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Abstract. Fast Fourier Transform (FFT) is a standard method for calculating the
numerical Fourier transform as well as the impedance of electrochemical systems. However,
the presence of noise in data increases the error rate while calculating the numerical
Fourier transform and in order to reduce the error rate in noisy conditions, the solution
order of the Fourier transform should be enhanced. In the present study, the solution
order used for calculating the numerical Fourier transform in the presence of noise was
enhanced using a straight line and then second- and third-order polynomials. Next, the
impedance of the series, parallel, and battery circuits was calculated. Additionally, the
calculated impedance of the higher-order solutions was compared to the acquired impedance
through the FFT method in noisy conditions. The �ndings of this study demonstrated that
increasing the solution order of the numerical Fourier transform from zero up to one would
yield satisfactory results; however, further enhancement would deteriorate the outcome
responses. Therefore, it can be concluded that the linear method is the best way for
calculating the numerical Fourier transform in the presence of noise.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Electrochemical Impedance Spectroscopy (EIS) is one
of the most powerful methods for characterization
of electrochemical systems such as batteries and fuel
cells. In this method, the electrochemical system is
stimulated by a voltage or current sinusoidal input
signal. Then, the system response that is either a
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voltage or current response (according to the input)
is measured. Finally, the impedance, i.e., division
of voltage in the frequency domain into current in
the frequency domain, is calculated. This procedure
is repeated for a wide range of frequencies (from
microhertz to megahertz) which makes EIS a time-
consuming procedure. Of note, the EIS technique
requires low disturbances and steady-state conditions,
hence the need for costly devices. Despite these
drawbacks, many researchers still use this technique
to evaluate the behavior of electrochemical systems.
Janicka et al. [1] used EIS to study the variations in
the fuel cell impedance in a wide range of current loads
and humidity changes. These changes in the impedance
determined the variant processes occurring in the fuel
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cell. Qiu et al. [2] studied the initial discharge/charge
process in the Li-S batteries with di�erent potentials
using the EIS. They also characterized the electronic
and ionic transport properties of a sulfur electrode in
a Li-S battery. Sharma et al. [3] used EIS to analyze
the changes in equivalent circuit parameters of solar
cells as well as their degradation degree. Xiao et al. [4]
investigated the e�ect of State of Charge (SoC) on
the parameters of an equivalent circuit model in Li-ion
batteries using the EIS. Gallo et al. [5] employed the
EIS method to estimate Solid Oxide Fuel Cell (SOFC)
voltage degradation over time along with its nominal
behavior. Erts et al. [6] utilized EIS as an e�ective tool
for determining the oxidation level of Bi2Se3 surfaces,
quality of the surface covering, and characterization of
the type and parameters of the nanopores in Bi2Se3
thin �lms. Calles et al. [7] studied Prismatic Li-ion
cells with the nominal capacity of 25 Ah (as used for
automotive applications) with EIS. They reported the
interdependency of the parameters determined by the
EIS for cells in di�erent aging regimes (cyclic vsersus
non-cyclic aging) relevant to automotive requirements
use cases. Gopalakrishnan et al. [8] characterized
the Nickel Manganese Cobalt (NMC) Li-ion batteries
and determined the contribution of temperature and
SoC to the EIS. Li et al. [9] proposed two models
for SoC and State of Health (SoH) estimation based
on EIS. Koseoglou et al. [10] used the EIS for Li
plating detection in Li-ion batteries during the charging
procedure. Ezpeleta et al. [11] also utilized the EIS to
characterize commercial cylindrical Li-ion cells under
di�erent SoC conditions up to 300 charge/discharge
cycles to monitor the SoH status. Capkova et al. [12]
investigated the electrochemical reactions in a 3.4
Ah Li-S pouch cell. Using EIS, they characterized
electrode processes, complex interfaces, and internal
resistance. Mohsin et al. [13] presented a new and
original method to determine the SoH of the lead-
acid battery from EIS. They also found a reliable
formula to link the SoH and EIS with unknown battery
history.

Another method employed to determine the elec-
trochemical system impedance is the EIS method in
the time domain. In this technique, the system is
stimulated by a voltage or current input signal in
the time domain. Afterwards, the system response
that is either a current or voltage signal in the time
domain (according to the input signal) is measured.
Ultimately, the system impedance is calculated by
dividing the voltage Fourier Transform (FT) by the
current FT.

The time domain method is signi�cantly more
e�cient than the frequency domain method mainly
because the entire spectrum can be obtained from
a single data set. In addition, instrumentation for
the time domain method is simple and inexpensive.

Lohman et al. [14] reported that the EIS method
requires more time than the EIS in the time domain.
In another study, Klotz [15] concluded that the EIS in
the time domain decreased the required time needed
for performing the EIS method by 71.2%.

