat Boiler (WHBs); 
ACs and ECs are assigned to supply the cold load. The 
hydrogen load is supplied from two sources: surplus power for 
hydrogen from electrolysis when there is an excess power 
supply and purchased hydrogen transported in long tube trailers. 
When FCs are discharged to the IES, the fuel comes from 
hydrogen produced by the electrolyzer or purchased hydrogen. 
2.1. EVs load modeling 
2.1.1. EVs charging model 
Although the individual EV charging is random, it will show a 
specific distribution when a certain size of EVs is reached. The 
change in charging price has some influence on their charging 
behavior, some Electric Vehicle Owners (EVOs) can adjust the 
charging time by the electricity price under a Time-of-Use 
(TOU) pricing environment. The distribution function of the 
charging price of EVs is as follows: 

( )
     els

 
e

start endvalley
p

peak

p
f t

p
t t t≤ ≤= 


      (1) 

where vallyp  denotes the electricity price in the valley time and 

peakp  denotes the electricity price in the peak hour, startt  and endt

denotes the moment when the valley time starts and ends. 
Assumptions include:  

(i)  EVOs tend to charge vehicles at low electricity 
prices;  

(ii)  No unexpected events occurring to affect EVOs;  
(iii)  Charging power is uniformly distributed in the 

range of [3.5,7]; battery capacity is uniformly 
distributed in the range of [60,70];  



G. Zhu et al./ Scientia Iranica (2025) 32(1): 6698 5 

Figure 1. Schematic of the proposed natural wind-photovoltaic-hydrogen-gas-EV IES. 

(iv)  Price-Based Demand Response (PBDR) 
scheme was designed in TOU prices 
environment. The proportion of EVOs who 
follow the PBDR is η (0 < η < 1) of the total 
EVOs during the valley hours; EVOs are 
divided into two parts, N ( PDRN  plus NPDRN ) EVs:

= *PDRN N η  , ( )= * 1NPDRN N η−  , where PDRN

denotes the numbers of EVOs affected by 
charging prices and NPDRN   represents those not 
affected; 

(v) The starting time not affected by PBDR obeys a 
normal distribution, while affected by PBDR 
obeys a uniform distribution; 

(vi) The charging process is simplified to constant 
power charging. The EVD  of private EVs daily 
trips approximately meets a lognormal 
distribution [38]. The starting time of charging 

st   not affected by PBDR adopts piecewise 
normal distribution [39]. For EVOs affected by 
PBDR, the starting time of charging PDR

st   is 
calculated as follows: 

 0

   else

start end end startt rand t t t t tc cvalley valley valley valleyPDRt
starttvalley

s

  
   




+ × − ≤ ≤ −
=    (2) 

where start
valleyt  and end

valleyt  denotes the starting and ending 
time of the valley price. Rand indicates a random number in 
the range of the interval range in [0,1]. The above equations 
show that when the power consumption time of EVOs is 
greater than the interval duration of the valley hours, EVOs 
choose to charge at ;start

valleyt when the EVOs charging time is 
less than the interval duration of the valley hours, the 
charging time is chosen randomly within the interval. The 

charging duration of a single EV 
100 c

pchEV
c

k

c

D P
t

Pδ
=  [39], where 

pchkP  is the electricity consumption per 100 km; Pc is the 
charging power; cδ  is the EV charging conversion 
efficiency. Thus, the total charging power per hour is 
calculated. By simulating the charging behaviour of each EV 
each day, we obtain: 

if the EV  is charging at hour  of day 
if the EV  i

1
s not charging at hour  of 

   
day 

 
0   

lik

lik

i k l
i

A
A k l

=
 =

     (3) 
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Figure 2. Stochastic charging demand flow diagram for EVs obtained using MC simulation. 

where 1 365l≤ ≤ ; 1 i N≤ ≤ ; 1 24k≤ ≤  and all are integers. 
Therefore, the EVs load is calculated below: 

1

,
N

lk i lik
i

P P A
=

= ∑      (4) 

where iP  is the charging power of the ith EV; lkP  is the 
charging power demand at the kth hour of the lth day. 
2.1.2. Monte Carlo simulation of EVs charging 
Monte Carlo (MC) simulation is introduced to simulate the 
electricity demand of large-scale EVs and obtain the 

electricity demand of N  EVs at each time slot of the day to 
derive a typical daily EV charging demand, EVO contains 
two parts: ηN denotes the numbers of EVs complying with 
the PBDR scheme and (1 )Nη− denotes those of  randomly 
EVs charging, η=20%, and the two are independent. The 
specific simulation diagram is shown in Figure 2. By MC 
simulation, the EV load curve is derived at different η and 

,N as shown in Figure 3. Sensitivity analysis of EV 
charging is shown in Figure 4. 
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Figure 3. Total daily charging load of EVs including two types of EVOs. 

Figure 4. Sensitivity analysis of EV charging load using MC simulation. 

2.2. Uncertainties modeling 

The uncertainties of WT, PV and load demand are modeled 
in this section. 

2.2.1. Probabilistic photovoltaic model 

The solar irradiance r approximately obeys the beta 
distribution for a certain time period [14]. The PV output 
depends mainly on the amount of solar irradiation, the 
ambient temperature and the characteristics of the PV 
modules themselves [40], shown below: 

7 
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1 21 1

1 2

1 2 max

( ) ( )( ) 1
( (

,
) )r

max

r rf r
r r

λ λ
λ λ
λ λ

− −
  

 
Γ + Γ

= −  Γ 
 Γ  

            (5) 

where ( )Γ  is the gamma function. The PV output PVP  is 
expressed as PV PV PVP rA η= , where PVA  and PVη  denote the 
PV radiation area and the conversion efficiency. The 
probability density function (PDF) of the PV output is: 

1 21 1

1 2

1 2 max max

( ) ( )( ) 1
( ) ( )

.
PV PV

PV i i
i P VP V P

P Pf P
P P

λ λ
λ λ
λ λ

− −
 Γ + Γ

= − 
 
 Γ Γ  
 
 

            (6) 

      The actual generated power of the PV panel ( )PVP t   in 
time slot t, mainly influenced by two factors, the ambient 
temperature and the solar radiation intensity [40], presented 
as follows: 

( ) ( ) ( )( )
1

.1
pv

i

N
a

PV rpv Pv a s
s

R t
P t P f k T t T

R=

 
 = + −    

 
∑            (7) 

      The actual temperature of the PV cells is estimated from the 
actual solar radiation intensity ( )aR t  and the actual ambient 
temperature, which denotes as ( ) ( ) ( )0.0256a ae aT t T t R t= +  
[41]. 

