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Abstract 25 

Structural systems may experience negative moments due to dynamic excitations and inertia effects. 26 

Composite metal deck slabs are typically designed to withstand positive moments and reinforced at the 27 

bottom, with minimal thermal reinforcement at the top. However, under dynamic impact loading, insufficient 28 

reinforcement at the upper part may cause these slabs to fail under negative moments. Therefore, this study 29 

investigates the performance of composite metal deck slabs under free drop weight impact loading. The 30 

research consists of two main parts: generating a data set through Finite Element simulation analysis and 31 

training machines based on the collected data. The LS-DYNA commercial software was used to analyze 165 32 

models with three parameters: slab lengths, striker weights, and striker velocities. In the machine learning 33 

component, the FEM results were utilized to train the machines and to accurately predict the performance of 34 

these slabs. The outcomes were reported in terms of the maximum negative moment, maximum deflection, 35 

and elastic and plastic behaviour of the slab. The study revealed that at high striker velocities, the specimens 36 

experienced an ultimate internal negative moment within the range of 60 to 80 kN.m. 37 

 38 
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List of notations 53 

𝜀𝑢𝑙𝑡      is the steel ultimate strain 54 

𝐷𝐼𝐹𝑠𝑡𝑒𝑒𝑙 𝑦𝑒𝑖𝑙𝑑    is the dynamic increase factor for steel yield stress 55 

𝐷𝐼𝐹𝑠𝑡𝑒𝑒𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒   is the dynamic increase factor for steel ultimate stress 56 

𝜀̇     is the steel strain rate 57 

𝑓𝑦      is the steel yield stress  58 

𝑓𝑢                 is the steel ultimate stress 59 

𝐹1      is the score for evaluating trained machines performance 60 

𝑢      is the maximum deflection 61 

𝑚      is the weight of striker 62 

𝑀−      is the maximum negative moment 63 

 64 

1. Introduction 65 

1.1.  Overview 66 

When it comes to constructing building floors, composite metal deck slabs are often the preferred option. This type 67 

of structural system usually includes a metal deck sheet, concrete slab, shear studs, thermal reinforcement, and 68 

girders. The metal deck sheet serves two main functions within this system: providing a framework for construction 69 

and reinforcement for the tensile concrete component [1]. Fig. 1 [2] depicts the schematic arrangement of this 70 

system. The use of composite metal deck slab system as a dependable flooring system in the industry offers 71 

numerous benefits. These include fast construction, no need for jacking support, a lightweight structural system, 72 

ease of handling and installation, and high strength. However, there are also some limitations to this system. Despite 73 

the metal deck serving as the bottom reinforcement in the design, there is minimal thermal reinforcement provided 74 

for the top part of the structural system. The performance of the composite slab system is generally satisfactory as 75 

long as it is not exposed to significant negative moment. However, sudden and substantial negative moment can lead 76 

to potential failure and compromise the composite performance and structural integrity of the system, particularly 77 

near the supports. This scenario is more likely to occur when the flooring is expected to bear high dynamic impact 78 
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loading, which may generate negative moments in the structural flooring system even in the case of simply 79 

supported slabs. 80 

While there are dependable methods available for analyzing structural components that undergo static loads [3-7], 81 

designing and analyzing structural systems under extreme dynamic excitation, such as impact loading, can be 82 

challenging for design engineers. One alternative solution for designers is to employ incremental dynamic analysis, 83 

which involves assessing both load and material properties in the static domain [8]. However, conducting finite 84 

element analysis and experimental testing are more precise approaches, as noted by numerous researchers [9-18]. 85 

Several researchers have studied the behavior of reinforced concrete slabs and beams under dynamic loading [8, 19-86 

23]. However, only a handful of studies have focused on composite metal deck slabs [24, 25], with researchers 87 

employing numerical and experimental approaches to address the associated issues. The limited research and the 88 

weakness of composite metal deck slabs in resisting negative moments create a knowledge gap, leading to a partial 89 

understanding of the design and performance of this flooring system under severe dynamic loads. This study aims to 90 

bridge this gap by expanding knowledge and providing more information on this topic. 91 

