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1. Introduction

Abstract. Today, several methods have been presented to automate test data generation;
because of the low maturity level of automatic methods, this is still widely carried out
by humans in industry. Hence, the challenge is finding approaches in which humans
could generate test data through more attractive, faster, and cheaper ways.
this, one approach is using a Game With A Purpose (GWAP) in test data generation.
In our previous work, we introduced two games called Rings and Greenify, by which
many inexpensive players with no special technical abilities become engaged in test data
generation. This paper presents an entirely new GWAP for test data generation called
Quest Of Treasure Explorer (QOTE). QOTE provides a different gameplay and has
certain advantages compared to prior games, including faster generation of test data,
easier puzzles, narration, etc. Experimental results have shown that QOTE outperforms
prior games in two aspects: game quality and capability of test data generation. We have
also conducted an experiment based on mutation analysis to further evaluate the test data
generation capabilities of QOTE compared to four automatic approaches. According to this
experiment, QOTE outperforms the four competitors regarding average mutation scores.

(© 2023 Sharif University of Technology. All rights reserved.

To achieve

manual techniques [4]. Generating test data by humans
has advantages, among which is the ability of humans

Test data generation is one of the main but costly tasks
in the overall process of software testing [1,2]. Since
many software systems have numerous choices for input
data during the testing process, test data generation
methods aim to find as small as possible subsets of
input values that result in more effective tests, which
reveal a larger number of failures in the SUT.
Because of the importance of test data genera-
tion, a vast amount of research has been conducted
to automate this activity [2,3]. Despite significant
advances in automatic test data generation approaches,
the majority of software companies prefer to employ
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to understand and interpret the program under test. In
addition, the computing power of a human mind helps
him /her solve problems with a high level of complexity.
However, manual test data generation is a tedious task,
and the exhaustion of human agents during the process
and their lack of motivation make the human-based
method too time-consuming.

Since test data generation is still widely carried
out manually, the challenge is finding faster, more
attractive ways for humans to generate test data. A
solution is to abstract away the test data generation
process so that non-technical people can participate in
the process. One way to achieve this objective is to
transform the programs under test and the test data
generation process into appropriate graphical views.

Today, due to the widespread use of social net-
works and intelligent devices, gaming has become a
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universal practice [5,6]. The computing power of
the human mind can be harnessed for an implicit
purpose via playing the game. This problem-solving
approach introduces the notion of the Game With
A Purpose (GWAP) or Human-Based Computation
Games (HBCG) [7,8]. We have investigated the ap-
plicability of human-based computation games in test
data generation. As a first attempt, we restricted our
research scope to the test data generation of program
units. This resulted in two games, called Rings [9]
and Greenify [10], which are reviewed in Section 2.
We demonstrated that by using the notion of GWAP
for test data generation, the main problems of human-
based test data generation could be alleviated in this
way because:

e The problem is presented in a non-technical form;
so it can be given to a broader range of people to
solve;

e The lack of motivation and fun among testers is
replaced with the game’s amusement;

e The cost of test data generation is reduced since
many inexpensive people can contribute.

Although our two prior games successfully provided an
entertaining interface for cheap test data generation,
they had certain drawbacks and unresolved challenges
described in Section 2. This paper introduces a
new GWAP, Quest Of Treasure Explorer (QOTE), for
test data generation. QOTE is proposed to address
the issues of the prior games and also outgo their
performance. Accordingly, the research questions of
this paper are as follows:

¢ Question 1: How to design QOTE such that the
players generate test data faster than when they use
the prior games?

¢ Question 2: How to design QOTE such that it is
more user-friendly and easier to interact with in
comparison to the prior games?

e Question 3: How to design QOTE such that it is less
complicated than the prior games? In other words,
how to design QOTE such that: (1) The players
need less analysis to solve their puzzles? (2) Could
it be applied to programs with complex operations?

¢ Question 4: How can QOTE be designed to use
players’ wrong solutions?

¢ Question 5: How to design QOTE to be more
enjoyable than the prior games?

e Question 6: How well does QOTE generate test data
compared to the well-known automatic test data
generation tools?

The remaining parts of this paper are organized as
follows. In Section 2, the related works are reviewed.

Section 3 presents the design and the mechanics of
QOTE. In Section 4, QOTE is evaluated, and the
experimental results are discussed in Section 5. Finally,
in Section 6, the conclusion and directions for future
work are presented.

2. Related work

A category of games is serious games where the purpose
is beyond entertainment. In this category, the game
design includes all the elements and details of a typical
game [11]. Incorporating games with human-based
computation has led to the emergence of GWAP, which
constitute a subset of serious games [7]. Recently,
serious games and GWAP have been used in various
fields of software engineering. Some of these games are
explained briefly in the following.

PexjFun is a web-based serious game to teach
computer programming to computer students. It
encourages the students to edit a given program code in
different browsers, which are then given to the Pex4Fun
engine to execute and analyze [12]. Code Hunt is an
extension to Pex/Fun and a serious game platform for
practicing programming skills. It is based on Pez, a
symbolic white box execution engine [13].

Fava et al. [14] presented an approach to em-
ploying GWAP to improve the detection of program
invariants. This approach transforms the task of pro-
gram invariant detection into a computer game, the so-
called Binary Fission, which is based on precondition
mining. In this game, the player acts as a classification
engine and detects invariants using filters in a graphical
presentation.

Rojas and Fraser [15] introduced a game called
Code Defenders, which uses game elements in the
testing process. The game engages students in a
competitive and fun way to perform mutation testing
while adding fun to the learning experience. In the
game, the players act as attackers or defenders; The
attackers generate mutants in a source code, and the
defenders create unit tests to kill the mutants.