2.2.2. Probabilistic WT model 
The output power of the WT varies with the wind speed, the 
output power of the WT is obtained by the linear 
interpolation method based on the actual wind speed. The 
actual power of the WT in time slot t is mainly determined 
by the cut-in and cut-out wind speed. The PDF of the wind 
speed is 1( ) ( / )( / ) [ ( / ) ]expk k

wf v k c v c v c−= − , where v, k, and 
c are the actual wind speed, the shape factor and the scale 
factor. The WT output WTP  is described below: 

0,  ,
[( ) / ( )] ,   

,   

in out
WT

in rated in ra

ra

ted in rated

rated o ted ut

v v v v
P v v v v P v v v

P v v v


= −

< ≥
≤
≤

−
≤

 ≤



 (8) 

where ratedv  and ratedP  are the rated wind speed and the 
WT rated power output; inv  and outv  denote cut-in and cut-
out wind speed. According to Eq. (8), the WT output PDF is 
formulated below, where ( / ) 1rated inh v v= − : 

0,            0

1-exp{-[(1+ / ) /z] }
( )

 +exp[-( /z) ],                   0 <

1,           

WT
i

WT u
i rated inWT

W i u WT
out i rated

WT
i rate

P

hP P
f P

P P

P P

ν

ν

<

=
≤

≥ d









        (9) 

1
.

WT

WT
i

N
WT

iP P
=

= ∑                  (10) 

2.2.3. Probabilistic load model 
Load fluctuations are characterized by a widely used normal 
distribution model, the PDF is described below [42]: 

( ) ( )2

2

1 exp ,
22

L
LL

l
LL

P
f P

µ

σπσ

 − = −  
 

 (11) 

where LP  is the fluctuating load, Lµ  and Lσ  are the mean 
and standard deviation of the load. 
2.2.4. El model 
To facilitate the inclusion of multiple random variables, the 
Equivalent Load (EL) power is defined as the difference 

between the total load power and the combined WT, PV, GT 
and FC output power, ELP  denotes the EL power: 

( ).
EL

E EV ELZ EC EB

WT PV GT FC

P P P P P P
P P P P

= +

++ +

+ + +

−
    (12) 

2.3. Subsystems modeling 
2.3.1. CGT power generation 
The natural gas consumption and waste heat generated by 
CGT is calculated [41], where δ  is 33.50 MJ/m3 [43,44]: 

( ) ( )
1 2

,gt gb
gas

P t T t Q
Q

β δ β δ
= +           (13) 

( ) 1

1

1 .wh GTQ P t β ε
β

− −
=        (14) 

2.3.2. Cooling and heating subsystem 
WHBs and ACs are the terminals of waste heat utilization: 
AC uses waste heat to supply the cooling load and WHBs 
use waste heat to supply the heat load. The relationship is 
below: 

,whb
wh

wh

a

a

c

b c

Q QQ
γ γ

= +             (15) 

.ebeb ebQ Hγ=            (16) 
      The sources of supply of cooling and heating loads are 
summarized below: 

,C ac ecQ Q Q= +           (17) 
.H whb gb ebQ Q Q Q+= +    (18) 

2.3.3. Hydrogen energy storage subsystem 
The hydrogen produced by electrolysis is stored in a 
hydrogen storage tank under pressure by a compressor. More 
physical fluid characteristics are referred to the literature 
[45,46]. The model of the hydrogen storage tank is below: 

( ) ( )

( )
, ,

1

( )           =

1 +

1 +[ ]( ) .

in out
hst hst hst t hst t

TE
hst sum

V t V t V V
PV t tP t τ
τ

= − −

− −
 (19) 

2.3.4. PGST operation subsystem 
The Power-to-Gas-to-Storage Tank (PGST) operation model in 
the HESS converts the surplus available output of REPG or 
purchased power during the valley hours into hydrogen, while 
stored in the hydrogen storage tank to supply FCs cogeneration 
during the peak hours, which improves the ability to absorb 
clean energy, reduces the abandonment of the REPG, enables 
the power-gas-power cycle mode and improves the economic 
and environmental benefits of the IES [47]. The P2G chemical 

reaction is 2 2 22 2
electrolysis

H O H O+→ , PGST contains the P2G 
and the gas-to-tank process. Equipping HESS in remote 
isolated parks allows flexible participation in the operation 
of IES. The energy state in the storage tank is expressed 
below: 

0

2
, , ,

1
.

T
P G

GST t GST t GST GST t
t

S S Qη
=

= +∑           (20) 

2.4. Objective function 
The rising economic development requires an increase in 
energy consumption, which accordingly leads to the global 
environmental pollution [48]. ACC and Annual Carbon 
Emission (ACE) are used to denote the optimization 
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objective of the economic and environmental performance. 
First, a single-objective optimization is performed with the 
objectives of minimizing ACC, minimizing ACE, to obtain 
the minimum ACC, ACE under single-objective 
optimization, labeled as ACC1 and ACE1. Then, an objective 
function based on deviation preference is constructed to 
optimize ACC, ACE simultaneously, labeled as ACC2 and 
ACE2. The weighting coefficient is determined based on the 
decision-makers’ preference. First, decision-makers engaged 
a decision panel consisting of more than two-thirds of 
technical and economic experts for a specific project, using 
a weighted average method, and then determine the 
weighting coefficients for environmental and economic 
objectives by means of the expert evaluating method. The 
objective function has the following advantages:  

1. Unifying the dimensions of ACC, ACE;
2. Optimizing ACC, ACE by weight coefficients

simultaneously.
The objective function constructed is expressed as follows: 
Min (deviation satisfaction) =  

2 1 2 1
1 2

1 1

,ACC ACC ACE - ACEW  +W
ACC ACE
−  (21) 

where 1W and and 2W  denote the weight coefficients to 
indicate the optimization preference. When 1 12, ,max( )W W W=
it places more emphasis on economic performance, and vice 
versa. In addition, 1 2 1W W+ = . 

2.4.1. The objective function of ACC 
The ACC is one of the important objectives of system 
configuration optimization. ACC (Eq. (22)) includes major 
equipment purchase cost (Eq. (23)), O&M (Operation and 
Maintenance) cost (Eq. (24)), fuel (natural gas) purchase cost 
(Eq. (25) electrolytic water purchase cost (Eq. (26)), carbon 
tax (Eq. (27)), hydrogen purchase cost (Eq. (28)). Where the 
carbon tax is composed of a piecewise linear function based 
on a ladder-type carbon trading mechanism by constructing 
a piecewise linear function, shown below: 

pa om f w phcarbontaxACC C C C C C C= + + + + + ,       (22) 

1

(1 )
(1 ) 1

tn

pa i i t
i

k kC a c
k=

  +
=   + − 
∑ ,           (23) 

1

n

om i iom
i

C a c
=

= ∑ ,   (24) 

f gas gasC Q c= ,    (25) 

w w wC Q c= ,             (26) 

IES,

carbontax

ACE ,t QuotaE ACE
C

= −

=
 (27) 
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  (28) 

( )ph ph hp htcC Q c= + ,                 (29) 

where ia  represents the installed capacity; ic  and iomc
represent the unit price and O&M cost; k represents the 
interest rate of bank loans (4.9%); t indicates the repayment 

period (20 years); gasc  indicates the unit price of natural
gas (2.8 ¥/m3); wc indicates the unit price of treated water (4.1 
¥/m3) and cT  represents the base price of the carbon tax (20 
¥/ton) [49]. phQ  denotes the amount of hydrogen purchased. 

hpc  and htc  are the hydrogen production and 
transportation cost. The hydrogen production cost is about 
21.3 ¥/kg [41]. The unit price of a long tube trailer for 
transportation within 200 km is about 11.03 ¥/kg [41].  