1.2 Research Goal  92 

In modern times, researchers often turn to machine-learning techniques to improve the computational aspects of 93 

engineering applications [26-41]. The focus of this paper is to develop a computational approach that accurately 94 

models the behavior of composite metal decks when subjected to free drop weight impact loading. The initial steps 95 

involved conducting a parametric study using finite element simulation and analysis. Subsequently, a finite dataset 96 

was generated to facilitate the use of machine learning algorithms for training machines in the next stage of the 97 

computational approach. Trained machines are capable of predicting the performance of thousands of models within 98 

a very short period of time. Therefore, the second phase of the computational approach can be regarded as a time-99 

efficient alternative to the first phase, with less computational cost. However, the accuracy of the predictions relies 100 

on several factors, such as the level of correctness of the trained machines, the size of the dataset used for training 101 

the machines, and the arrangement and correlation of data within the dataset. 102 

The proposed computational approach is anticipated to enhance the understanding of the performance of composite 103 

metal deck slabs under impact loading. Three key domains are slated for examination: 104 

 The elastic and plastic behavior of slabs 105 

 The maximum deflection 106 
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 The maximum negative moment. 107 

 108 

1.3. Numerical Model 109 

The initial accepted model for this section is a drop weight impact test on a composite metal deck slab, as described 110 

in reference [20]. The slab model measures 2200 mm in length and 930 mm in width, with a variable thickness 111 

ranging from 50 to 115 mm. The thermal metal bars and cross-section of the metal deck sheet are shown in Figs. 2 112 

and 3, respectively. The thermal metal bars have a diameter of 6.5 mm, while the metal deck sheet has a thickness of 113 

1 mm. A girder in the form of an IPE300 flange is used as a fixture. The shear stud measures 90 mm in overall 114 

length, with an 80 mm body and a 10 mm head. The head diameter is 35 mm, and the body diameter is 22 mm. 115 

The LS-DYNA environment was utilized for constructing numerical FE models of the components mentioned. To 116 

account for the dynamic excitation nature of loading, the dynamic explicit option was also chosen as the analyzing 117 

method. Numerical simulations included three types of elements: solid, shell, and truss. The concrete slab, shear 118 

studs, rigid fixture, and striker were modeled using eight-node solid elements, each with three translation degrees of 119 

freedom per node. The metal deck sheet was modeled using quadrilateral shell elements with four nodes per 120 

element, with membrane and bending behavior. Each node of these shell elements had three translational and 121 

rotational degrees of freedom. For the remaining components, which were thermal bars, 3D 2-node truss elements 122 

with three translational degrees of freedom per node were used. The mesh size for the numerical model elements 123 

was optimized through a convergence study, resulting in the mesh size used in this work [25]. 124 

The selection of an appropriate material is crucial when numerically modeling structures subjected to impact 125 

loading, especially for nonlinear analysis. At high strain rates, materials can exhibit unexpected behavior. Concrete 126 

and steel, for example, are more prone to brittle response and higher strength under such conditions. To model the 127 

concrete part in the present study, MAT-CMCS (Material 159) was chosen due to concrete's strain rate dependence. 128 

The continuous surface cap model (CSCM), which is widely used by researchers to capture concrete behavior under 129 

high strain rate loading, was employed. Table 1 [25] provides details of the material properties used in the numerical 130 

simulation for concrete. 131 

The current CSCM model is defined by 37 input parameters. These parameters were determined using the User’s 132 

Manual for LS-DYNA Concrete Material Model 159 [47], based on the unconfined compression strength and 133 

aggregate size. For concrete aggregates, ASTM C136 [48] was used for sieve analysis, with no size greater than 134 
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19mm. The material model for the metal deck and shear studs is MAT-PIECEWISE-LINEAR-PLASTICITY 135 

(Materials 24), which accounts for strain rate effects and nonlinear properties. Deck stress-strain data points were 136 

derived from the diagram in Fig. 4, which was obtained using an engineering stress-strain diagram based on ASTM 137 