Chen and Kim [16] proposed a Puzzle-based Auto-
matic Testing environment (PAT) to decompose object
mutation and complex constraint-solving problems into
small puzzles for solving by humans. The evaluation
results showed that humans could solve problems ef-
fectively. The proposed system was purely based on
puzzle-solving, and the role of the game elements was
not bold. Moreover, the game environment was more
similar to a gamified system rather than GWAP.

The most similar approach that investigated the
applicability of GWAP in test data generation, called
Rings, was presented by Amiri-Chimeh et al. [9]. Rings
aims at generating test data for program units based
on symbolic execution. In each puzzle, a Control Flow
Graph (CFG) path is displayed to the players by a
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network of pipes. An entry node has several rings,
which can fall into the pipe network. The pipes contain
several filters. The filters are representations of the
program constraints, and the rings resemble the input
parameters of the source code. If the properties of the
rings (e.g., size, shape, or color) are not set correctly,
the rings cannot pass through the filters. When a
player solves this puzzle, he/she is implicitly generating
appropriate values to satisfy the corresponding path
constraint. According to the evaluation results re-
ported by Amiri-Chimeh et al. [9], Rings was successful
as a GWAP, and its players have covered all paths
of the benchmark programs. However, this game has
several unresolved challenges, such as limitations of the
user interface, mathematical complexity, long puzzles,
disposal of wrong solutions, lack of narration, and a
large set of likely infeasible test paths.

In Greenify [10], a prior version of the game
is going to be presented in this paper, the paths
of a unit’s CFG are represented through a string of
connected light bubbles, and the input parameters of
the unit are displayed via sliders and checkboxes. The
players should change the values of the sliders and
checkboxes until the color of all connected bubbles
turns green. The results indicated that Greenify
outperformed Rings, the conventional human-based
approach, and the random test data generation method
in terms of path coverage percentage and elapsed time
for generating test data [10]. However, Greenify could
not solve the following challenges of Rings:

e Limitations of the user interface;

e The lack of narration.

In addition, Greenify has unsolvable challenges includ-
ing the demonstration of wide-range input parameters
through sliders, the presentation of impossible levels to
players, which frustrates them, and scalability, where
the challenge is the limitation of the test path length.

In this paper, we are going to design a new game
based on Greenify, which has the advantages of Rings
and Greenify while handling their above-mentioned
drawbacks.

1. Transforming program units containing loops
to appropriate form.
2. Extracting CFG of unit codes.

Phase 1: Program preprocessing
A 4

3. Game design

Our approach has three phases (Figure 1). In the
first phase, unit codes are preprocessed, and their
corresponding CFGs are prepared for game generation.
In the second phase, the most important phase in the
game design, game levels are automatically generated,
and game puzzles are created based on the unit codes’
CFGs. In the third phase, the game is played by several
players, and then the generated data is collected and
refined; finally, the resultant data set is presented as
test data of the corresponding program unit. The first
and second phases are demonstrated in the following,
but the third phase is out of scope of this paper.

3.1. First phase: Program preprocessing

In this phase, the program units under test are
scanned, and if they contain loops, the code should
be transformed into an appropriate form. After code
transformation, the CFG of the unit code is created by
the CFG class of Clang, and subsequently, the input
domain of the source code is reduced.

3.1.1. Transforming code

Loop constructs in programs may introduce an infi-
nite number of paths. Some approaches have been
suggested to deal with loops. For example, a typical
testing method is to choose test paths that skip the
loop, repeat the loop exactly once, and iterate the
loop more than once [1]. Similarly, in this paper,
three possibilities for loops are considered: zero, one,
and more than one repetition. For this purpose, we
introduce three conditional statements for each loop
to simulate the three mentioned possibilities. Also, a
variable named Loop Repeat is defined for each loop,
which is incremented in the loop body to count the
number of loop iterations. Figure 2 shows an example
of how a loop is transformed into an if conditional
statement. The original code and the corresponding
CFG are shown in Figure 2(a). Figure 2(b) shows the
code after transformation and the corresponding CFG.
Having this CFG in hand, we aim to generate data to
cover three new paths (ABE, ABCE, ABCDE) in the
CFG of Figure 2(b) instead of all paths in the CFG of

1. Generating game levels automatically.

}7

Phase 2: Transforming units to game levels

A

1. Playing the game by various users.
2. Gathering test data.

Phase 3: Test data generation

Figure 1. Three phases of the QOTE’s game design.
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int sum(int n)

int sum(int n)

1: 1:
2: 2: °
3:node A int s=0; 3:node A int s=0, LoopRepeat = 0;
4:node B for(inti=0;i<n;it+) || 4:node A for(inti=0;i<n;it+) B B e
5:node C s+=1; S:node A { LoopRepeat++; B é
6:node E return s; 6: node A s+=1i; } e
7: } 7:node B if(LoopRepeat == 0)
\ ; 8: //The loop is not executed. C
9:node C else if(LoopRepeat == 1) e
° G > <C> 10 //The loop is iterated one time. 9
11: node D else G
@ 12: // The loop is iterated more than one time.
13:node E return s;

(a) The main code and
corresponding CFG

(b) The changed code and the
corresponding modified CFG

(c) The modified CFG is then
decomposed to three sub-CFGs

Figure 2. An example of modifying the unit code and CFG.

Figure 2(a) (i.e., ABE, ABCBE, ABCBCBE, ...).

3.1.2. Extracting CFG

We use the CFG class of the Clang tool to extract the
CFG of a given unit code. Since our proposed game
requires that each path is specified, distinctively from
other paths to the players, each program path should
end with a unique exit node. To discriminate the
included test paths, the modified CFG is decomposed
into several sub-CFGs such that each path ends with
a unique exit node. In Figure 2(b), the CFG of the
given program has three test paths with a common exit
node, so it should be decomposed into three sub-CFGs,
as shown in Figure 2(c).