2.4.2. The objective function of ACE 
Since the energy source of IES is mainly from natural gas, 
among them, natural gas as a fossil fuel generates CDEs and 
emits CO2 through the equipment sources of CGT and GB, 
ACE is an important indicator of IES regarding 
environmental performance and the mathematical expression 
of ACE is calculated below: 

1,gasACE Q ϕ=       (30) 

( ) ( )
1 2

,GT nb
gas

P t T t QQ
β δβδ

= +           (31) 

where 1ϕ   ( 1ϕ  =2.01 kg [43]) represents CDE (kg/m3) by 
burning one cubic meter of natural gas. 
2.5. Constraints 
The constructed IES contains several constraints, such as 
equipment, power balance, renewable energy, power supply 
reliability, site spatial and resource constraints and spinning 
reserve constraints. 
2.5.1. Equipment constraints 

1. Capacity restriction of equipment constraints:
min max

ii iUP P UP≤ ≤  (32) 
0,When the unit is shut during slot 
1,When the unit is on during slot 

t
U

t


= 


                          (33) 

where Pi
min and Pi

max represent the minimum and maximum 
power.  

2. The start-up and shut-down condition constraint:
( )( )
( )( )

1 1

1 1

0

0

on on
t t t

off off
t t t

U U T T

U U T T

− −

− −

 − − ≥


− − ≥

  (34) 

where 1
on

tT − and 1
off

tT −  denote the continuous on/off time of the 
equipment before the time slot t The equipment in operation do 
not remain continuously on and off simultaneously.  

3. Climbing power constraint:

1

,0
down t t up

t t rated

P P P P

P P
−∆ ≤ − ≤ ∆


≤ ≤

 (35) 

where downP∆ , upP∆ , and ,t ratedP  denote the falling power, 
climbing power and rated power. 
2.5.2. Electrical, thermal and cooling balance constraints 
Power balance constraint: the generation output of GTs, PVs, 
WTs and FCs equal to the power of the electric load, ELZs input 
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power and ECs is the input power is below: 
,EL

GT PV WT FC E EV ELZ EC EBP P P P P P P P P P+ + + = ++ + + +    (36) 
where ELZs and FLs do not run at the same working state 
simultaneously, which divided into two parts: ELZs working 
and FCs working states, which express as follows: 

EL
GT PV WT FC E EV EC EB

EL
GT PV WT E EV ELZ EC EB

P P P P P P P P P

P P P P P P P P P

 + + + = + + +


+

+

++ = + + + +
 (37) 

where EP  and EVP  represent the power demand of the electric 
load and EVs load; ELZP , ECP , EBP  denotes the input power of 
ELZ, EC,EB. 

2.5.3. Thermal balance constraint 
The output thermal power of WHB and GB should satisfy the 
power required by the thermal load: 

= ,WHB GB EB HLP P P P+ +  (38) 

where HLP  represents the heat load; WHBP , ,GBP and EBP
represent the output power of WHB, GB, and EB. 

2.5.4. Cooling balance constraint 
The output power of ACs and ECs must satisfy the power 
required by the cooling load: 

=AC EC CLP P P+ ,              (39) 
where CLP , ,ACP and ECP  represents the cooling load demand, 
ACs power output and ECs power output. 

2.5.5. HESS constrains 
The operating power of the ELZ must satisfy the following 
condition: 

0.05 rated
ELZ oELZP P≤  (40) 

where rated
ELZP  represents the rated power of ELZ; oELZP

represents the operating power of ELZ and the energy 
consumption of ELZ to produce one mole of hydrogen is ∂. The 
equivalent SOC of HSTs should satisfy the upper and lower 
bound constraints is as follows: 

min max
HST HST HSTSOC SOC SOC≤ ≤  (41) 

where min
HSTSOC  is 0 and max

HSTSOC  is 0.9. 
2.5.6. Renewable energy constraints 
To make full use of the rich renewable energy and reduce the 
environmental pollution caused by fossil fuels, the REPG 
installed capacity ratio renewf  is not less than its lower boundary 

renew, minf  , where Lmax is the annual peak load: 

.WT WT PVrenew renew,minmax

N P N PPVf f
L
+

= ≥               (42) 

2.5.7. Power supply reliability constraint 
When the total output of distributed power supply is not 
sufficient to meet the load demand, partial load cutting is 
required. However, the Loss of Power Supply Probability 
(LPSP) should be within the lower and upper limits, the smaller 
the upper limit value, the higher the reliability of the IES power 
supply [50]: 

( )
.

los
8760

LPSP,maxLPSP,min 8
s1

load( )
7

1

60

P t
tf f

t
t

∑
=≤ ≤

∑
=

          (43) 

2.5.8. Site spatial and resources constraints 
The available space for PV panels, WTs, HSTs and economic 
and supplier resources for ELZs and FCs is limited in the IES. 
Therefore, the number of these types of equipment is expressed: 
0 ,maxN N≤ ≤                                                                           (44) 
where { }, , , ,PV WT HST ELZ FCN N N N N N=  represents the number 
of PV panels, WTs, HSTs and ELZs, ELZs and FCs; ,PV maxN , 

,WT maxN  , ,HST maxN , ,ELZ maxN , ,FC maxN  denotes the maximum 
number. 

2.5.9. Spinning reserve constraints 
The functions of storage device and grid participating is 
considered in the provision of reserve services. In the case of no 
RGs output, the spinning reserve constraint [51] is as below: 

( ),
max , , , , ,grid e grid EL HL CL GL

t e t e t e t e tR P P P P P≤ ++− +          (45) 

( ){ },m xin a ,mmin / , ,ESD ESD ESD ESD ESD
t dc t dc dc tR C C t P Pη≤ − ∆ −             (46) 

( ){ } ,grid ESD RG WT PV
rob t t t t tP R R E P P P α+ ≥ − − ≥          (47) 

where α  is considered as a pre-given confidence level. 
2.6. Solution approach 
Based on the above model, the uncertainty problem is 
transformed into a deterministic Mixed-Integer Linear 
Programming (MILP), and Branch and Bound Algorithm (BBA) 
is applied to solve it. Our main work is modeling and the 
algorithm is based on the Cplex solver, which is commonly 
applicable in the power system industry, and uses existing 
proven algorithms that are recognized as effective. 