A number of researchers have considered appli-
cation of EIS in the time domain to determine the
behavior of electrochemical systems. Gantenbein et al.
[16] presented a Li-ion cell model that functioned based
on physically meaningful equivalent circuit model pa-
rameterized by EIS in the time domain. Jiang et
al. [17] developed a portable EIS system in the time
domain that performed Fast Fourier Transform (FFT)
to calculate impedance in bio-detection. Lyu et al. [18]
used the EIS in the time domain to characterize the
electrochemical electrodes and estimate the SoH of
Lithium Cobalt Oxide (LiCoO2) Li-ion batterie. Lyu
et al. [19] used EIS in the time domain to obtain the
impedance of Li-ion batteries and compared it with
the conventional EIS method. They concluded that
compared with standard the EIS, the time domain
measurement greatly reduced the acquisition time.
Zappen et al. [20] applied EIS in the time domain
to acquire the impedance spectra during the charging
process of a Li-ion battery with high time resolution.
Kuzniestov et al. [21] used EIS in the time domain
and applied it to a battery management system in
an electric vehicle. De Angelis et al. [22] used EIS
in the time domain to characterize the 18650 Li-ion
battery. Fu et al. [23] employed EIS in the time
domain to estimate the SoH of the Li-ion battery. They
proposed a fast impedance calculation-based battery
SoH estimation method for Li-ion batteries from the
perspective of EIS in the time domain.

Since discrete data in the EIS method in the
time domain represent the voltage and current, their
FTs must be calculated numerically. The standard
numerical method for the FT calculation on a series
of discrete data is FFT. It will be elaborated later in
this study that this method is a single-point estimation
method with zero- order accuracy. In the absence of
noise, the FFT method has quite low error, meaning
that it is fairly suitable for EIS calculation. However,
a high error rate is observed during the calculation of
electrochemical system impedance in noisy conditions
[24,25]. Klotz et al. [26] proposed a linear method
for EIS in the time domain. In this method, the
numerical FT is calculated using two subsequent time-
point data. This technique enhances the solution
order and yields more appropriate solutions in noisy
conditions. Therefore, it seems that increasing the
solution order of the FT will reduce the calculation
error of the electrochemical system impedance in the
presence of noise.

In the present study, the FFT (zero-order) was
compared with one-, two-, and three-order polynomial



R. Hamedi et al./Scientia Iranica, Transactions B: Mechanical Engineering 30 (2023) 1955{1972 1957

approximations to �nd out the more robust one in
the presence of noise. To this end, the EIS in the
time domain is calculated using a straight line as
well as the second- and third-order polynomials for
series, parallel, and battery circuits in noisy conditions.
Finally, the results were compared with the calculated
impedances obtained from the FFT method. In other
words, the e�ect of increasing the solution order on the
numerical FT calculation in the presence of noise was
investigated. The structure of the present research is
organized in three sections as follows:

(i) This section presents the method for the solution
order enhancement in the numerical FT calcula-
tion;

(ii) This section makes a comparison between the
higher-order solution methods with its FFT
counterpart in series, parallel, and battery cir-
cuits;

(iii) This section gives the concluding remarks.

2. Increasing the solution order in the
numerical FT calculation

The FT of the arbitrary function of f(t) is equal to
f(!), which is calculated based on Eq. (1):

f(!) =
Z +1

�1
f(t)exp(�j!t)dt; (1)

where ! indicates the frequency, t speci�es the time,
and j represents the imaginary unit.

Since both voltage and current are given as dis-
crete data, the numerical FT must be used to transform
both voltage and current from the time domain into
the frequency domain according to Eq. (2). In this
equation, Fk indicates the FT of the f function at the
frequency number of k, N the number of points, i the
counter of points, and fi the value of the f function at
the ith point.

Fk =
N�1X
i=0

fiexp
�
�j
�

2�i
N

�
k
�

k = 0; :::; N � 1:
(2)

As shown in Eq. (1), the FT of f(t) is used to
transfer the function f(t) from the time domain into the
frequency domain, meaning that the output of Eq. (1)
is a function of frequency. Since the obtained data from
the experimental tests or simulations are discrete, the
integral in Eq. (1) is converted into Eq. (2), and this
relation is further used for all of the calculations in
the present paper. In this equation, the parameter
k indicates the frequency number, and the frequency
value equals

� 2�i
N

�
k. Here, the frequency for di�erent

values of k is obtained through the following numerical
sequence:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

k = 1! ! = 0; 2�
N ;

2�
N�2; :::; 2�

N � (n� 1)

k = 2! ! = 0;
�
2� 2�

N

�
;
�
2� 2�

N

�
�2; :::;

�
2� 2�

N

�� (n� 1)

k = 3! ! = 0;
�
3� 2�

N

�
;
�
3� 2�

N

�
�2; :::;

�
3� 2�

N

�� (n� 1)

(3)

A comparison of Eqs. (1) and (2) reveals that FFT
is quite similar to the numerical integration of Eq. (1)
based on the midpoint rule. According to the funda-
mentals of the numerical methods, the midpoint rule is
referred to as a zero-order method where a zero-order
polynomial (a constant value) is replaced instead of
the main function. This concept poses this question
that what would happen if we increase the order of
integrating polynomial? In other words, what would
happen if we use the trapezoidal rule and the Simpson's
rule or even we increase the order of integration even
more? This section brie
y explains how to increase the
order of the integration.