3.2. Second phase: Automatic game level
generation

This section is devoted to the description of QOTE’s

design.

3.2.1. Puzzle design

Each level of QOTE happens in an old house. In each
old house, there might be many safety boxes. Each
safety box is connected to its own “gear train”. A
gear train is a sequence of gears and chains, which is
started from the lock system (explained further) and
is terminated at a specific safety box. Different gear
trains in a house make a “system of gears”. In other
words, a system of gears is a graph of gears where
each node is represented by a specific gear, and two
connected nodes are represented by two gears, which
are chained together. In the upper part of the system of
gears, there exists a system of locks (including several
types of locks). Therefore, a puzzle in a given old house
includes several gears and chains (system of gears),
several locks (system of locks), and multiple safety
boxes (Figure 3(b)).

When a player enters an old house, the whole
gear system is located on the ground. The player
should dial the locks to find the passcode of a safety
box. Based on the values of the locks, some “on-the-
ground” gears and chains might rise to a certain height
above the ground, and the gears begin to spin. These

“above-the-ground” gears and chains are the ones
that can transmit power to their neighboring gears.
A correct passcode turns all of the “on-the-ground”
gears and chains to “above-the-ground” transmitting
rotation and power from the locks to the corresponding
safety box and consequently opening it.

— Relationship between the game design and
test data gemeration: Test data generation in
software testing aims to find appropriate values
for input parameters of a source code to satisfy a
specific test criterion. We selected the path coverage
criterion for QOTE. The process of dialing the locks
to unlock a connected safety box corresponds to the
process of test data generation for a given test path
of a program under test.

Fach region of the land in QOTE corresponds
to a program where the old houses of that region
represent the units of that program (Figure 3(a)).
A safety box and its connected gear train resemble a
desired CFG test path for which we wish to generate
test data. The game is designed such that finding
a passcode of a given safety box is equivalent to
generating input data that covers the corresponding
CFG test path. This indicates that discovering
all the games in a house leads to the generation
of test data for all the targeted test paths of the
corresponding CFG.

— Designing the game according to program
units: The game design elements and their corre-
spondence to the CF'G and the input parameters of
the program are as follows:

e The display of CFG in QOTE: The entry and
intermediate nodes of the CFG are presented by
simple gears, and each final node is displayed by
a safety box. An edge in the CFG is illustrated
by a chain. If the number of CFG’s test paths
is abundant, only some of the test paths are
displayed to the player at a game level, and the
rest is displayed at other levels. The maximum



1674

Sh. Moosavi et al./Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 1670-1686

; /’J -
A ‘
\.' ’ .

2% o
" Ce

(a) Outdoor environment of the game

(b) Indoor environment of the game

Figure 3. Two snapshots of QOTE.

(a) Keyboard for character
data type

(b) Switch for boolean
data type

(c) Safe combination lock
for numeric data type

Figure 4. Different types of locks in QOTE.

number of displayed test paths in a game level is
determined by the game designer;

e The display of the CFG paths in QOTE: A
path in a CFG is represented by a gear train
ending in a safety box. Each time the player
dials the locks, the generated values are given to
the corresponding SUT, which is then executed
with those values. Whenever the SUT execution
reaches a conditional statement, represented by
a gear in the specified train, the gear rises to a
certain height above the ground and begins to
spin. This way, the player learns that the given
input value has affected the gear;

e The display of SUT’s input parameters in
QOTE: The input parameters of the SUT are
mapped to the system of locks. A system of

— An illustrative example:

locks is a combination of several locks designed
according to the data types of the SUT’s input
parameters. In this version of the QOTE’s de-
sign, various data types are supported, as shown
in Figure 4.

Consider the code
segment in Figure 5(a) with the corresponding CFGs
in Figure 5(b) (the original CFG is decomposed into
two sub-CFGs, each sub-CFG is shown in a separate
game level). This program aims to calculate the
common area of two concentric circles. Two Boolean
variables, inl, and in2, determine if the outer or
the inner area of each circle should be included in
the calculation of the common area. A screenshot
of the two game’s levels for this unit is shown in
Figure 5(c) and Figure 5(d). As demonstrated in
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float interArea(float r1, bool inl, float r2, bool in2)
if_(rl>22)

float t=12;
r2=rl,

bool bt =in2;
in2 =inl;

inl = bt;

}
if (inl)
if (in2)
return PI*rl*rl;
else
else

return PI*(r2*r2-r1*rl);

’ >rq I(r1>r2) ‘\‘ I(r1>r2)

if (in2) (in2)/

®

\
else é
return -1;

@D

T (r1>r2)

> 6

\ Y X // \
(inl) “"1/) \\!(inl) (nlY \yin1)
\/ \:U \ /
\l(in2) /mz) / ‘\!(in2 i!
in2) in2) \

\ (in2) “\J, / (iﬂfg !(\n{?) (iﬁ%{l !(11{2’)
OH 6O 066D O

(a) Source code

(c) The created game puzzle from sub-CFG1 (Level 1)

(b) The corresponding CFG that decomposed in two sub-CFGs

(d) The created game puzzle from sub-CFG2 (Level 2)

Figure 5. An example of a unit code, the corresponding CFG, and QOTE puzzles.

Figure 5(c), there are two combination locks and
two switches for the two Floating-point inputs and
the two Boolean inputs. The intermediate nodes A,
C, D, and E are represented by four gears GA, GC,
GD, and GE, respectively. Since A is connected to
C in the CFG, the gear GA is connected to the gear
GC by a chain. Similarly, since the nodes D and
E are the left and the right child of C, the gears
GD and GE are connected to the left down and the
right down corner of the gear GC, respectively. The
final nodes, F, G, H, and I, are represented by four
safety boxes SBF, SBG, SBH, and SBI, respectively.
As can be seen, these safety boxes are connected to
gears, corresponding to their parents in the CFG.
Accordingly, two safety boxes SBF and SBG, are
connected to GD. Similarly, two safety boxes, SBH
and SBI, are connected to GE.