A370 [49] and a metal deck coupon. These data points were then converted to true values in the material model. The 138 

material model for steel bars is MAT-PLASTIC-KINEMATIC (Materials 3). Tables 2, 3, and 4 show the material 139 

properties for metal deck sheet, steel bars, and shear studs, respectively [25]. Since the fixture and striker are 140 

assumed to be rigid bodies, a rigid material with a density of 7850 Kg/m3 was chosen for them. As previously 141 

mentioned, defining the strain rate is an important aspect of numerical modeling due to the high velocity of impact 142 

loading. To account for the effect of strain rate on steel materials, the CEB code criteria were applied [50]. The 143 

following equations, namely the dynamic increase factor (DIF) formulas (Equations 1 and 2), were used for the steel 144 

material to incorporate strain rate effects: 145 

𝐷𝐼𝐹𝑠𝑡𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑 = (
𝜀̇

10−4
)0.074+0.4

𝑓𝑦
414                                                                                                                                              1 

𝐷𝐼𝐹𝑠𝑡𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑 = (
𝜀̇

10−4
)0.019+0.01

𝑓𝑢
414                                                                                                                                           2 

In which ,  and  are steel strain rate, steel yield stress and steel ultimate stress, respectively. To model 146 

interfaces between components of the model, the contacts are introduced as AUTOMATIC-SURFACE-to-147 

SURFACE and AUTOMATIC-SURFACE-to-SURFACE-TIEBREAK. A friction coefficient of 0.13 is assumed 148 

between the deck and the slab. Table 5 provides information on the contact types between various parts of the 149 

model. 150 

To reduce computational running time, only one-quarter of the composite slab was modeled, as shown in Fig. 5. The 151 

x-y and y-z planes are planes of symmetry for both the slab geometry and applied load in this model. The impact 152 

load was applied by the rigid striker and allowed to move only in the y direction, with a specified initial velocity 153 

[25]. Fig. 6 depicts the boundary conditions applied to the parts in the model. In this figure, X, Y, and Z represent 154 

the translational degree of freedom, while RX, RY, and RZ indicate rotational angles with respect to the X, Y, and Z 155 

axes, respectively. 156 

1.4. Proposed Parametric Studies 157 

A verified model is used to conduct a parametric study, with the slab length, striker weight, and striker velocity 158 

being the three primary variables. Table 6 summarizes the suggested parameter ranges. FEM analysis results are 159 
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presented in Figs. 7, which display the relationship between the parameters (slab length, striker velocity, and striker 160 

weight) and the corresponding outcomes (maximum negative moment or maximum deflection). Based on the plots 161 

in Fig. 7, the following trends can be observed:  162 

 The maximum negative moment should not exceed 70 kN.m for striker velocities greater than 3600 mm/s 163 

and striker weights greater than 400 kg.  164 

 The maximum negative moments remain constant when they reach the ultimate limit, while the deflection 165 

continues to increase.  166 

 The plastic deflection range is significantly larger than the elastic deflection range. 167 

 The plastic distribution shifts to the right side in striker velocity distribution plots and has less overlap with 168 

the elastic distribution. This separation is more pronounced when the distribution is based on striker 169 

weights. 170 

 Only 23% of models remain in the elastic domain, see Table 7. 171 

2. Machine Learning Model 172 

The current section details the development of a computational approach to predict the performance of a vast array 173 

of models. To achieve this goal, machine learning (ML) algorithms are utilized to train a machine, with the primary 174 

challenge being the optimization of hyperparameters to improve machine performance. With sufficient accuracy, a 175 

trained machine can predict the performance of composite metal deck slabs under impact loading. Subsequent 176 

sections will illustrate the proper training of machines to predict the elastic and plastic behavior of these slabs. 177 

Initially, binary classification is employed to distinguish between elastic and plastic data, followed by regression to 178 

predict maximum negative moments and maximum deflection values based on key parameters. 179 