According to Eq. (1), the FTs of V (t) and I(t) can
be calculated through Eqs. (4) and (5), respectively:

V (!) =
Z +1

�1
V (t)exp(�j!t)dt; (4)

I(!) =
Z +1

�1
I(t)exp(�j!t)dt: (5)

Additionally, Euler's equation is according to Eq. (6):

exp(�j!t) = cos(!t)� j sin(!t): (6)

By substituting Eq. (6) into Eq. (4) and assuming that
the time variable is an a positive value, we can obtain
Eq. (7) as:

V (!)=
Z +1

0
V (t) cos(!t)dt�j

Z +1

0
V (t) sin(!t)dt: (7)

As observed, Eq. (7) includes a real and an imaginary
part, which are de�ned according to Eqs. (8) and (9),
respectively:

ReV (!) =
Z +1

0
V (t) cos(!t)dt; (8)

ImV (!) = �
Z +1

0
V (t) sin(!t)dt: (9)

By substituting Eqs. (8) and (9) into Eq. (7), Eq. (10)
is obtained as:

V (!) = ReV (!) + jImV (!): (10)

Similar to these equations, the FT of the current is
achieved through Eq. (11):
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Figure 1. Description of the FFT, linear, and second- and third-order polynomial FT.

I(!) = ReI(!) + jImI(!): (11)

In the present paper, the V (t) and I(t) functions
are considered mth-order polynomial functions using
voltage and current data at every m + 1 succeeding
points according to Figure 1. As a result, Eqs. (8) and
(9) are transformed into Eqs. (12) and (13), as shown
below:

ReV (!) =
Ng�1X
n=0

Z t(n+1)m+1

tnm+1

(amtm + am�1tm�1 + :::+ a0) cos(!t)dt; (12)

ImV (!) = �
Ng�1X
n=0

Z t(n+1)m+1

tnm+1

(amtm + am�1tm�1 + :::+ a0) sin(!t)dt: (13)

In these equations, (amtm + am�1tm�1 + ::: + a0)
is the mth-order polynomial of the voltage, and
a0; � � � ; am�1; am are the constant coe�cients of the
polynomial of the voltage between the tnm+1 and
t(n+1)m+1 time points. To be speci�c, m indicates the
degree of polynomial passes through m+ 1 consecutive

points. Also, tnm+1 and t(n+1)m+1 are the beginning
and end points of each integral interval, respectively,
and n is the counter of polynomials between this time
interval. In addition, Ng is the number of mth-order
polynomials in the time interval.

For each of m + 1 successive points of
t0; � � � ; tm�1; tm, the corresponding voltages are
v0; � � � ; vm�1; vm, respectively. Therefore, upon includ-
ing these m+ 1 points in the mth-order polynomial, a
system of m+1 equations with m+1 unknown variables
are formed according to the system of Eq. (14) based
on which, the constant coe�cients of a0; � � � ; am�1; am
can be obtained:8>>>><>>>>:

amtmm + am�1tmm�1 + :::+ a0 = vm
amtm�1

m + am�1tm�1
m�1 + :::+ a0 = vm�1

...
amt0m + am�1t0m�1 + :::+ a0 = v0

(14)

Therefore, the constant coe�cients of a1; � � � ; am�1; am
are initially calculated by system of Eq. (14). Then,
these coe�cients are substituted into Eqs. (12) and
(13) and subsequently, they are applied to Eq. (10).
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A similar process is performed to calculate the FT
of current. Of note, the Z impedance is calculated
according to Eq. (15):

Z(!) =
V (!)
I(!)

: (15)

3. Validation of the proposed method by
comparing it with the analytical method

Di�erent shapes of input voltage were taken into
account in the present study. As a sample, a step
function is shown in Figure 2, indicating that a noisy
input voltage is applied to series, parallel, and battery
circuits through simulations in Scilab software. As
shown, this function starts at zero and ends at 150
seconds. the mean magnitude of this step starts at
zero and changes to 4.2 after 25 seconds. Then, the
mean value of this function is switched to zero again
after 125 seconds.