Considering the CFG of the code, let’s take

the path called ACEI, which includes A, C, E, and
I nodes, as the target path of the graph. As can
be seen, the CFG path ACEI is represented by a
gear train of GA, GC, and GE, which is connected
to SBI. To open SBI, the player has to dial four
locks so that GA, GC, and GE move above
the ground (these gears are shown in lighter colors
in Figure 5(c)). As mentioned earlier, gears rise
above the ground when their corresponding condi-
tional statements are satisfied. This means that by
opening SBI, the players find values that make the
conditional statements !(rl > r2), inl, and in2

become true, making the program’s execution follow
ACEL

3.2.2. Real-world challenges of using QOTE
In this section, the main challenges and our solutions
to handle them are described:
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Figure 6. Safe combination locks.

The number of input parameters: If a program
has many input parameters, the lock system cannot
be properly visualized because the number of locks
should be proportional to the screen size. To solve
this challenge, we use small icons shown below of
the system of locks. If the player clicks on one icon,
the corresponding lock in real size appears on the
system of locks (the upper side of Figure 5(c)).

Designing safe combination locks for numer-
tcal data types: The numeric data types (integer
or Float) have a wide range of values. Therefore,
the safe combination lock should be susceptible to
changes by the player. To alleviate the challenge, we
could use two or more dialers in a combination lock.
Each dialer represents two digits of the parameter
value. For example, in a combination lock with two
dialers, the first dialer may represent the ones and
tens digits of a natural number; the second dialer
may represent the hundreds and thousands of digits
of the number (Figure 6(a)).

Scalability problems: Scalability in QOTE is
questionable in two aspects:

e The abundant number of paths: If the number
of CFG paths is more than a specific value (more
than five paths based on our observations in
experiments), playing the corresponding game
level on a mobile screen could be challenging for
players;

e The long test paths: Another significant issue
is related to the test path length. Although a
puzzle may have a long gear train, based on our
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observations in the experiments, following a path
with more than ten nodes by a player in a limited
time might be difficult.

In QOTE, we can easily decompose a level with
abundant paths into several levels with the normal
number of paths. Therefore, the first aspect of the
scalability problem is solved; our solution to the
second aspect of the scalability problem is as follows.

We first sampled to estimate the percentage
of real-world unit codes having paths with more
than ten nodes in their corresponding CFG. In
this experiment, a sample of 600 code functions
was selected from the repositories of GitHub. We
checked the CFG of the methods and determined
the length of their longest path. The results show:

e In 90% of the unit codes, the length of the
longest CFG paths is no more than ten;

e The average length of the longest CFG paths
of all existing unit codes is 4.54.

The results indicate that unit codes usually do
not have long paths, and the scalability problem is
not challenging for them. Nonetheless, in QOTE,
a solution is designed to handle long paths. In
the proposed solution, a long path is divided into
several short paths, and then, the union of short
paths is displayed to the players. At the end of
the gameplay, the intersection of all generated data
for short paths could be considered as test data
covering the original long path.

For example, the code for determining the type
of a triangle and its CFG are displayed in Figures 7
and 8, respectively. To display how to generate
test data for a long path, consider path ABCD-
MENFOGHQZ with 13 nodes corresponding to an
equilateral triangle. Due to the path length, it is
divided into two shorter paths, as shown in Figure 9.
The two shorter paths are further connected by a
new node, the red node, in Figure 9. Some generated
data to cover sub-paths ABCDME and NFOGHQZ
are {{1,1,1}, {1,1,2}, {2,2,2}, {2,2,1}, {3,3,1}}
and {{1,1,1}, {2,2,2}, {3,3,3}}, respectively. The
intersection of two sets is {{1,1,1}, {2,2,2}} that
covers the original long path.

private static int Triangle(int Sidel, int Side2, int Side3)

int triOut;
if(Sidel <=0 || Side2<=0 || Side3<=0)
triOut = 4;
return (triOut); }
triOut = 0;
if(Sidel == Side2)
ifgSidel == Side3)

triOut = triOut +1;
triOut = triOut +2;
if(Side2 == Side3)  triOut = triOut +3;

if(triOut ==

0){
if(Side1+Side2 <= Side3 || Side2+Side3 <= Sidel

|| Side1+Side3 <= Side2 ) triOut = 4;
else triOut = 1;
return (triOut); }

if(triOut > 3)  triOut = 3;

else if(triOut == 1 && Sldel+Slde2>Slde3)
triOut = 2;

else if(triOut = 2 && Sidel+Side3>Side2)
triOut =

else if(triOut = 3 && Side2+Side3>Sidel)
triOut =

else triOut = 4;

return (triOut); }

Figure 7. The source code of the triangle example.
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Figure 8. The CFG of the code.
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Figure 9. The changed long path of the CFG.

new element

clements of the array

Figure 10. New element to simulate arrays in the game.

To show how the scalability problem is solved
in QOTE, we have conducted several experiments
on some large benchmark units.

— Non-primitive data types: In addition to simple
data types (such as integer, float, char, etc.), there
are non-primitive data types (like array, string,
list, etc.) in unit codes. We proposed a solution to
handle these data types in QOTE. In this version of
the game, we merely provided a solution for arrays.
In this version of the game, two types of arrays are
considered:

1. The array size is fixed, but it is larger than ten:
Our solution to this challenge is generating data for
such arrays by an automatic approach presented by
Michael et al. [17].