2.6.1. Definition of SOT 
Sequence Operation Theory (SOT) is used as a tool to deal with 
uncertainty based on sequence convolution in the field of digital 
signal processing [52]. The probability distributions of random 
variables are represented by probability sequences, and the new 
sequences is obtained from operations between sequences. 

Definition 1. A discrete sequence a(i) is called a probability 
sequence when its length aN  satisfies the following definition: 

( ) ( )
0

1, 0,    1,2,...,
a

a
i

N

a i a i i N
=

= ≥ =∑ .      (48) 

Definition 2. The expectation of the given probabilistic 
sequence a(i) with the length Na, defined below: 

( ) ( ) ( )
0 1

.
i iN N

i i

E a ia i ia i
= =

   = =   ∑ ∑     (49) 

2.6.2. Serialization of random variables 
The Discretized Step Transformation (DST) is a mathematical 
tool that has been used to handle multiple uncertainties based on 
SOT [14]. The PV and WT outputs of REPG are random 
variables in time slot t. The PDF of PV and WT is discretized 
into pieces to obtain probability sequences ( )ata i and ( ).btb i  
The probabilistic sequence length of PPV is shown as: 

, /PV
at max tN P q =   ,          (50) 
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where     is the ceiling function; ,
PV

max tP denotes the maximum 
output power of PV unit in time slot t; q is the discrete step size; 
the PV unit has a total number of 1atN +  states. Thus, the output 
of state am is ( )0a a atm mq N≤ ≤ , and the corresponding 

probability is ( )aa m . According to SOT, the probabilistic 

sequence ( )ata i  of the PV output [53] is: 

( )

( )
( )
( )

/ 2

0
/ 2

/ 2

/ 2

,   0

,0

,

at

at

at

at

q PV PV
p at

i q q PV PV
at p ati q q

i q PV PV

at

atp ati q q

f P dP i

a i f P dP i

f P dP i

N

N

+

−

−

=

=  < <


 =




∫
∫

∫

   (51) 

     According to the above discretization method, the 
probabilistic sequence ( )btb i  of WT outputs is calculated. 
Based on both, the probabilistic sequence of the joint outputs 
( )ctc i  is derived: 

( ) ( ) ( )ct at btc i a i b i= ⊕  

( ) ( ),             = 0,1,..., .
at bt ct

at bt ct at bt
i i i

a i b i i N N
+ =

= +∑             (52) 

The expected value of renewable energy, ( )RG
tE P , is 

gained as follows: 
( ) ( ) ( )t t

RG PV WT
tE P E P E P= +

( ) ( )
0 0

,
at bt

at bt

N N

at at bt bt
m m

m qa m m qb m
==

= +∑ ∑          (53) 

Similarly, the probability sequence of fluctuating load ( )dtd i

and equivalent load ( )ete i  is given below: 

( ) ( )et dte i d i= ㊀ ( )ctc i

( ) ( )

( ) ( )

,

,

1,...,
=

0
dt ct et

dt ct

dt ct et et
i i i

dt ct et
i i

d i c i i N

d i c i i
−

≤

=

 =



=


∑

∑
      (54) 

2.6.3. Deterministic transformation of chance constraint 
To convert the chance constraint Eq. (47) into its deterministic 
equivalence class, let: WT PV

t tZ P P= + , the distribution of the 
variable Z is below: 

( ) ( ) ( ) .
z

Z w pF z f z y f y dy dz
∞

−∞ −∞

 = −  ∫ ∫          (55) 

      However, the form of the PDFS listed above is too 
complicated to handle, so the transformation from chance 
constraint to its deterministic class is accomplished by SOT to 
handle the probability distribution of the variable Z. The 
probability sequence of the joint REPG and EL power is shown 
in Tables 2 and  3, given below: 
( ) ( ) ( ) 0,1,2,...,, .

at bt ct

ct at bt ct
m m

at bt
m

c m a i b m N Nm
+ =

= += ∑            (56) 

The Eq. (47) is not solved directly because it is a chance 
constraint. Therefore, a new binary variable mω is introduced 
below: 

( )1,

0,

, 0,1,...,

otherwise
ct ct ct

grid ESD RG
t t t

m

R R qP m m NE
ω

 + ≥ −
=

=



 (57) 

The chance constraint is then simply expressed as follows: 

Table 2.  The probabilistic sequence of joint renewable energy. 

Power (MW) 0 q  … cm q … ctN q

Probability (0)c  (1)c  … ( )cc m … ( )ctc N

Table 3.  The probabilistic sequence of EL power. 
Power (MW) 0 q … cm q … ctN q

Probability (0)e  (1)e  … ( )ce m … ( )cte N

( )
0

,
at bt

ct

N N

m
m

ctc mω α
+

=

≥∑                          (58) 

where Eq. (58) shows that the spinning reserve capacity of 
the MG satisfies the condition that the required confidence 
level is greater than or equal to α for all possible output 
values corresponding to the EL in period t. Therefore, Eq. 
(58) is equivalent to Eq. (47), which is converted into a 
deterministic equivalent form. The original model cannot be 
solved directly and efficiently because it contains 
uncertainties in the probability distribution of the new energy 
generation. It needs to be transformed into a solvable MILP 
by three steps, including transforming the joint probability 
distribution of wind power generation and PV power 
generation, deterministic transformation of the chance 
constraint, and linearization, so that the deterministic 
equivalent form is represented as a solvable MILP. The 
solution process of the proposed DST approach is shown in 
Figure 5. 

2.6.4. Analytical framework 
Figure 6 summarizes the analytical framework. All 
simulations were performed on a PC platform with Radeon 
Graphics CPUs (3 GHz) and 16 GB RAM. After the above 
mathematical conversion steps, the obtained optimal 
configuration model was transformed into a MILP. The 
simulation is based on the YALMIP language environment, 
which runs the code on the MATLAB platform and calls 
CPLEX to solve the model. In this simulation, the BBA 
under CPLEX 12.6 was used to solve the problem. 

3. Simulation
The parameters of various types of equipment in the IES are 
from literature [41,54-56] in this simulation. Furthermore, the 
number of EVs N=1000, the proportion of EVOs affected by 
electricity price η =  0.2. We simulated an industrial park in 
three-north regions of China. This simulation was conducted 
with a discrete step size of 2.5 kW, a confidence level of 90%, 
and load fluctuations of 10%. As shown in Figures 7 and 8, the 
data were obtained for 8760 hours in a year of wind and PV 
power output. The natural wind-PV-hydrogen-gas-EV in the 
IES was designed to supply the various energy loads, including 
EV load demand. Figure 9 shows the distribution of load data 
for six types of loads including EVs on a typical day. 
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Figure 5. Flow chart of the proposed solution steps. 