2.1. Main Steps of the ML Model 180 

This research utilizes an ML approach that involves three primary stages: 181 

1- Importing, discovering, and visualizing the data to get insight, 182 

2- Preparing the data for ML algorithms,  183 

3- Selecting and training the models. 184 

The initial phase involved importing the data as a CSV file into Google Colab. To organize the dataset, a data frame 185 

was examined. Additionally, the Seaborn library was utilized to create visual plots, as shown in Fig. 7, providing a 186 

more comprehensive understanding of the raw data's initial condition. These tools distinctly illustrate that the dataset 187 
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comprises 165 data points, and each data point is characterized by three primary features: slab length, striker weight, 188 

and striker velocity. 189 

During the second phase, the dataset was prepared for the application of ML algorithms. The clarity of the data and 190 

the presence of missing values were assessed, and any issues were resolved. As some classification algorithms are 191 

sensitive to scaling, the data was standardized. The target values, plastic and elastic, were encoded to ensure that 192 

they were interpretable by the algorithms. Lastly, to evaluate the accuracy and performance of the machines, the 193 

dataset was divided into training and testing sets. 194 

The final step involved applying Scikit-Learn classification algorithms to prepare the data for binary classification, 195 

with the hyperparameters being fine-tuned. The following algorithms were used: K-Nearest Neighbors (KNN), 196 

Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Multilayer perceptron (MLP), Naive Bayes 197 

(NB), Stochastic Gradient Descent (SGD), and Support Vector Machine (SVM). In addition, Support Vector 198 

Regression (SVR) was utilized as the primary algorithm in the regression component. 199 

2.2. Composite slabs behavior classification 200 

In earlier sections, an assessment of the behavior of composite metal deck slabs was carried out via FE analysis. 201 

However, each analysis was found to be a time-consuming process, making it an impractical computational method 202 

for analyzing a large number of models. Consequently, to predict the elastic or plastic behavior of these slabs under 203 

impact loading, ML algorithms were employed. The trained machines are capable of making predictions on 204 

thousands of data points in under a minute, making them far more efficient and effective when compared to tedious 205 

FE analysis. 206 

The machines were trained for different algorithms, including KNN, LR, DT, RF, MLP, NB, SGD, and SVM, with 207 

their hyperparameters appropriately fine-tuned. Various algorithms were used during the training process to 208 

determine which performed better in classifying the dataset. The primary criteria for evaluating the performance of 209 

the trained machines were scores from cross-validation (with 3-fold) on the training set, the accuracy of predictions 210 

on test samples, F1 score, and confusion matrix. The confusion matrix is a table that represents the performance of a 211 

trained machine in a classification problem and can be applied to a dataset where the actual label of data is specified. 212 

The values in the diagonal cells of the confusion matrix illustrate that the predicted labels by the machines for the 213 

data are true and equal to the actual labels. 214 
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In binary classification, the values are commonly referred to as true negative (tn) and true positive (tp), which are 215 

found in the diagonal cells of the confusion matrix. The non-diagonal cells contain values that indicate the 216 

difference between the predicted and actual labels, which are called false positive (fp) or false negative (fn) in binary 217 

classification. Table 8 displays a schematic layout of the confusion matrix for a binary classification problem. The 218 

F1 score, which is one of the performance evaluation criteria for trained machines, can be computed using the 219 

precision and recall values from the confusion matrix, as demonstrated by Eqs. 3, 4, and 5. 220 

𝐹1 = (
1

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
) = 2 ×

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                              3 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
)                                                                                                                                                                    4 

𝑟𝑒𝑐𝑎𝑙𝑙 = (
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
)                                                                                                                                                                         5 

The machines that exhibited the best performance were trained using RF, SVM, and KNN algorithms, respectively. 221 

The hyperparameters optimized for these algorithms can be found in Table 9. The machine trained with the RF 222 

algorithm had zero errors and achieved exact predictions for both the training and test datasets. Conversely, the NB 223 

algorithm had the lowest accuracy with a score of only 91.7%. Table 10 outlines the precision, accuracy, and 224 

ranking of each algorithm used in the study. Additionally, Fig. 8 presents a 3D plot of the predictions made by the 225 

top-ranked machine on the elastic region. The classification results for this dataset indicated that Random Forest, 226 