2. Dynamic-length or fixed-length arrays with a size
less than ten: In this situation, to simulate arrays,
as was done in Greenify, a new element is added to
the game, as shown in Figure 10. This element al-
lows the players to add a new lock/switch /keyboard
to the game. The details of our solution to simulate
arrays have been presented by Moosavi et al. [10].

— Infeasible test path detection: Finding infeasible
paths of a given program is a challenging problem
[1]. To identify infeasible test paths of a given CFG,
like in Greenify, we consider a time limitation for
each player to complete a level (i.e., cover a test

path). If a path that is given to various players
has not been covered by any player in the specified
time and is left unsolved, it is more likely to be an
infeasible path. A set of likely infeasible test paths is
recommended by QOTE. We assume that these paths
are reviewed by programmers to determine which of
them is infeasible.

4. Evaluation

In the previous section, we introduced QOTE as a new
GWAP for test data generation. In this section, to
evaluate the performance of QOTE, we have conducted
two experiments. The comparison of QOTE with the
prior games is presented in Section 4.1. In Section 4.2,
we compared QOTE with four automatic approaches.

4.1. Experiment 1: Comparison of QOTE with
the prior games

4.1.1. Part 1: Comparison of QOTE with Rings
Experimental setup: First, we implemented Rings
and QOTE so that the puzzles of the games could
be automatically generated from the CFG of a given
program unit. The games were developed by the
Unity3D game engine, Version 5.1. The graphics of
the games were made using Adobe Photoshop CS6.

Benchmarks: To conduct comparisons, we selected
some standard C++ programs (Table 1), typically used
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Table 1. Benchmark programs.

Program Program s Lines of Number of Number of
Program description
number name code functions test paths
1 Simple triangle Determining the type of a triangle 32 1 4

Determining the type of a
triangle with an algorithm
different from Simple Triangle
in which the number of
2 Triangle infeasible test paths in 40 1 57
the corresponding CFG is
abundant (the program has 57
paths, yet only ten paths
are feasible)

Determining the common area of

29 1 8

3 Inter area o
two concentric circles

Determining the value of 19 1 4

4 Power K .
expression z¥

Determining the reminder
5 Reminder of expression 30 1 4

z/y

Searching a number as a key

6 Binary search 55 1 11

in an array of numbers

Determining the least
7 LCM common multiple of two 24 1 6
numbers

Determining the roots
(both real and complex

8 Roots quadratic equation roots depending upon the 41 1 4
discriminant) of a

quadratic equation

Determining the intersection
of two squares (user is given
two squares, the sides of one
9 Two squares square are parallel to the 29 1 3
coordinate axes, and the
sides of the other are at

45 degrees to the coordinate axes)

Determining the value
Bessel J,,

10 Bessj 245 3 33

Determining the value of

11 Expint 109 1 38

the exponential integral
12 Fisher Determining fisher statistical 157 1 183
13 Gamma Gamma function 112 4 27
14 Comput tax Computing the amount of tax 164 1 24
Determining the situation
15 Line of four lines relative 106 1 18
to each other
Print calendar according
16 Print calender to the input of 187 9 53

year and month

17 Teas Aircraft avoid 199 9 o7

collision system
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in test data generation research [1,2], and extracted 38
functions from them as benchmarks.

Rings was not able to create puzzles for 310 out
of 504 test paths of the benchmark programs due
to the existing “complex operators” compared with
QOTE, which managed to generate puzzles for all the
test paths. We packaged 194 (i.e., 504 — 310) Rings
and QOTE puzzles into two packages, called “Main-
Rings” and “MainQOTE” | respectively. The puzzles of
“MainQOTE” and “MainRings” are organized into 21
and 194 levels, respectively. Finally, we packaged the
remaining 310 QOTE puzzles into the “ExtraQOTE”
package, including 32 levels. It is worth mentioning
that among 504 test paths, 222 paths were infeasible.

Participants: The evaluation involved a sample of
50 participants, including 23 women and 27 men. The
participants were students of an Engineering Math-
ematics Class studying different engineering fields.
We excluded candidates that were studying computer
engineering or computer science. This does not mean
people with skills in these fields are not potential
players. We only ignored them from the study to
guarantee the playability of QOTE for non-technical
individuals. The mean age of volunteers was 19 years
(from 18 to 22), and their mean education years were
13 (range of 11 to 15).

To decrease the effect of the chance factor on the
results, we asked the individuals to participate in four
sessions (one session a week) and perform similar tasks
in all sessions.

In each session, these 50 players were randomly
divided into two groups, each with 25 players, called
“RingsFirst” and “QOTEFirst”, considering which
game they started playing at first. Since “MainRings”
and “MainQOTE” have been designed from similar test
paths, participants who have solved a puzzle in one of
the games may solve the corresponding puzzle in the
other game more quickly. With this grouping, we could
compare the results more fairly.

Procedure: The procedure of sessions includes the
following steps:

1. In the first session, players were briefed about the
research;

2. In all the sessions, the executable file of “Main-
Rings” (in the APK format) was handed to the
members of “RingsFirst” to install it on their smart
devices and then start playing simultaneously. The
same was done for “MainQOTE” and the “QOTE-
First” players;

3. At each stage, game levels with equal difficulty de-
grees were randomly distributed among the players
to give the players a random chance to play at

different levels. Furthermore, the solved puzzles by
wrong solutions of other levels are not suggested to
the players;

4. For each player who stopped playing one of the
games, we gave him/her the executable file of the
other game and asked him /her to play it, as well;

5. When a player stopped playing the second game,
we asked each player to play “ExtraQOTE”;

6. In the last session, we asked each player to fill out
a printed questionnaire (Figure 11).

Evaluation Criteria and Metrics: Our evaluation
is based on the criteria in Table 2. These criteria have
been chosen according to our research questions.