Figure 6. Proposed analytical framework for IES configuration optimization. 
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Figure 7. Annual temperature data and output data of the PV panel. 

Figure 8. Annual temperature data and output data of the wind 
turbine. 
3.1. Confidence level on reserve capacity 
By selecting different confidence levels, the corresponding 
spinning reserve capacity was obtained, shown in Figure 10. As 
we can see, compared to other confidence levels, the 100% 
confidence level behaves differently at peaks and suddenly 
reach a higher value, which indicates that fully reliable 
operation requires the supply of a very high reserve capacity and 
is not very cost effective. The required spinning reserve capacity 
gradually increases as the confidence level increases 
accordingly, which inevitably leads to higher operating costs for 
the CIES, indicating an increase in the operational reliability of 
the CIES. Meanwhile, this increases the operating cost. 
Therefore, an appropriate confidence level is necessary to be 
chosen to trade off the reliability and cost effectiveness.  

3.2. Analysis of discrete steps 
The DST method is introduced to solve CCP. When using DST, 
step size q affects spinning reserve capacity, when it is small, 
the computational accuracy is higher, but it inevitably leads to 
the problem of too large probability sequences, resulting in a 
sharp increase in computation time. In contrast, a larger step size 
saves computational time, but leads to the generated sequence 
not fully reflecting the actual probability distribution. The 
choice of step size was analyzed and the results are shown in 
Figure 11. 

Table 4. The optimal result of the capacity configuration 
 of the original setting (W1=0.3, W2=0.7). 

Variable Configuration 
result 

Variable Configuration 
result 

𝑎𝑎𝐺𝐺𝐺𝐺 (kW) 52 𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸 (kW) 5 
𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊 (kW) 0 𝑎𝑎𝑊𝑊𝐻𝐻𝐺𝐺 (kW) 1600 
𝑎𝑎𝐴𝐴𝐴𝐴 (kW) 15479 𝑎𝑎𝐹𝐹𝐴𝐴 (kW) 88 
𝑎𝑎𝐺𝐺𝑊𝑊 (kW) 0 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴1 (108¥) 2.822 
𝑎𝑎𝐸𝐸𝐴𝐴 (kW) 10210 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸1 (107 kg) 2.147 
𝑎𝑎𝐸𝐸𝑊𝑊 (kW) 19121 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴2 (108¥) 3.141 
𝑎𝑎𝑃𝑃𝑃𝑃 (kW) 9000 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2 (107 kg) 2.403 
𝑎𝑎𝑊𝑊𝐺𝐺 (kW) 532 𝑆𝑆𝑆𝑆 0.118 

3.3. Optimal configuration results 
The optimization results are outlined in Table 4. The investment 
and procurement of the 11 pieces of equipment, shown in detail 
for the cost and investment structure under the original 
optimization model in Figures 12 and 13. The equipment 
procurement cost of HESS accounts for about two-thirds of the 
total cost, while the procurement cost of REPG including WTs 
and PVs, CCHP including GTs, ACs and WHBs accounts for 
more than 30%， HESS subsystem accounting for the largest 
share of equipment procurement costs, as HSTs and FCs 
account for the major procurement costs of HESS. 
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Figure 9. The distribution of heating, cooling, hydrogen loads and electricity and EVG. 

Figure 10. Spinning reserve capacities under different confidence 
levels. 

GTs account for nearly 80% of the CCHP system. The 
procurement cost of CCHP is mainly from GTs, while the 
procurement cost of HESS is mainly derived from HSTs and 
FCs. The breakthrough in reducing the equipment 
procurement cost is primarily focused on FCs, HSTs and 
GTs. In reality, HESS costs including HSTs and FCs is 
excessively expensive, which accounts for a large proportion 
of the equipment procurement cost, HSTs, FCs and GTs are 
the equipment that should be prioritized for cost reduction. 
The cost structure of HESS needs to be optimized. In 
addition, the procurement cost of hydrogen is too high, and 
more hydrogen should be produced by using electrolysis in 
HESS through excess electricity from REPG to meet the 
park's demand. However, as technological advancements 
and the emergence of the scale effect, the investment value 
will be highlighted. The typical daily load supply of various 
types of equipment output is shown in Figure 14. Overall, the 
coordinated optimization of the IES has put the energy 
supply and demand in a relatively stable state.  

4. Further discussion and analysis
4.1. Sensitivity analysis 

Table 5 summarizes the optimization results. Figure 15 shows the 
performance in terms of cost and CDEs. CDER in this IES results 
in an increase in cost, which is mainly due to the increase in FCs. 
When the optimization preference is changed from

1 20.6, )( 0.4W W= =  to 1 20.3, 7 ,( 0. )W W= =  the lower cost 
increase results in significant CDER. While the preference shifts 
from 1 20.3, )( 0.7W W= = to ( 1 20.1, 9 ,( 0. )W W= = only limited 
CDER is achieved at the higher growth cost. Moreover, when the 
preference shifts from 1 20.6, )( 0.4W W= =  to 1 20.9, )( 0.1W W= = , 
the preference changes have little effect on CDEs and cost 
fluctuations, while when the preference shifts from

1 20.9, )( 0.1W W= = to 1 21, 0 ,( )W W= =  the lower cost decrease 
produces significant CDEs, implying that the cost-effective 
performance of this optimization shift is  unworthy. As a result, 
pursuing either environmental or cost objectives is inappropriate 
in this case, the decision-makers’ optimal optimization preference 
range is concentrated between 1 20.1, )( 0.9W W= =  and 

1 20.6, 4 .( 0. )W W= =  

4.2. Comparative analysis 

4.2.1. ACE comparison of CDS and IES 
Power generation is mainly derived from REPG and natural gas 
in this IES. The former is a zero-carbon emission, while the 
latter generates CDEs [57], when the CDER level of the IES is 
evaluated, the results show that there is a significant advantage 
in CDER when compared to the Conventional Distribution 
System (CDS). The comparative optimization scenario setting 
is shown in Table 6.  
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Figure 11. Effects of different discrete steps on the optimal results. 

Figure 12. The proportion cost of the main equipment and ACC. 

Figure 13. The proportion cost of purchased equipment. 
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Figure 14. Typical daily load supply of various types of equipment output. 

