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Abstract. This study focuses on an artery with multiple stenoses, emphasizing the
electro-osmotic e�ects. The artery's walls are porous, and slip boundary e�ects are
present. Blood ow problems are better modeled with a slip and porous border. It is
examined extensively due to the wide range of applications in the medical �eld, especially
in diagnosing drug delivery and handling cellular irregularities. In this paper, we have
visualized the non-Newtonian behavior of blood by using viscoelastic uids as Williamson's
uid model. A mathematical model for an incompressible uid is created, and the
mathematical issue is then transformed into its dimensionless form by applying limitations
in the case of mild multiple stenoses. The partial di�erential equations for the velocity
and temperature pro�les can be found when the problem is put into a dimensionless form.
Analytical solutions of the resulting system are calculated with the help of the Homotopy
Perturbation Method (HPM). The visual representation of analytically obtained solutions
is investigated for both symmetric and non-symmetric geometries of stenosis. For varied
values of ow rate Q and electro-osmotic parameter m, the streamlines are examined in
detail.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Blood ow via narrowed, stenosed arteries has recently
attracted the attention of researchers. This is because
blood ow through arteries poses serious health risks
and is a leading cause of mortality and morbidity in
industrialized countries. The narrowing of an artery,
known as stenosis, may occur due to a signi�cant
buildup of plaque and can result in a signi�cant
decrease in blood ow. Plaque pieces, called emboli,
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could break o� and get stuck in an artery further
downstream, blocking it. The study of deformation and
blood ow through stenosed arteries can be modeled
as a Newtonian ow only in large arteries where the
shear rate is greater than 100 per second. Blood is not
a solid material; it is made up of a large number of
cells like platelets, red blood cells, white blood cells,
and di�erent types of salts. Blood is considered a
heterogenous mixture because it is a mixture of plasma
and solid material (platelets, red blood cells, white
blood cells). Blood is treated as a multiple-phase ow.
In the case of small arteries, blood does not heed the
law of Newtonian uid. In the small arteries, blood
has a non-Newtonian ow behavior. Eventually, the
ow develops due to the electric �eld [1]. Electro-
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osmosis has several applications in the medical arena,
including the treatment of disorders such as cellular
abnormalities and sickle cells, as well as the adminis-
tration of medications via the use of diagnostic kits.
[2]. The extensive investigation of capillary electro-
kinetics as well as numerous micro-chip technologies,
are discussed [3]. Wu and Papadopoulos [4] have
proposed a mathematical model that compares the
electro-kinetic uxes in cylindrical and annular shapes.
Yang et al. [5] conducted a mathematical analysis of
the ow between two parallel plates created electro-
kinetically. Zhao and Yang [6] have mathematically
investigated the two-dimensional ow of a power law
uid using electro-osmosis to get the desired result.
A new interpretation of non-Newtonian uid ow in
tiny-length tubes was provided by Tang et al. [7],
who was among the �rst to do so. When Liu et
al. [8] used the Je�ery uid model to simulate micro-
slit channel ow, they were able to analyze the ow
using an electrokinetic process. In a mathematical
study conducted by Nadeem et al. [9], the Electro-
Osmotic Flow (EOF) of the Bingham plastic uid via
a micro-length tube was investigated. Recent study
publications that interpret the EOF phenomena are
cited by Narla and Tripathi [10] Tripathi et al. [11]
Akram et al. [12] and Saleem et al. [13] among others.

The presence of stenosis in the blood vessels
results in a limitation of hemodynamics throughout
the sick arteries in the body. In some instances, such
arteries may have more than one stenosis due to speci�c
disorders. The investigation of ow across such a large
number of stenosed arteries has also recently piqued
the attention of experts. In his PhD dissertation, Dr.
Ponalagusamy [14] published the �rst study on the
ow over stenosed arteries, which was the �rst of its
kind. This vascular study of moderate stenosis includes
coverage of stenosis of di�erent forms as well as other
conditions. [15]. A non-Newtonian uid ow over a
channel with numerous stenosis has been described by
Varshney et al. [16], who o�ered mathematical research
on the ow. In a previous study, Nadeem and Ijaz [17]
investigated blood ow via numerous stenosed tubes
by treating blood as a Casson uid. When Akbar
et al. [18] looked at the blood ow over a multiple-
stenosed tube with varied uid characteristics, they
came up with some interesting results. When di�erent
non-Newtonian uid models are considered, we provide
a mathematical model for the blood ow through such
diseased multiple stenosed arteries. [19{23].