4.1.2. Part 2: Comparison of QOTE with Greenify
The methodology and experiments to compare QOTE
with Greenify were similar to what was explained in the
previous subsection. The details are described below:

e The benchmarks introduced in Table 1 were also
used in this experiment. Since QOTE and Greenify
create similar puzzles, they are packed into two
packages (say “MainQOTE” and “MainGreenify”);

e The participants in this experiment were similar
to those in the previous experiment: a sample
of 50 students, including 23 women and 27 men,
who attended a Physics Class. The players were
randomly divided into two groups, “QOTEFirst”
and “GreenifyFirst”, considering which game they
started playing at first;

e The procedure of each session in the experiment
included similar steps to the previous subsection;

e The same evaluation criteria and metrics as the
previous section were selected.

4.1.3. Results

In this section, we present the results of the conducted
experiment. We summarize the collected results in
Tables 3, 4, 5, and 6.

4.2. Expriment 2: Comparison of QOTE with
four automatic approaches

After comparing the prior games, we selected four well-

known automatic tools to generate test cases: Pex,

Evosuite, Fuzz testing, and Pseudo-Random.

QOTE and the four selected tools have different
coverage criteria. A well-known approach to compare
the effectiveness of test data generation techniques with
different coverage criteria is mutation analysis [18,19].

The mutation analysis on test suites generated by
the competitors is performed by the PIT tool, which
is the main reference tool for performing mutation
analysis [20].

QOTE outperforms the four competitors in terms
of average mutation scores: 88% (QOTE) versus 62%
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A. Personal information

B. Game experiences

Questions Your rate to QOTE | Your rate to Rings

(1 to 5) (1 to 5)

. The game was engaging.

A4 Te.‘

Gender:

. The game was boring.

. I would like to continue playing the game.

. While I play the game, I forgot about where I was.

Years o% education:

The game was fun

The game’s user interface was easy to use.

= o] wf B Wl

. Playing the game was hard.

Figure 11. The questionnaire.

Table 2. The criteria and metrics.

Criteria

Metric

The time needed by the “RingsFirst” and the “QOTEFirst” players to

The needed time to generate data by each game

(concerning research Question 1).

collectively solve the corresponding “MainRings” and “MainQOTE”

puzzles, respectively.

Easy interaction with the interface of the games The percentage of the participants who selected QOTE as their answer

(concerning research Question 2).

The complexity of the games’ puzzles

(concerning research Question 3).

to the sixth question of the questionnaire (Figure 11).

The percentage of the participants who selected QOTE as the answer

to the seventh question of the questionnaire (Figure 11).

The capability of the games to use players’

wrong solutions for test data generation

(concerning research Question 4).

The percentage of the QOTE puzzles which were solved by a wrong
solution of another QOTE puzzle from all 504 QOTE puzzles.

The capability of the game to identify more

accurate sets of infeasible

test path candidates.

Enjoyability of the games

(concerning research Question 5).

The number of remaining unsolved “MainQOTE” puzzles, compared

to that of “MainRings”.

The percentage of participants who selected QOTE as the answer to
questions 1 to 5 of the questionnaire (Figure 11).

Von Ahn and Dabbish [7] introduced three metrics:

e Throughput = The mean number of problem instances
(i.e., test paths) solved per human hour;
o Average Lifetime Play (ALP) = The total amount of

time an individual plays the game on average among all

Better and more useful GWAP for test data generation.

individuals who have played it;

e Expected contribution = Throughput x ALP.

If the expected contribution of QOTE is higher than that of Rings,
we can conclude that QOTE is a more useful GWAP for test data

generation than Rings.

Table 3. General comparison between the prior games and QOTE.

Generated puzzles

Infeasible paths Solved puzzles by

wrong solutions of other puzzles

QOTE 504
Rings 194
Greenify 504

232 out of 504 paths (part 1)/

233 out of 504 paths (part 2)

82 out of 194 paths 0 path
324 out of 504 paths 67 paths

151 paths (part 1)/ 151 paths (part 2)
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Table 4. The time of playing the games on average in each session.
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Part 1 of the experiment

Number of solved puzzles by RingsFirst/time

Number of solved puzzles by QOTEFirs/time

harder

MainRings (1) 99/ 95" : 42" (11) 100/ 96" : 33"
MainQOTE (I1I) 134/ 45’ : 38" (IV) 135/ 42’ : 17"
ExtraQOTE (V) 136/ 46’ : 12" (VI) 133/ 50" : 20"
Part 2 of the experiment
Number of solved puzzles by GreenifyFirst/time Number of solved puzzles by QOTEFirst/time
MainGreenify (VII) 177/ 155" = 31" (VIII) 180/ 148" : 32"
MainQOTE (IX) 271/ 75" : 49" (X) 266/ 78" : 28"
Table 5. The result of the players’ answers to the questionnaires.
t-test parameters
Mean rate to
Mean rate Rings by Alternative
The NULL .
to QOTE by the players . hypothesis p-value for
th 1 i t 1 hypothesis i t 1 t 1
Questions e players in par in part 1 in par par
in part 1 /mean rate to . /alternative /p-value
. /null hypothesis .
/part 2 of Greenify by . ‘2 hypothesis for part 2
in par
the experiment the players in p in part 2
part 2
Rings is more QOTE is
1- The gar'ne 4.3/4.4 2.80/3.2 engagllng/. more en'gaglng/ (< 0.01)/
was engaging Greenify is QOTE is (< 0.01)
more engaging more engaging
QOTE is more Rings is
5. The game was boring 1.83/2 2.76/2.5 ?aormg/QOTE more l.)orfng/ (< 0.01)/
is more Greenify is (< 0.01)
boring more boring
31 d In this case, In this case,
N “;ftd Rings is QOTE is (< 0.01)/
ave l.e 3.96/4.1 2.56/3.2 better/In better/In '
to continue . . (< 0.01)
lavine th this case, this case,
playing the game Greenify is better QOTE is better
In this In this
4- While case, situation,
laying th Rings i OTE
playing the ‘ ‘ ings is Q (< 0.01)/
game, I 3.86/3.92 2.63/3.1 better/In is better/ (< 0.01)
forgot this case, In this '
where I was Greenify case,
is better QOTE is better
QOTE is
5- The game was 4.03/4.21 2.5/2.91 Rings .1s 1?1ore fun/ more fu.n/ (< 0.01)/
fun Greenify is more fun QOTE is (< 0.01)
more fun
Rings is QOTE is
6- The easier easier
game s user 3.5/3.6 2.66/3.2 to use/ to use/' (< 0.01)/
interface Greenify QOTE is (< 0.01)
was easy to use is easier easier
to use to use
Playing
Playing R_“’_‘“?’
7- Playing QOTE is h“fjs .l/s (< 0.01)/
the game 1.7/1.52 2.86/2.78 harder/Playing P‘I“ o < 0'01)
was hard QOTE is aylnbg A '
Greenify is
harder
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Table 6. The results of GWAP metrics for all games.