SVM, and KNN algorithms outperformed other methods. This outcome was not surprising, particularly for SVM, as 227 

it is known to be one of the most reliable classification methods for many problems. However, a potential drawback 228 

of SVM and RF methods is their training speed when applied to large datasets. Nonetheless, the small dataset size 229 

used in this study mitigated this weakness. 230 

Fig. 8 depicts the machine's predicted elastic region (green volume) and demonstrates its ability to capture all data 231 

points exhibiting elastic behavior. However, data points related to plastic behavior fall outside of this region. Despite 232 

this, one must question the reliability of the machine's predictions in comparison to FE analysis and experimental 233 

measurements. The small dataset used in this study necessitates additional information to confidently rely on the ML 234 

approach's prediction results for composite slab design. This assertion is supported by the results presented in Table 235 

11, where reducing the training data by 10% while increasing the test sample size by the same amount led to less 236 

reliable predictions. 237 
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The performance of the machines is negatively affected by reducing the size of the training dataset, with errors 238 

primarily occurring in the prediction of data in the elastic region. The previous test set included seven data points 239 

labeled as elastic, whereas the new test set included 11 such points. The RF algorithm made all of its mistakes in 240 

only two of the new test set's elastic-labeled data points. This concentration of errors in a smaller portion of the data 241 

(as shown in the confusion matrix in Fig. 9) can result in uncertainty regarding the machine's performance. 242 

However, these errors have a positive aspect as they lead to a more conservative design approach. If a specimen 243 

remains in the elastic domain, but the prediction is for plastic behavior, then the designers must improve the 244 

performance of the specimens by modifying the reinforcement or geometry, which results in overdesigning a 245 

component. Conversely, if the machine misidentifies a plastic specimen as elastic, it leads to design failure. 246 

Therefore, a larger test dataset can help produce more conservative design and prediction results. To enhance the 247 

reliability of the trained machines, more data with a more random distribution is needed, with particular emphasis on 248 

the border between the elastic and plastic regions. 249 

2.3. Prediction of Maximum Negative Moment and Deflection 250 

The design of composite metal deck slabs requires consideration of both deflection and negative moments. To obtain 251 

data for these properties, previous studies used FE analysis and selected logarithmic scales for the parameters and 252 

target values. The machines were then trained on the scaled dataset, and their hyperparameters were optimized for 253 

performance. Table 12 presents the values of other hyperparameters such as C, Gamma, and Epsilon. The results of 254 

the prediction based on the maximum negative moments are illustrated in Fig. 10, with the color bars indicating the 255 

percentage difference between the predicted and actual values of the maximum negative moment at each point. Fig. 256 

10a shows the normal distribution of errors in estimating the maximum negative moments based on the three 257 

parameters, with no noticeable concentration of biased predictions in any particular region. 258 

This indicates that the machine's predictions have been appropriately weighted for different regions, which is due to 259 

the proper preparation and scaling of data before algorithm application. Fig. 10d illustrates the trend of maximum 260 

negative diagrams based on striker weight and velocity. Comparing the impact of these two parameters on the 261 

diagram slopes reveals the stronger influence of striker weight, which is also evident by examining Figs. 10c and 262 

10b. In conclusion, the trained machines produce reasonable predictions of maximum negative moment values, with 263 

striker weight and velocity having a significant impact on the results. 264 
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The machine learning model for predicting maximum negative moments in composite slabs is trained using 265 

deflection target values, including hyper parameters tuning as shown in Table 12. The trained model can predict 266 

maximum deflections with a square root mean square error of 3.49 and 4.59 for train and test data, respectively. Fig. 267 

11 demonstrates the model's performance in predicting moment versus deflection diagrams. Fig. 11c shows the 268 

actual dataset, while Figs. 11a and b depict the model's predictions. The trained model captures the total trace in the 269 

moment-deflection diagram. Fig. 11a color-codes the data points based on the percentage error in deflection 270 

prediction, with the highest error being around 19%. Similarly, Fig. 11b color-codes the data points based on the 271 

percentage error in predicting maximum negative moments, with the maximum observed error being around 22%. 272 