Riaz et al. investigated a new model of entropy
production e�ects evaluated in the Cu-blood ow of
a nanouid under the inuence of ciliary-oriented
motion [24]. The study presents a thermal analysis
of Cu-CuO/blood nanouids ow in an asymmetric
microchannel propagating with wave velocity [25].
Speci�cally, the electro-osmotic Couette-Poiseuille ow

of power law Al2O3-PVC nanouid through a channel
with an upper wall moving with constant velocity
is described in the present work [26]. Researchers
at the University of California, Berkeley, studied the
e�ects of magnetized Williamson's nanouid ow on
parallel rotating plates under squeezing impacts in
the presence of gyrotactic micro-organisms [27]. A
non-Newtonian uid does not follow Newton's law of
viscosity, which says that viscosity stays the same no
matter how much force is put on it. When a force
is put on a uid that is not a Newtonian uid, the
viscosity can change, making the uid more liquid or
more solid. For example, when you shake ketchup,
it gets runnier, so it is not a Newtonian uid. Non-
Newtonian uids include many saline solutions, molten
polymers, and everyday things like custard, toothpaste,
starch suspensions, corn starch, paint, blood, melted
butter, and shampoo [28]. Williamson's uid model
describes the ow of shear-thinning non-Newtonian
uids. Williamson [29] �rst proposed this hypothesis in
1929 and provided experimental evidence to support it.
For a stationary (zero uid motion) Williamson's uid
model, the e�ective viscosity should decrease forever
with increasing shear rate, which is nothing more than
an in�nite viscosity at zero uid motion and a nil
viscosity as the shear rate approaches in�nity. In
[30,31], a few recent investigations into Williamson's
uid are discussed in detail. Khan et al. [32] studied
Williamson's uid ow in a lab with chemically reactive
species using scaling conversion and Homotopy analy-
sis. The Homotopy Perturbation Method (HPM) is a
semi-analytical method for solving linear and nonlinear
ordinary and partial di�erential equations, and it is
widely used in the industry. This approach may also
solve a system of linked linear and nonlinear di�erential
equations [33{37]. The same technique was also applied
to more complicated results to solve the designed blood
ow problem.

The study of parallel nonlinear radiation, magne-
tohydrodynamic e�ects in Marangoni convection non-
uids, and spatially dependent heat sources are dis-
cussed [38]. It involves the investigation of the inuence
of velocity slip on the hydromagnetic peristaltic ow of
a Casson uid and the heat transfer via an asymmetric
channel uid packed in a porous medium. Another
swarm intelligence optimization approach known as the
Arti�cial Coronary Circulation System is suggested in
the references. The expansion of the human heart's
coronary arteries (veins) is simulated using this op-
timization approach. It is shown in this article that
the lattice Boltzmann technique may be used to model
two-dimensional incompressible viscous ow in open
and closed microchannels (vessels). The main goal of
the current research is to �gure out how blood moves
through blood vessels physically [39{47]. The number
of methods used to determine the blood ow behavior,
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analytical and numerical, investigation of the good
results for visualizing the behavior of the stenosis and
diseased arteries. Using User-De�ned Function (UDF)
in Fluent, the Finite Volume Method (FVM) approach
is used to simulate blood ow dynamics inside stenosis
arteries based on the non-Newtonian Sisko model
[48]. The magnetohydrodynamic blood ow research
in stenotic coronary arteries was investigated using the
lattice Boltzmann technique with the assistance of the
�nite element method in stenotic coronary arteries [49].
Several studies have compared the di�erences between
Computational Fluid Dynamics (CFD) and Fluid Solid
Interaction (FSI) simulations; however, as demon-
strated, there is still debate about whether the most
realistic technique, namely calculating WSS-dependent
variables, is necessary and the results are frequently
contradictory. This paper compares the results of CFD
and FSI simulations in an idealized stenotic coronary
artery with 50% stenosis [50]. Although solid numerical
techniques with the amazing computational power of
computers are available to �nd numerical solutions
with great accuracy, the analytical solutions cannot be
ignored. The bene�t of an analytical solution is that
you can understand the physics of the solution deeply
and clearly and help check the validity of numerical
solutions [51{56].