Throughput E ted
xpecte
(problem instance ALP (hour) p. .
contribution
per human-hour)
Part 1 Rings 62.26 0.063 3.95
QOTE 192.85 0.028 5.39
Part 2 Greenify 78.60 0.103 8.1‘1
QOTE 204.61 0.052 10.63
|I QOTE M Pex MW Evosuite BPseudo-Random MW Java fuzz |
110%
100% * * X X *
= 3
* -
90% “ = o x
A * # X
80% . g >
* L]
70% * % . - =
| -
60% " X
* * Lo
50% o H Rl e
- ™ ]
40% . 8. . .
% E 1
30% .
20% % : x } .
10%
O% L]
- © = 3 o '_\ i [a] ] 0 0 S
g4 = § 08 " & £ 0P oz of o5 " F 2
> O E S 3 g 2 o o <
B > £ £ & o E °
é = 3 =) g
& o

Figure 12. Calculated mutation scores by QOTE, Evosuite (a hybrid method of search-based and constraint-based

testing), Pex (a symbolic execution method), Fuzz testing (a random method),

(Pex), 57% (Evosuite), 55% (Pseudo-Random), and
60% (Fuzz testing). All results are statistically signifi-
cant (We performed four t-tests, all resulting in p-value
< 0.01). See Figure 12 for detailed results.

There are reasons for this outperformance, which
are explained in Section 5.3.1 in detail. Nevertheless,
we intend to concentrate on one of these reasons here.
Since QOTE aims to cover paths, it provides more
test cases compared to the other tools based on weaker
coverage criteria. To reduce the effect of the coverage
criteria, we carried out another experiment.

In the new experiment, QOTE was again com-
pared with one of the competitors based on the same
coverage criterion. We selected Pex among the com-
petitors because of its block coverage criterion, which
is the weakest criterion among the criteria used by the
competitors. It is worth mentioning that QOTE was
not again implemented based on the block coverage
criterion; instead, the data generated by QOTE was

and Pseudo-Random (a random method).

down-sampled.

Even after downsampling for the block coverage
criterion, QOTE performs better regarding the average
mutation score (75%) than Pex (62%). Results are
statistically significant (We performed t-tests, which
resulted in p-value< 0.01). See Figure 13 for details.

5. Discussion

In this section, we discuss the results presented in the
previous section. To this end, QOTE’s features are first
described, and then we review the results concerning
the research questions.

5.1. Solving the issues of Rings and Greenify
via the features of QOTE

Two issues of Greenify and Rings are the scalability

problem and the complexity of visualizing and handling

the program’s wide range of input parameters. Both
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‘ B Pex mutation score

B QOTE mutation score

100%
80%

60%
40%
20%
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Power

Expint -
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Fisher
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Binary search
Inter area

Quadric
Reminder
Triangles 2
Comput tax
Do overlap
Triangles
Line

Tcas

Print calender

Figure 13. Calculated mutation scores by QOTE and Pex based on the block coverage criterion.

mentioned issues are resolved by QOTE, as described
in Section 3.2.2.

The other issue with Greenify and Rings is that
in each level, only one CFG path is shown to the
players. The path may present unsolvable puzzles to
the players. These puzzles lead to frustration for the
players. QOTE shows all paths of the CFG at a given
game level. At any level of QOTE, there is at least
one solvable puzzle. In addition, the likelihood that a
given level in QOTE and Greenify /Rings has at least
one answer is 100% and 56%, respectively. In addition,
QOTE stores players’ right and wrong solutions. This
may result in a smaller set of likely infeasible paths by
QOTE.

Rings was unable to visually model nonlinear and
more complex path constraints. Also, The Rings’
puzzles are very long, affecting the puzzles’ difficulty.
In QOTE, the conditional statements are treated as
black boxes. This means that in QOTE, the players
only observe the results of evaluating the conditional
statements based on the selected input values and are
not involved in the internal structure of the conditional
statements. In addition, Rings was designed on top of
symbolic execution [9]. Subsequently, it suffers from
every issue and limitation of symbolic execution (i.e.,
path explosion, external library calls, etc. [21]).

5.2. Reviewing the results concerning the
research questions

In this section, we walk through the research questions

and discuss the implications of the evaluation results

concerning these questions.

Answer to Question 1: The time of playing the
games, mentioned in Table 4, shows that the players
generated test data faster when playing QOTE.

Answer to Question 2: According to the players’
answers to Question 6 in their questionnaire, the
QOTE’s user interface was easier to use.