Upon comparing the images, it is evident that the difference between the predicted and actual deflections is more 273 

than 140 mm, making it impossible to express the difference in percentage. However, in the elastic domain, the 274 

difference between the predicted and actual deflections is comparatively small and can be expressed in terms of 275 

error percentages. The errors in both diagrams are distributed reasonably and the images containing error data can be 276 

relied upon to monitor the performance of the machine from the aspect of overfitting. The test and train data in the 277 

dataset are uniform and compatible, indicating that the machine is not solely reliant on the initial training data and 278 

can make accurate predictions on the test data as well. 279 

3. Discussion 280 

In the previous sections, the performance of composite metal deck slabs under free drop weight impact loading was 281 

examined using a machine learning (ML) approach and finite element (FE) analysis. The elastic domain of these 282 

slabs was determined based on the results obtained from the trained machines, as shown in Fig. 8. For a better 283 

understanding of changes in the elastic domain, some sections were taken from the constant slab length and plotted, 284 

as shown in Fig. 12. It was observed that the diagrams of striker weight against striker velocity for the three groups 285 

of slabs showed step charts, which are the primary features of the Random Forest algorithm's predictions. 286 

Additionally, a visible elastic area was present under the diagrams when the striker velocity was below 3 m/s. 287 

Increasing the length of the slab was found to increase the potential for the slabs to remain in the elastic domain. 288 

However, for short slabs with a length smaller than 2 meters, the elastic capacity was observed to be reduced. The 289 

trend of the sections in Fig. 12 confirmed that the elastic capacity in regions where the striker velocity exceeded 4 290 

m/s was not significant. Fig. 13 presents a different assessment of the striker velocity versus slab length in the elastic 291 

domain. The rectangular patterns in the figure indicate the use of the Random Forest algorithm, while the color bar 292 
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specifies the value of the striker weight in each step. The yellow region of the elastic domain corresponds to a high-293 

weight striker with a velocity lower than 2 m/s and slab length greater than 2 m, whereas the purple region indicates 294 

a low-weight striker with a velocity greater than 4 m/s. Other regions denote the elastic domain based on the 295 

combination of features.  296 

To gain a better understanding of the problem, the trained machines in the regression part can be utilized to obtain 297 

additional results. Fig. 14 illustrates the performance of the trained machines in predicting data for slabs with a 298 

length of 2 meters. Fig. 14a compares the predictions of the machine for a maximum simulated negative moment 299 

and the actual moment values from the dataset versus striker weight. The machine performs well in predicting 300 

moments when the striker velocity is below 3.6 m/s. However, for higher striker velocity values, the predictions 301 

become less precise, particularly for heavier strikers. The errors in the high-velocity domain become more 302 

significant with heavier strikers. Fig. 14b shows the maximum deflection predicted by the machine versus striker 303 

weight. It is apparent that the errors in predictions are uniformly distributed along the diagram trace. To evaluate the 304 

performance of the trained machines, the formulas proposed by Emami et al. [25] can be employed. The proposed 305 

formulas, namely Equations 6 and 7, are calibrated as follows: 306 

𝑢 = 0.0684 × 𝑚 + 7.3685                                                                                                                                                             6 

𝑀 =

{
 

 
−0.0272 × (24.8 ∙ ln(0.0684 ∙ 𝑚 + 7.3685) + 292.89)2                     50 ≤ 𝑚 ≤ 200

+17.93 × (24.8 ∙ ln(0.0684 ∙ 𝑚 + 7.3685) + 292.89) − 2988.8                                   

−0.0272 × (3.7508 ∙ ln(0.0684 ∙ 𝑚 + 7.3685) + 355.31)2            200 ≤ 𝑚 ≤ 2200

+17.93 × (3.7508 ∙ ln(0.0684 ∙ 𝑚 + 7.3685) + 355.31) − 2988.8                              

                                   7 307 

These formulas use to represent deflection and to indicate the maximum negative moment, while m represents the 308 

weight of the striker. Figs. 15a and b compare the results obtained from the prediction of the trained machines and 309 

the results from the proposed formulas. It is observed that there is a discrepancy of about 15 percent in predicting the 310 

ultimate negative moment of the systems. This difference can be explained in a few ways. Firstly, both methods are 311 

predictive, so there may be some variation in the results. Secondly, there is significant inconsistency at the 312 

beginning of the diagrams with lighter strikers, whereas the suggested formula is suitable for strikers heavier than 50 313 

kg. Additionally, the dissimilarity between these two predictions seems to be linked to the method of applying 314 

contact type between the metal deck and rigid fixture in the FE model. As explained earlier, Emami et al. [25] 315 