Carotid arteries are parried blood vessels arising
from the arch of the aorta above the heart [57].
They deliver oxygenated blood to the face, head,
and brain [58]. The external carotid artery supplies
blood to the head and face, and the internal carotid
artery conveys supply to the brain. Carotid arteries
damage the vessel wall's inner layers due to the blood's
narrow path [59]. Causes of 10{20% ischemic (when
the blood supply towards the heart is not enough as
required) strokes. Atherosclerotic plaque can send
clots to the retina's blood vessels, causing transient or
permanent visual loss [60]. Environmental risk factors
cause stenosis, such as smoking, high cholesterol, high
blood pressure, diabetes/high blood sugar, obesity, and
injuries to vessel walls [61].

In addition, we have also used the e�ect of
electro-osmotic in this paper. The charged colloidal
particles move under the inuence of an electric �eld
during electrophoresis. If electrophoresis is avoided
by maintaining the particles stationary, the dispersion
medium will move under the inuence of an electric
�eld. This movement of dispersion medium under the
inuence of an electric �eld is called EOF. It is also
easy to de�ne that it is the movement of separation of
mixture components through the silica capillary due to
zeta potential at the solvent silica inference. The zeta
potential is the potential di�erence existing between
the surface of solid particles immersed in a conducting
liquid and the bulk of the liquid. Our new contribution
to this work is that we have used Williamson's uid

model to study the non-Newtonian behavior of the
blood. After developing the model, we have non-
dimensionalized it to simplify this complex problem.
This is the �rst research article that highlights the
physics of the non-Newtonian Williamson' uid model
for blood ow inside a multiple stenosed artery under
electro-osmotic e�ects. A permeable artery having
multiple stenoses is considered for this non-Newtonian
blood ow problem. The solutions obtained by the
HPM are approximate and not exact. However, these
solutions satisfy both the boundary conditions and
the e�ect of multiple stenoses. The graphs of these
mathematical solutions also meet the requirements for
speed and temperature at the edges.

2. Mathematical model

In this model, we considered the blood ow in the
tapered channel. The rectangular coordinate system
(r; z) is considered such that the length of the channel
is along the z-axis and the width of the channel is
along the r-axis. The ow of Williamson's uid inside
the wavy channel is caused by the sinusoidal wave
propagating with speed s along the deformable walls
of the channel. We studied the combined e�ect of
electro-osmotic and multiple stenoses and analyzed the
blood's non-Newtonian behavior using Williamson's
uid tensor with cylindrical coordinates (r; z).

Consider the geometry of the multiple
stenoses [62] as Figure 1 given.

Multi-stenosis wall geometry in dimensional form
is expressed as follows [63]:
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The governing equations for blood ow with multiple
stenoses [63] and Williamson's uid model are written
as follows:
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Figure 1. Geometry of the problem.
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Here we consider the non-Newtonian uid model to
discuss the nature of blood. The considered extra stress
tensor for Williamson's uid model [32] is provided as:

Sij = �0(1 + �j :ij j) :ij ; (7)

here,
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In the above equation S� has the value of S� = I2
e�e

where Ie = EZ
�e [64]. The channel is �lled with blood

taken as an ionic solution, modi�ed by an external
electric �eld. Electrostatics theory says this about the
Poisson-Boltzmann equation, which describes how the
electric potential is spread out in a symmetric binary
electrolyte solution:

�� =
�e
E
: (10)

We choose the value of �e = ez�n+ � ez�n�, where e
is electric charge, z� charge balance, n+ is the cation
density, and n� is the anion density:

n� = n0e
�
ez��
KBT�

�
: (11)

By using the value of �e and above equation, we have:
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KBT�E . By
using Mathematica software, we �nd the solution of
Eq. (13):
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Eq. (14) is the exact solution, which is found using
these boundary conditions:
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Employing Eq. (16) on Eqs. (3){(7), we get the follow-
ing dimensionless equations. After applying limitations
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in the case of mild multiple stenoses [63]:
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Eqs. (3){(7) become:
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Williamson's uid model gives:
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By using Eq. (25), Eqs. (20) and (21) become (after
dropping the bars):
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Here the dimensionless numbers Br;We are Brinkman
number and Wassenberg number. On velocity and
temperature, the non-dimensional boundary condi-
tions [65] are:
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The above governing third-degree di�erential Eqs. (26)
and (27) and slip boundary conditions are highly
non-linear, so we cannot �nd their exact solutions
using Mathematica software, so we used approximate
solutions for these governing equations. We used the

HPM to �nd the approximate solution. The non-slip
boundary conditions are linear and easily solvable.