Table 5.  The configuration results under different optimization preferences.
(W1,W2) (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0) 
𝑎𝑎𝐺𝐺𝐺𝐺  
(kW) 

62 61 50 52 55 58 62 62 62 62 63 

𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊 
(kW) 

1 17906 0 0 17906 2227 17906 3854 3854 3854 4240 

𝑎𝑎𝐴𝐴𝐴𝐴  
(kW) 

18539 19392 15137 15479 16489 19392 18443 18568 18568 19392 19066 

𝑎𝑎𝐺𝐺𝑊𝑊 
(kW) 

0 19121 0 0 19121 198 125 0 699 34 0 

𝑎𝑎𝐸𝐸𝐴𝐴  
(kW) 

19540 21973 10257 10210 21973 9595 9511 9511 9511 9511 4605 

𝑎𝑎𝐸𝐸𝑊𝑊 
(kW) 

19122 19121 19121 19121 19121 18924 18919 18924 18422 18528 16888 

𝑎𝑎𝑃𝑃𝑃𝑃
(kW) 

9000 9000 9000 9000 9000 0 0 0 0 0 0 

𝑎𝑎𝑊𝑊𝐺𝐺  
(kW) 

532 532 532 532 532 532 511 511 511 511 117 

𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸  
(kW) 

5 5 5 5 5 5 0 0 0 0 5 

𝑎𝑎𝑊𝑊𝐻𝐻𝐺𝐺  
(kW) 

1600 1600 1600 1600 1600 1600 1432 1432 1432 1432 1428 

𝑎𝑎𝐹𝐹𝐴𝐴  
(kW) 

400 247 130 88 58 30 0 0 0 0 0 

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴1 
(108¥) 

2.822 2.822 2.822 2.822 2.822 2.822 2.822 2.822 2.822 2.822 2.822 

𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸1 
(107kg) 

2.147 2.147 2.147 2.147 2.147 2.147 2.147 2.147 2.147 2.147 2.147 

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴2 
(108¥) 

4.004 3.578 3.258 3.141 3.066 2.947 2.831 2.829 2.829 2.830 2.823 

𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2 
(107kg) 

2.149 2.309 2.351 2.403 2.469 2.523 2.602 2.602 2.603 2.603 2.876 

𝑆𝑆𝑆𝑆 0.001 0.095 0.107 0.118 0.125 0.110 0.087 0.065 0.045 0.024 0.000 

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (s) 32.81 49.09 49.07 44.73 54.05 70.03 67.98 61.94 67.87 71.55 74.30 
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Table 6. Comparative optimization scenario description setting. 

Scenario CDS IES 

Characteristics Coal-fired thermal power + GB+EC W1=0.3, W2=0.7, N=1000 

Table 7. Comparison results of CDEs between CDS and IES. 
CDS IES 

Load type CDEs/t Load type CDEs/t 
Electricity by thermal power 23,642.47 

𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2  by gas supply 24,694.90 Heat load by GB 7,039.27 
Cold load by EC 92,513.38 

Coal gasification to hydrogen 130,902.02 
Purchased hydrogen by natural gas (56% CCT) 32,693.79 
Hydrogen from electrolysis via REPG 0.00 

Total 254,097.13 Total 57,388.69 

Figure 15. The cost-effectiveness of different optimization 
preferences. 

     In terms of CDEs, the original optimization scenario shows 
a significantly higher CDER than the conventional distribution 
scenario. The directly generated 𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2  in this IES are only 
20.05% of the CDS when the ACE from hydrogen is excluded. 
Options for hydrogen sourcing include fossil fuel-based 
hydrogen production (grey hydrogen), fossil fuel-based 
hydrogen production combined with carbon capture, utilization 
and storage (CCUS, blue hydrogen), and renewable hydrogen 
(green hydrogen). Assuming that hydrogen in CDS is produced 
using coal gasification technology and the hydrogen purchased 
in the IES is produced by natural gas reforming with 56% 
carbon capture technology (CCT). When comparing CDEs 
from hydrogen, the advantages of IES are clear, ACE in this IES 
accounts for only 24.98% of the CDS. Overall, ACE in this IES 
accounts for only 22.59% of the CDS. The specific details are 
shown in Table 7 and Figure 16. 

4.2.2. Electric vehicle group comparison of IES and non-IES 
A comparative calculation between the two situations in 
terms of ACE and total annual charging cost was made to 
analyze the operation level of different EVGs in the IES and 
non-IES regions. The assumptions include:  Figure 16. The proportion of CDEs between CDS and IES. 
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Table 8. Results of capacity optimization configuration in various scenarios. 

Variables 

W1=0.3, W2=0.7 
Original 
 scenario 

No 
resources 

No 
PV/WT 

No 
 PV 

No 
WT 

No 
HST 

No 
 ELZ 

No 
FC 

𝑎𝑎𝐺𝐺𝐺𝐺  (kW) 52 10 51 51 52 16 51 52 
𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊 (kW) 0 0 0 0 0 17906 19121 4626 
𝑎𝑎𝐴𝐴𝐴𝐴  (kW) 15479 2926 15394 15394 15479 4654 15342 15400 
𝑎𝑎𝐺𝐺𝑊𝑊 (kW) 0 0 0 0 0 0 0 0 
𝑎𝑎𝐸𝐸𝐴𝐴  (kW) 10210 21635 15874 15874 10210 21231 12103 10093 
𝑎𝑎𝐸𝐸𝑊𝑊 (kW) 19121 19121 19121 19121 19121 19121 19121 19121 
𝑎𝑎𝑃𝑃𝑃𝑃  (kW) 9000 0 129293 129293 9000 9000 9000 9000 
𝑎𝑎𝑊𝑊𝐺𝐺  (kW) 532 511 532 532 532 532 800 532 
𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸  (kW) 5 0 5 5 5 5 70 5 
𝑎𝑎𝑊𝑊𝐻𝐻𝐺𝐺  (kW) 1600 2531 1600 1600 1600 2483 1600 1600 
𝑎𝑎𝐹𝐹𝐴𝐴  (kW) 88 450 109 109 88 400 94 86 
𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴1(108¥) 2.822 2.814 2.822 2.822 2.822 2.822 2.814 2.822 
𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸1 (107 kg) 2.147 1.112 1.966 1.966 2.147 1.147 2.025 2.147 
𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴2(108¥) 3.141 4.689 3.550 3.550 3.141 4.597 3.395 3.122 
𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2 (107 kg) 2.403 1.128 2.189 2.189 2.403 1.155 2.116 2.429 
𝑆𝑆𝑆𝑆 0.118 0.210 0.157 0.157 0.118 0.193 0.093 0.124 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (s) 44.73 71.14 68.75 68.45 79.13 64.86 57.51 63.70 

Figure 17. Charging comparison of different EVG between IES and 
non-IES. 