assumed the contact between the rigid fixture and metal deck to be a fully tied contact. However, in the present 316 

study, only the elements around the shear studs, which are similar to welded regions in real slabs, were assumed to 317 
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be tied to the rigid fixture, and other regions had normal friction contact. This may decrease the maximum negative 318 

moment carrying capacity of the sections near the support region. 319 

The ML predictions for maximum deflections are closer to previous measurements compared to ultimate negative 320 

moments, as shown in Fig. 15b. The change in contact type between the metal deck and rigid fixture also affects the 321 

predictions, particularly for high deflection values. The trained machines can be used to extend the results, as seen in 322 

Figs. 16-19, which show predictions for maximum negative moments and maximum deflections of composite metal 323 

deck slabs in common lengths of 1-4 meters. The nonlinear trend for maximum negative moments and linear trend 324 

for maximum deflections are notable features. For a constant slab length and striker velocity, the systems gradually 325 

reach their moment bearing capacity as striker weight increases. This trend is more pronounced with higher striker 326 

velocity. When velocities exceed 1 m/s, the maximum negative moment diagrams become flat lines once striker 327 

weight approaches 1000 kg, indicating the slabs have reached their ultimate moment capacity for such weights. 328 

Further increases in striker weight beyond these limits may cause more damage in the material's plastic state. The 329 

maximum negative moments achievable by these slabs range from 60 to 80 kN.m, but this range is only applicable 330 

when the striker velocities and weights do not exceed 1 m/s and 1000 kg, respectively. 331 

4. Conclusions 332 

This study investigates the behavior of composite metal deck slabs subjected to impact loading using two 333 

computational tools: finite element (FE) analysis and machine learning (ML). A total of 165 FE models were 334 

generated to explore the effect of slab length, striker velocity, and striker weight on the maximum negative moments 335 

and deflections. The results show that the striker velocity and weight have a considerable impact on the behavior of 336 

composite slabs under impact loading. 337 

To enhance the computational method's efficiency in terms of cost and time, a machine-learning approach was 338 

employed after the FE analysis. The main objective of this approach was to train machines with high accuracy to 339 

predict the performance of numerous models in a short duration. The dataset used for training the machines 340 

consisted of the initial data and outcomes of the parametric study. The desired tasks for the machines were to make 341 

predictions on the slabs' elastic and plastic behavior, as well as the maximum negative moment and maximum 342 

deflection. 343 

After the machines were trained and the hyper parameters were tuned, the Random Forest, KNN, and SVM 344 

algorithms demonstrated the most effective performance in classifying the elastic and plastic behavior of composite 345 
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slabs under impact loading. Because the dataset was small and straightforward, and the features were correlated with 346 

each other in order, the machine trained with the RF algorithm was able to predict with 100% F1 and test scores. In 347 

this machine, the average cross-validation score within three folds was over 96% consistent. Using the trained 348 

machine, elastic and plastic behavior domains of these slabs were determined, and the characteristics of these 349 

domains were analyzed. It was discovered that slabs longer than 2.5 m can provide higher elastic capacity. The 350 

significant influence of striker velocity and weight on the plastic behavior of these slabs was also taken into 351 

consideration. 352 

The machines were trained using the SVR algorithm for predicting the maximum negative moments and maximum 353 

deflections. After hyperparameter tuning, the trained machines were able to produce accurate predictions with low 354 

error. The machines captured the overall trend in the negative moment versus deflection diagrams and were able to 355 

predict the negative moment amounts in both the plastic and elastic domains. The influence of each feature on the 356 

prediction results was discussed, and the accuracy of the results was compared to FE results and current data. It was 357 

observed that at high striker velocities, the specimens exhibited an ultimate internal negative moment ranging from 358 

60 to 80 kN.m.      359 
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 547 

 548 

 549 

 550 

Density ( ) 2400 

Compressive strength (MPa) 30 

Tensile strength (MPa) 2.8 

Elastic modulus (GPa) 30 

Shear modulus (GPa) 18 

Poisson's ratio 0.18 

Table-1 551 

 552 

  Density (kg/m
3
) 7850 

Yield stress (MPa) 275.8 

Ultimate stress (MPa) 336.77 

Elastic modulus (GPa) 170 

 (%) 30.76 

Poisson's ratio 0.3 

Table-2 553 

 554 

 