3. Solution of the problem

The solution of the non-linear di�erential Eqs. (26) and
(27) can be obtained using HPM with slip boundary
conditions:
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where q, L, u0 and N are called embedding parameter,
linear operator, initial guess, and non-linear operator
(q 2 [0; 1]), respectively.
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Applying Eq. (30) to Eq. (26), we have:
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Applying Eq. (33) to Eq. (27), we have:
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Now we de�ne the series of � and �u:
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By substituting the values of Eqs. (36) and (37) into
Eqs. (32) and (35) and then comparing the order of
embedding parameters, the approximate solution is
obtained.
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Using Mathematica software, we �nd the series up
to three iterations and take the embedding parameter
equal to 1.

The solution of Eqs. (41){(45) by using the
slip boundary conditions (40), (43), (46) obtained by
Eqs. (47) and (48) are shown in Box I. Mathematica
result for pressure gradient obtained by Eq. (49) as
shown in Box II.

On the walls of the multiple stenosed shares,
stress is de�ned as:
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Box I
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p
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1CCCCCCCCCCCCA
: (49)

Box II

���u = �1
2
�
�
@�p
@�z
� 2

@�p
@�z
We�(1 + 2We�)

�
+
mUHS(1� 2We)BesselI[1;m�]

BesselI[0;m�]
: (50)

The solution of the temperature pro�le is de�ned by
Eq. (51) as shown in Box III.

4. Results and discussion

Here, We have discussed the mathematical results
graphically for velocity, shear stress, and temperature
obtained by the HPM. HPM is a semi-analytical
technique for solving linear, non-linear, and coupled
partial and ordinary di�erential equations. Analytical
solutions to the di�erential equations are much better
because they give us the problem's physics and are
easy to understand. Here we discuss the physical
results of mathematical modeling graphically. In this
section, we analyzed and discussed the e�ects of various
physical parameters on dimensionless velocity, shear
stress, temperature, and streamlines, respectively. This
allows us to see the e�ect of electro-osmotic parameters
on the velocity, temperature, axial pressure gradient,
and streamlines.

In Figures 2a{2e, the velocity graph is shown
for increasing values of various physical parameters.
The e�ect of Darcy number is shown in Figure 2a.
The Darcy number (Da) in uid dynamics via porous
media indicates the relative inuence of the medium's

Figure 2a. Velocity along D�.

permeability on its cross-sectional area, generally the
diameter squared. The Darcy number is the ratio
of the medium's permeability to the characteristic
length. The characteristic length is constant for the
channel, and here we discuss the porosity that depends
upon the medium's permeability. With an increase
in the medium's permeability, Darcy number is also
increased, as shown in Figure 2a. We have obtained the
conditions for velocity that we have obtained by using
Mathematica software. At di�erent parameters in the
graph, we take the symmetric shape of the multiple
stenoses at n = 2 and the non-symmetric shape of
multiple stenoses at n = 6. The velocity at the center is

�(�r; �z) =

0BBBBB@
1

1200m2BesselI[0;m�] (�4800BrUHSBesselI[0;m�r]) + (4800BrUHS +m2(�75�r2

(Br(�1 + @�p
@�z )�r2 + 4(�4 + s)) + 24Br(8� 3@�p

@�z )�r5We + 100BrWe
2 + 300(�4 + s)�2

+75Br(�1 + @�p
@�z )�4 + 24BrmUHS(100�rBesselI[1;m�r]� 100�BesselI[1;m�]

3m3We(�r5HypergeometricPFQ[f5
2 ;

5
2g; f2; 7

2 ;
7
2g; m2�r2

4 ]
��5HypergeometricPFQ[f5

2 ;
5
2g; f2; 7

2 ;
7
2g; m2�r2

4 ])))

1CCCCCA : (51)

Box III
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Figure 2b. Velocity along �l.

Figure 2c. Velocity along m.