(i) EVG charging cost includes both electric charging cost  

  and charging service fee，and the charging service fee is 0.8 
¥/kWh, which is incurred due to investment in charging piles, 
operation and maintenance;  

(ii) The charging cost outside the radiation area of EVG is 
composed of TOU price and the charge service fee, using 
electricity from thermal power generation, while the charging 
cost of EVG in the IES is based on the reference value of no 
EV charging demand and the increased ACC as charging 
cost after considering a certain scale of EVs, plus the same 
charging service fee, the above calculation is seen as EVG 
charging cost; 

(iii) CDEs in the IES are composed of CDEs produced directly 
by the IES and CDEs produced from the purchased hydrogen 
by natural gas reforming with 56% CCT; 

(iv) TOU prices are divided into valley hours at 0.307 ¥/kWh 
from 22:00 to 06:00 and peak hours at 0.617 ¥/kWh from 
06:00 to 22:00. 

      A comparison of charging costs and carbon emissions 

associated with the different EVG between IES and non-IES is 
shown in Figure 17. In general, the charging cost and ACEs in 
the IES and non-IES follow a relatively linear trend as the EVG 
size increases. Charging costs in the IES are lower than charging 
in the non-IES, with a relatively small difference between 
different EVG, while charging in the IES results in much lower 
CDEs than those in the non-IES. As a result, charging in the IES 
has not only tremendous environmental value but also a certain 
economic value. 
4.3. Scenario analysis 
Site constraints, natural gas prices and the number of EVs are 
all essential factors that affect the optimal value of the IES. The 
optimization results obtained for these three scenarios are 
summarized in Tables 8 and 9. The analysis of the scenario with 
no site constraints or supplier resource constraints for the park 
compares the optimization results without resource constraints 
such as WTs, PVs, HSTs, ELZs, and FCs, shown in Table 8; the 
natural gas price and the number of EVs are shown in Table 9. 
Conclusions is drawn with W1=0.3, W2=0.7 as the benchmark: 
when there are no spatial and resource limitation of PV panels, 
HST, or ELZ, the number of those types of equipment increases, 
ACC increases, but ACE decreases. While the resource 
constraints of WTs and FCs have almost no effect on the 
optimal value. When there are no spatial and resource 
constraints, ACC increases and ACE decreases, but relatively 
slower. When the natural gas price rises, ACC rises and ACE 
falls, while the number of EVs rises, both ACC and ACE rise. 
The former is because an increase in natural gas cost raises the 
overall cost, but the expensive natural gas cost causes customers 
to switch to renewable energy sources, resulting in CDER. The 
latter is because the increased use of EVs will directly increase 
the use of electricity and gas consumption, leading to increases 
in ACC and ACE. However, the growth of CDEs is relatively 
slow, while the use of EVs indirectly reduces the use of gasoline 
vehicles, which is beneficial to CDER. 
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Table 9. Results of capacity optimization configuration in various scenarios. 

Variables 

W1=0.3, W2=0.7 

Original 
scenario 

Natural gas 
price 

increased 
4 times 

Natural gas 
price 

increased 
10 times 

The number 
of EVs 

increased 
1.5 times 

The number 
of EVs 

increased 
2 times 

The number 
of EVs 

increased 
5 times 

The number 
of EVs 

increased 
10 times 

The number 
of EVs 

increased 
15 times 

𝑎𝑎𝐺𝐺𝐺𝐺 (kW) 52 52 61 52 54 60 70 101 

𝑎𝑎𝑊𝑊𝑊𝑊𝑊𝑊 (kW) 0 6422 17906 17906 169 5344 8221 18584 

𝑎𝑎𝐴𝐴𝐴𝐴 (kW) 15479 14818 19392 19667 15984 17955 21147 21973 

𝑎𝑎𝐺𝐺𝑊𝑊 (kW) 0 0 19121 0 0 7027 0 0 

𝑎𝑎𝐸𝐸𝐴𝐴 (kW) 10210 11653 21973 11058 9727 8761 9070 9463 

𝑎𝑎𝐸𝐸𝑊𝑊 (kW) 19121 19121 19121 19121 19121 19121 19121 19121 

𝑎𝑎𝑃𝑃𝑃𝑃 (kW) 9000 9000 9000 9000 9000 9000 9000 9000 

𝑎𝑎𝑊𝑊𝐺𝐺 (kW) 532 532 532 535 537 554 581 608 

𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸 (kW) 5 5 5 5 5 5 5 5 

𝑎𝑎𝑊𝑊𝐻𝐻𝐺𝐺 (kW) 1600 1600 1600 1600 1600 1600 1600 1600 

𝑎𝑎𝐹𝐹𝐴𝐴 (kW) 88 119 218 88 86 87 110 143 

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴1 (108¥) 2.822 3.916 5.976 2.828 2.835 2.882 3.001 3.368 
𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸1 
(107 kg) 

2.147 2.147 2.147 2.170 2.193 2.335 2.633 3.068 

𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴2 (108¥) 3.141 4.221 6.414 3.158 3.184 3.273 3.344 3.562 
𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸2 
(107 kg) 

2.403 2.361 2.318 2.419 2.392 2.470 2.842 3.258 

𝑆𝑆𝑆𝑆 0.118 0.093 0.078 0.116 0.100 0.081 0.090 0.061 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (s) 44.73 72.29 77.33 49.07 55.29 51.48 45.89 35.67 

4.4. Carbon tax policy analysis 

Site constraints, natural gas prices and the number of EVs 
are all essential factors that affect the optimal value of 
Carbon tax policy primarily employs a tax on CDEs. In the 
new electricity market, carbon emissions are a freely tradable 
commodity, and there is a baseline in China to determine 
non-reimbursable carbon emission quotas. The current 
Chinese carbon tax base price is 20 ¥/ton [49], while the 
natural gas base price is 2.80 ¥/m³. When natural gas price 
changes, ACC will increase due to an increase in the base 
carbon tax price or natural gas price, while ACE will 
decrease due to an increase in the carbon tax base price or 
natural gas price. When the carbon tax is lower than the base 
price, not only will CDER be unaffected, but it will also 
increase ACC. These results strongly suggest that current 
carbon tax policies are ineffective in providing incentives to 
reduce ACE. In comparison, the natural gas price is more 
sensitive, a 100-fold increase in carbon tax price would be 
required to equal the CDER achieved by a 4-fold increase in 
natural gas price. The current carbon tax policy is ineffective 
in reducing the CDEs of the IES, and the current carbon tax 
threshold in China is too low compared to other countries. 
Under the current carbon tax policy, an increase in natural 
gas price is more conducive to achieving CDER since the 
increased cost of natural gas fuel will cause users to 
substitute with REPG, reducing CDEs. As seen in Figure 18, 
different decision preferences result in significant 

differences in the optimal value of CDEs. The best CDER is 
obtained when the base carbon tax price is increased to 10 to 
50 times while the natural gas price is increased by 2 to 3 
times, with the same focus on economic and environmental 
objectives (W1=0.5, W2=0.5). An increase in carbon taxes 
alone has no effect when there is more emphasis on 
economic goals. Consequently, a good carbon tax policy 
should consider not only the carbon tax adjustment, but also 
the change in natural gas price. 