 Density (kg/
m3

) 7850 

Yield stress (MPa) 331.22 

Ultimate stress (MPa) 456.51 

Elastic modulus (GPa) 200 

 (%) 18.55 

Poisson's ratio 0.3 

Table-3 555 

 556 
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 557 

   Density (kg/m^3) 7850 

Yield stress (MPa) 347.43 

Ultimate stress (MPa) 559.62 

Elastic modulus (GPa) 200 

 (%) 28.31 

Poisson's ratio 0.3 

Table-4 558 

 559 

 560 

 Striker-Slab AUTOMATIC-SURFACE-to-SURFACE 

Striker-Deck AUTOMATIC-SURFACE-to-SURFACE 

Striker-Bars AUTOMATIC-SURFACE-to-SURFACE 

Fixture-Slab AUTOMATIC-SURFACE-to-SURFACE 

Fixture-Deck AUTOMATIC-SURFACE-to-SURFACE 

Fixture-Bars AUTOMATIC-SURFACE-to-SURFACE 

Shear studs-Slab AUTOMATIC-SURFACE-to-SURFACE 

Shear studs –Deck AUTOMATIC-SURFACE-to-SURFACE 

Shear studs –Bars AUTOMATIC-SURFACE-to-SURFACE 

Shear studs-Slab Tied 

Deck-Fixture (for elements around shear studs) Tied 

Deck-Slab AUTOMATIC-SURFACE-to-SURFACE-TIEBREAK 

Table-5 561 

 562 

 563 

 
Slab length (m) Striker weight (Kg) Striker velocity (mm/s) 

2 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600 / 4600/ 5600 

2.5 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600 / 4600/ 5600 

3 25/ 50/ 75/ 100/ 150/ 200/ 300/ 400/ 600/ 800/ 1000 1600/ 2600/ 3600 / 4600/ 5600 

Table-6 564 

 565 

 566 

 
System behavior Number of models in each category 
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Plastic  127 

Elastic  38 

Table-7 567 

 568 

 569 

 570 

 571 

 572 

 573 

 

 

Actual Predicted 

 
Negative Positive 

Negative True Negative False Positive 

Positive False Negative True Positive 

Table-8 574 

 575 

 576 

 577 

 578 

 579 

Method Tuned hyper parameters 

RF n_estimators = 100  –  max_depth = 4  –   max_features = 2   

min_samples_leaf = 0.001  –   min_samples_split = 0.01 

KNN Number of neighbors = 3 

SVM ɣ  = 0.1  –  kernel = rbf  –  C= 100 

Table-9 580 

 581 
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 582 

 583 

 584 

 585 

 586 

 587 

 

Method Rank 

Average CV 

Score (%) 

Test Prediction 

Accuracy (%) 

Train Data F1 

Score (%) 

Test Data F1 

Score (%) 

RF 1 96.4 100.0 100.0 100.0 

SVM 3 97.1 100.0 98.6 100.0 

KNN 2 90.8 100.0 98.6 100.0 

MLP 4 92.3 95.8 100.0 97.0 

LR 5 93.6 100.0 96.4 100.0 

SGD 6 91.5 100.0 95.5 100.0 

DT 7 92.8 92.0 97.8 91.4 

NB 8 87.2 91.7 89.5 94.1 

Table-10 588 

 589 

 590 

 591 

 

Method Rank 

Average CV 

Score (%) 

Test Prediction 

Accuracy (%) 

Train Data F1 

Score (%) 

Test Data F1 

Score (%) 

KNN 1 90.2 100.0 98.4 100.0 

RF 2 95.1 95.2 100 96.8 

SVM 3 95.9 95.2 98.9 96.8 

Table-11 592 
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 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 

Regression target Tuned hyper parameters 

Moment 
ɣ  = 0.2 – C = 5 – Ε = 0.05 

Deflection  ɣ  = 0.05 – C = 50 – Ε = 0.05 

Table-12 606 

 607 

 608 

 609 

 610 

 611 
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