Figure 2d. Velocity along Q.

minimum, but the velocity increases towards the walls
of the channel, and the velocity increases by increasing
Darcy number. Figure 2b shows the behavior of the
velocity graph for stenosis length (�l) at four di�erent

Figure 2e. Velocity along UHS .

values of the symmetric and non-symmetric shape of
the stenosis. Velocities increase as stenosis length
increases. Further, velocity is lowest at the center and
increases along the walls. Velocity increases with an
increase in stenosis length. The velocity increases in
magnitude due to the narrowing of the channel as �l
increases. At the same time, the velocity decreases as it
approaches the walls when there are numerous stenoses.
Figure 2c will discuss velocity behavior in the case of
EOF, a basic theory of the Stokes equation. In this
case, the variation of the electro-osmosis (m) velocity
at the center is a minimum and increases gradually
along the walls of the stenosis. By increasing the
electro-osmosis parameter velocity. It is the movement
of liquid generated by an applied voltage through a
porous material, capillary tube, membrane, micro-
channel, or any other uid conduit known as EOF or
electro-osmosis. EOF has minimal inuence on channel
characteristics since it is una�ected by the conduit size
because electro-osmotic velocities are independent of
conduit size. When EOF occurs in tiny channels, it has
the most signi�cant impact. Capillary electrophoresis
relies heavily on EOF, a crucial component of chemical
separation processes. A bu�ered solution, as well as
un�ltered water, may experience EOF. In Figure 2d,
the volumetric ow Q's e�ect teaches us about liquid
ow in various variations; the velocity of the volumetric
ow is lowest in the center and rapidly increases along
the channel walls. Figure 2e will discuss the behavior
of the Helmholtz-Smoluchowski parameter UHS at four
di�erent variations. The velocity at the center is
minimum and increases along the channel walls as the
Helmholtz-Smoluchowski parameter velocity increases.
In addition, the value of velocity is at its peak when
UHS is equal to zero, and it steadily decreases as
the value of UHS increases. Therefore, an electric
�eld applied axially is the primary mechanism that
may be used to control the ow rate. These velocity
graphs show that the rise in velocity is lower for
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Figure 3a. stress along �l.

Figure 3b. stress along m.

Figure 3c. stress along D�.

non-uniform shapes compared to uniform shapes of
numerous stenoses. This may be noticed by comparing
the two types of shapes. In Figure 3a{3e, we will
discuss shear stress behavior for various increasing
parameters. Shear stress is the ratio of applied force to
the cross-sectional area; increasing the cross-sectional
area decreases shear stress. Plots of the shear stresses
at walls that have numerous stenosis. Figure 3a
illustrates the behavior of stenosis length for four
di�erent values. As taking an increment in the values

Figure 3d. stress along Q.

Figure 3e. stress along UHS .

Figure 4a. Temperature along S.

of stenosis length, the shear stress decreases as shown
in the �gure here, the symmetric shape of multiple
stenoses at n = 2 and the non-symmetric shape of
multiple stenoses at n = 6. In Figure 3b, increasing
the values of the electroosmotic parameters decreases
the stress rate. In Figure 3c, with an increase in the
values of Darcy number, shear stress is decreasing, and
it decreases the porosity of the medium. In Figure 3d,
the increment in the volumetric ow rate decreases the
shear stress. Figure 3e discusses the behavior of the
Helmholtz-Smoluchowski parameter, as its increasing
values result in a decline in shear stress.

Figures 4a{4f shows temperature graphs, each
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Figure 4b. Temperature along UHS .

Figure 4c. Temperature along Br.

Figure 4d. Temperature along Q.

representing a di�erent value for the related param-
eters. Figure 4a discusses the e�ect of the Joule
heating parameter (the generation of heat by blood
ow through arteries is referred to as Joule heating),
resistive heating, or Ohmic heating. All of these names
refer to the same phenomenon. Figure 4b shows the
behavior of the parameter Helmholtz-Smoluchowski ve-
locity that decreases the temperature with an increase
in the values of Helmholtz-Smoluchowski velocity, and
Figure 4c reveals that increasing the values of the
Brickman number temperature pro�le increases the
temperature. It is also increased due to heat transport

Figure 4e. Temperature along m.

by molecular conduction. Figure 4d shows that the
channel's temperature decreases as the volumetric ow
rate increases. So, from the graphs, it is clear that
the temperature has lower values for symmetric n =
2 shapes than the antisymmetric n = 6 shapes of
the multiple stenoses. Figure 4e shows the behavior
of the electro-osmotic parameter, showing that the
temperature decreases with increasing values of the
electro-osmotic parameter. The temperature rises more
quickly for this. All of these temperature graphs show
that the increase in temperature for multiple stenoses
with a uniform shape is greater than the increase in
temperature for multiple stenoses with a non-uniform
shape. In addition, a decrease in temperature and
velocity is seen when there is an increase in the axial
electric �eld. Because of this, electro-osmosis can be
used to change the ow's speed and temperature as
needed.