Answer to Question 3: The participants stated in
their questionnaire that QOTE was less complicated
than the prior games. In comparison to Rings,
the Rings’ game design was not able to generate
puzzles for 310 out of 504 test paths due to their

mathematical complexity. On the other hand, QOTE
generated puzzles for all 504 test paths. This answers
the second part of this research question and shows
QOTE’s applicability in test data generation for more
complex programs.

Answer to Question 4: In QOTE and Greenify, 151
and 67 puzzles were respectively solved by wrong
solutions of other puzzles before being solved by any
player.

Answer to Question 5: The collected data from the
questionnaires and QOTE’s higher expected contri-
bution, compared with the prior games, demonstrate
that QOTE was more enjoyable.

Answer to Question 6: The results mentioned in
Section 4.2 show that the data generated by QOTE
found more faults than four other tools.

5.3. Comparison with automatic tools

5.3.1. The degree of effectiveness in detecting failures
We have used PIT to create 867 mutants for all
benchmarks in Table 1. These mutants are divided
into five groups based on the type of changes that they
have made. As shown in Table 7, a few mutants of
groups 2, 4, and 5 survived. Therefore, only groups 1
and 3 are studied as follows:

1. Random methods have the worst performance in
killing “changed conditional boundary” mutants
since merely data with specific values are required
for killing these mutants. While human and intelli-
gent approaches can easily generate these values.

2. Pex and Evosuite have the worst performance in
killing “Replaced operator with another operator”
mutants for the following reasons:

a. Providing more data could be more effective in
killing these mutants. Since, in comparison to
QOTE, Pex, and Evosuite are based on weaker
test coverage criteria, they could finish their
work by generating less data. Therefore, QOTE
outperforms its competitors in terms of killing
mutants;

b. The number of generated data is one of many
factors affecting data quality. Therefore, it is
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Table 7. The number of survived mutants by generated data using each method.

Mutant Random QOTE Pex Evosuite
1 Changed conditional boundary (e.g., change z > 10 to z >= 10) 103 48 88 82
2 Negated conditional (e.g., change = > 10 to = <= 10) 21 6 31 21
3 Replaced operator with another operator (e.g., change = + 10 to = — 10) 120 21 141 161
4 Replaced return of value with new value (e.g., change return x to return x + 1) 3 1 6 1
5 Changed increment in a loop (e.g., change for (;;¢ + 1) to for (;;i — 1)) 3 4 10 7

better to consider the variety of the generated
data as a factor affecting the quality of data;

c¢. Mutants of group 3 are usually survived when
we use Zero and One values. For example, the
mutant that replaces 1+ 2 with 1 —z is not killed
by # = 0. Studies on data generated by Pex and
Evosuite reveal that these tools mostly generate
Zero and One.

Generated data by (non-expert) players usually do not
suffer from the above drawbacks and, thus, have high
quality to kill the mutants.

5.83.2. The usefulness of GWAPs to apply players’
intelligence

Players behave non-randomly during gameplay, and

they act intelligently. A large number of successful

GWAPs is hard evidence to show the players’ brain

does not function by mere random. QOTE, as a

GWARP, applies players’ intelligence as follows:

1. Since an individual learns and thinks differently
from one another, the playing behavior differs from
one player to another. For example, a player tries
to set the locks to zero while the other one sets the
lock from larger to smaller numbers. The advantage
of the different characteristics of the players is that
there are as many intelligent algorithms as the
number of players to solve the puzzle;

2. Based on the difference between the players, the
generated passcodes have a higher variety in values
compared to the automated approaches;

3. Top game players are valuable assets for a GWAP.
There might be only one top game player among
a hundred. However, that top player may solve a
complicated puzzle very efficiently, so his answer to
the puzzles is invaluable for our purpose.

5.3.3. How and where the players use their
intelligence

At the beginning of the gameplay and in the initial

levels, players blindly search for passcodes; but during

the game routine, the players learn how to find the

passcodes through their intelligence. In the following,

we mention opportunities for the players to analyze and
learn, leading to an improvement in playing the game:

1. Usually, a series of conditional statements are
repeated in most program codes. Hence, the cor-
responding game elements are repeated at different
levels of the game;

2. The process of dialing the locks to turn gear trains
and unlock safety boxes creates a visual perspective
for the players. The players make better use of their
intelligence from the visual perspective;

3. Players typically look for a cause-and-effect rela-
tionship between combination locks and gears. For
this reason, humans do not get stuck in a repetitive
gear train.

6. Conclusions

A significant task in the process of software testing is
test data generation. Automatic test data generation
methods have been extensively studied. But software
industry still depends on human resources due to the
low maturity level of automatic techniques. Therefore,
finding new ways to improve human-based test data
generation is still an important issue. For this purpose,
we used the concept of Game With A Purpose (GWAP)
to reduce the costs of human-based test data generation
and increase its appeal to engage even non-technical
people. The main idea behind our work is that GWAPs
transform a normal and monotonous task into an excit-
ing mission. In this way, numerous inexpensive players
with no special technical ability become engaged with
the test data generation activity through game playing.

Rings and Greenify were early works employing
GWAP in human-based test data generation with
promising results [9,10]. However, they had certain
problems, including limitations on the number of
program inputs, scalability, etc. With these issues
in mind, we designed Quest Of Treasure Explorer
(QOTE) to improve the applicability of GWAP to test
data generation. The experimental results show that
not only QOTE provides a more enjoyable experience
for the players, but also it showed a better test data
generation tool. In other words, using QOTE, more
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test data was generated in a shorter time by more
entertained players.

Regarding test data capabilities, we have con-
ducted an experiment to compare the performance of
QOTE versus Pex, Evosuite, Fuzz testing, and Pseudo-
Random, which are well-known automatic approaches.
The calculated mutation scores of each approach show
that the generated test data by QOTE find more faults
than the automatic approaches mentioned.
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