5. Conclusions and future work

A natural wind-PV-hydrogen-gas-EV Integrated Energy 
System (IES) is constructed, a decision preference is 
introduced to characterize the decision maker's preferences, 
and an objective optimization model based on preference 
deviation is established. The following conclusions is drawn: 

(1) Multiple uncertainties are considered by Sequence 
Operation Theory (SOT) and CCP, the spinning reserve 
provided by the storage device and the external grid is 
established. By setting an appropriate confidence level, 
the capacity configuration achieves a trade-off between 
economy and reliability;  

(2) Sensitivity analysis is used to derive the results of the 
capacity configuration for various decision preferences, 
the optimal range was found between (W1=0.1, W2=0.9) 
and (W1=0.6, W2=0.4); 
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Figure 18.  ACE of the effects under different carbon tax and gas price. 

(3) CDEs of IES are only one-fifth of those in Conventional 
Distribution System (CDS) and the Carbon Dioxide 
Emission Reduction (CDER) effect is noticeable. 
Moreover, EV charging cost in the IES is relatively 
lower, while the CDER effect is an order of magnitude 
better than that of non-IES;  

(4) The inclusion of EV in the IES shows benefits in terms 
of economic and environmental performance. 

In further research, hydrogen Fuel Cell (FC) vehicles 
will be used as the demand side of FCs supply, while the 
discharge behavior of EVs in V2G model will be introduced 
to deepen the capacity configuration research. We will also 
consider the realistic constraints of IES, such as the physical 
thermal characteristics of fluids [58] in hydrogen energy 
storage. 

Nomenclature 
Abbreviations 
IES Integrated Energy System 
CDS Conventional Distribution System 
REPG Renewable Energy Power Generation 
HESS Hydrogen Energy Storage System 
CCHP Combined Cooling Heating and Power 
AUES Auxiliary Equipment System 
CDE Carbon Dioxide Emission 
CDER Carbon Dioxide Emission Reduction 
TOU Time-of-Use 
EV Electric Vehicle 
EVO Electric Vehicle Owner 
EVG Electric Vehicle Group 
ACC Annual Comprehensive Cost 
ACE Annual Carbon Emission 
MILP Mixed-Integer Linear Programming 
PSO Particle Swarm Optimization 
LC Life Cycle 

EH Energy Hub 
MC Monte Carlo  
PV Photovoltaic Panel 
WT Wind Turbine 
WHB Waste Heat Boiler 
AC Absorption Chiller 
ELZ Electrolyzer 
HST Hydrogen Storage Tank 
FC Fuel Cell 
EC Electric Cooler 
CGT Conventional Gas Turbine 
GB Gas Boiler 
PGST Power-to-Gas-to-Storage Tank 
SOC State of Charge 
DEP Dumped Energy Proportion 
LPSP Loss of Power Supply Probability 
CCT Carbon Capture Technology 
HFCV Hydrogen Fuel-Cell Vehicle 
V2G Vehicle to Grid 
DST Discretized Step Transformation 
CCP Chance-Constrained Programming 

SOT Sequence Operation Theory 

Parameters 
𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 Electrical price in the valley period  
𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝 Electrical price in the peak period 
𝜂𝜂 The proportion of EVOs affected by demand 

response 
𝑁𝑁 The number of EVOs 
𝐷𝐷𝐸𝐸𝑃𝑃  The private EVs daily mileage 
𝑡𝑡𝑐𝑐 Charging duration time 
𝑃𝑃𝑖𝑖 The charging power of the ith EV 
𝑃𝑃𝑣𝑣𝑝𝑝  The charging power demand at the kth hour of the 

lth day 
𝑁𝑁𝑝𝑝𝑣𝑣  The number of PV panels in the PV array 
𝑃𝑃𝑟𝑟𝑝𝑝𝑣𝑣 The rated power of PV panels in a standard 

environment 
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𝑓𝑓𝑝𝑝𝑣𝑣  The attenuation coefficient of PV 
𝑅𝑅𝑣𝑣(t) Actual light intensity at time t 
𝑅𝑅𝐻𝐻  Light intensity in the standard environment 
𝑘𝑘 Power temperature coefficient  
𝑇𝑇𝑣𝑣(t) The actual temperature of PV panel at time t 
𝑇𝑇𝐻𝐻  Standard ambient temperature 
𝑇𝑇𝑣𝑣𝑝𝑝(t) Actual ambient temperature 
𝑃𝑃𝑤𝑤𝑤𝑤𝑟𝑟𝑣𝑣𝑤𝑤𝑝𝑝𝑟𝑟 The rated power of WT 
𝑉𝑉𝑖𝑖𝑟𝑟  Cut-in wind speed 
𝑉𝑉𝑜𝑜𝑟𝑟𝑤𝑤   Cut-out wind speed  
𝑉𝑉𝑟𝑟 Rated wind speed  
𝑉𝑉(𝑡𝑡) System actual wind speed at time 𝑡𝑡 
𝑄𝑄𝑔𝑔𝑣𝑣𝑔𝑔  The consumption of natural gas  
𝑄𝑄𝑟𝑟𝑛𝑛 The heating load supplied by the GB 
𝑃𝑃𝑔𝑔𝑤𝑤  The output power of GT 
𝑄𝑄𝑔𝑔𝑛𝑛  The heat load provided by the GB 
𝛽𝛽1 The power generation efficiency of GT 
𝛽𝛽2 The heating efficiency of GB 
𝛿𝛿 The minimum heat of combustion value of natural 

gas 
𝜀𝜀 The heat loss coefficient of GT 
𝐻𝐻𝑤𝑤ℎ𝑛𝑛  The waste heat used by WHB 
𝐻𝐻𝑣𝑣𝑐𝑐  The waste heat used by AC 
𝑄𝑄𝑤𝑤ℎ𝑛𝑛  The heat load supplied by WHB 
𝑄𝑄𝑣𝑣𝑐𝑐  The heat load supplied by AC 
𝑄𝑄𝑝𝑝𝑛𝑛  The heat load supplied by EB 
𝛾𝛾𝑣𝑣𝑐𝑐  The cooling performance coefficient of AC 
𝛾𝛾𝑤𝑤ℎ𝑛𝑛  The conversion efficiency of WHB 
𝛾𝛾𝑝𝑝𝑛𝑛  The conversion efficiency of EB 
𝑃𝑃𝑔𝑔𝑟𝑟𝑠𝑠(𝑡𝑡) The total power generation in time slot  𝑡𝑡 
PTE (t) The electric power in time slot  𝑡𝑡 
𝜏𝜏1 The efficiency of the converter 
𝜏𝜏2 The efficiency of the electrolyzer unit 
𝜏𝜏3 The efficiency of fuel cell 
𝜑𝜑1 CO2  emitted by burning 1 m3 of natural gas 
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