The streamlines representing the ow rate Q are
also shown in Figure 5a{5d. When several stenoses
have a symmetric form, there is an increase in the
size of the trap with each successively higher Q. When
the form, however, is not symmetrical, the size of the
trapping area shrinks in response to an increase in
Q. In addition, if the form of the multiple stenoses is
symmetric, then the trapping pattern's shape will also
be symmetric. However, if the shape of the multiple
stenoses is non-symmetric, then the trapping pattern
will have a non-symmetric shape. The streamline
graphs in Figure 6a{6d are for increasing values of the
electro-osmosis parameter m, and they consider both
symmetric and non-symmetric multiple stenoses ge-
ometries. As m increases, the trapping size decreases,
indicating symmetric stenosis. For the non-symmetric
scenario, however, there is an increase in the magnitude
of the trapped streamlines. Furthermore, the walls
with numerous stenosis may be seen quite well in these
streamlines. In addition to this, both symmetric and
non-symmetric forms may be seen quite well.
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Figure 5a. Streamline Q = 1, n = 2.

Figure 5b. Streamline Q = 2, n = 2.

5. Conclusion

Williamson's uid model has made it a tedious task
to �nd the solution, and it is not easy to handle the
solution by an exact method to �nd an approximate
solution, such as the Homotopy perturbation solution.
The main �ndings are listed below:

� The limitation of this work is that it was done
without using any laboratory frame. The whole
work is analytical, so only some suppositions about
this work are suggested;

� There are many merits, but here are a few de�ned;

Figure 5c. Streamline Q = 1, n = 6.

Figure 5d. Streamline Q = 2, n = 6.

they can be used for the medication process and
treatment of sickle cells using electro-osmosis;

� A parabolic hemodynamic pro�le is observed for the
velocity case, but temperature distribution is not
parabolic in all parameter cases;

� Such models help locate stenosis, drug delivery,
medication, and surgical procedures;

� This work will prove a benchmark problem for the
study of further hemodynamic models;

� This work concludes that regular smoking results
in stenosis; sugar also develops stenosis like high
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Figure 6a. Streamline m = 2, n = 2.

Figure 6b. Streamline m = 3, n = 2.

cholesterol, high blood pressure, diabetes, obesity,
and injuries to vessel walls;

� Combining symmetric and non-symmetric stenosis
formation is considered to deal with more realistic
surgical problems;

� Homotopy perturbation method is utilized to solve
this complicated problem, and a proper solution
procedure is provided in the manuscript to handle
such complex mathematical models mathematically;

� Graphical illustrations are provided that perfectly
match the mathematical solutions that satisfy the
considered problem's boundary conditions;

Figure 6c. Streamline m = 2, n = 6.

Figure 6d. Streamline m = 3, n = 6.

� Exercise, surgery, treatment, carotid Angioplasty,
and stenting can remove stenosis;

� In the case of the streamlines, the multiple shapes
of the symmetric stenosis are also symmetric in
the case of trapping, but when we deal with the
antisymmetric shape of the multiple stenoses, it is
antisymmetric in the case of trapping.

Nomenclature

v; u Radial and axial velocity components
Br Brickman number
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S Joule heating parameter
e Electronic charge
T � Average temperature of electrolyte

solution
UHS Helmholtz-Smoluchowski velocity
�e Density of total ionic charge
��l Maximum height of stenosis in the

dimensional form
Ez Axial electrical �eld
m Electro-osmotic parameter
� Zeta potential
Ie Current density
sl Electro-kinetic potential function

stenosis Length (l = 1; 2; 3)
n = 2 Symmetric shape of multiple stenoses
n = 6 Non-symmetric shape of multiple

stenoses
n+; n� Cation and anion densities
z� Charge balance
r; z Cylindrical coordinate system
n � 2 Multiple stenoses shape parameter
E Permittivity
dl Stenosis position (l = 1; 2; 3)
R Non-stenotic radius of artery
KB Boltzmann Constant
�e Electrical resistivity of uid
n0 Ions concentration
We Weissenberg number
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