To obtain a real condition in these simulations,
the noise behavior does not follow a prede�ned function
(for example, Gaussian noise, white noise, etc.), and
the generated noise is random in nature. For this
reason, it is recommended that a strict noise gener-
ation method be employed. In other words, random
numbers are generated by the computational software
and then added to the desired function. Thus, the

Figure 2. The noisy step pulse as the input signal.

noise frequency equals the input function sampling
frequency, and its magnitude equals the randomly
generated numbers of the computational software.

The current is measured as output. Then, the
FT of both voltage and current and impedance of the
corresponding circuits are calculated using high-order
FT and FFT. Finally, the Nyquist and bode diagrams
of the impedance are plotted. The obtained results
are �nally investigated by comparing them with the
analytical method and error calculation.

3.1. Series and parallel circuit
According to Figure 3(a), a series circuit is a circuit
in which a capacitor and a resistor are connected in
series to a voltage source. On the contrary, according
to Figure 3(b), a parallel circuit is a circuit in which
a capacitor and a resistor are connected in a parallel
form that are also connected to a voltage source. In
Figure 3(a) and (b), R and C are representatives of the
ohmic resistance and capacitor capacity, respectively.

The values of the impedance, magnitude, and
phase of the series and parallel circuits are obtained
according to Table 1. In this table, Zs and Zp represent
the series and parallel circuit impedance, respectively.
Also, ms, Zs;re, and, Zs;im represent the magnitude
value, real, and imaginary components of a series
circuit impedance, respectively. Similarly, mp, Zp;re,
and Zp;im indicate the magnitude value and real and
imaginary parts of parallel, respectively. Moreover, �s
and �p specify the impedance phase of the series and
parallel circuits, respectively.

In the present paper, the output current was
measured by performing simulations in Scilab software
according to the instructions given in Figure 3(a) and
(b) for di�erent amounts of the capacitor and resistor
and di�erent forms of noisy input voltage. Further-
more, the impedance values of the series and parallel
circuits were calculated using high-order FT and FFT.
Despite the multiplicity of simulations performed in
this study, all of them were not included in this
report. Therefore, as a sample demonstration of these
simulations, a noisy step input signal (according to
Figure 2 and Table 2) is applied to the voltage source,
and the output current is measured. In the next step,
the FFT and high-order FT values of both voltage
and current were calculated and then, the system

Table 1. The impedance, magnitude, and phase of the series and parallel circuits.

Circuit Series Parallel

Impedance Zs = R+ 1
jC! Zp = R

1+jRC!

Impedance magnitude ms =
p
Zs;re2 + Zs;im2 mp =

p
Zp;re2 + Zp;im2

Impedance phase �s = arctan
�
Zs;im
Zs;re

�
�p = arctan

�
Zp;im
Zp;re

�
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Figure 3. The series and parallel circuits in Scilab software.

Table 2. The condition of the sample test.

R (
) C (F) Time (s) Time step (s) Vs (v)

1000 0.001 150 0.001 Noisy step pulse (Figure 2)

impedance was measured by dividing the FT of voltage
by the FT of current. Ultimately, the Nyquist diagram
and bode plot of impedance was drawn.

The Nyquist diagram of the series circuit
impedance calculated using the FFT, linear, second-
order, and third-order polynomials methods are illus-
trated in Figure 4(a){(d), respectively. In addition,
the theoretical Nyquist diagram of the series and
parallel circuits are depicted in Figure 5(a) and (b),
respectively. In Figure 5(a), sharper oscillations can
be observed in the analytical Nyquist diagram through
the FFT method. However, linear and second-order
polynomial methods are in great agreement with the
analytical Nyquist diagram. Moreover, no signi�cant
discrepancy is observed between the linear and second-

order polynomial methods. In fact, increasing the
solution order from the linear to the second-order
merely increased the calculations volume with no tan-
gible di�erence in the responses. On the contrary, the
third-order polynomial method has a high error rate
and compared to the analytical Nyquist diagram, no
appropriate response could be obtained.

The diagrams of the magnitude values of the
series circuit impedance regarding the frequency (the
bode plot) calculated by the FFT, linear, second-order,
and third-order polynomials methods are illustrated in
Figure 6(a){(d), respectively. The impedance phase
diagrams of the series circuit with respect to the fre-
quency (the bode plot) calculated by the FFT, linear,
second-order, and third-order polynomials methods are
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Figure 4. Impedance Nyquist plot of the series circuit in the condition described in Table 2.

Figure 5. The impedance Nyquist plot of the series and
parallel circuits.

depicted in Figure 7(a){(d), respectively. As perceived,
the results are as the same as those from the Nyquist
diagrams of the series circuit.

In the present paper, a Complex Non-linear Least
Square (CNLS) method was employed to calculate the
error rate. CNLS is a method used to approximate
a model by a linear one and re�ne its parameters
through successive iterations. In this method, the
appropriate model is recognized by minimizing Eq. (16)
that represents the object function [27].

s=
NX
i=1

wi
�
(Zre;i � Zrea;i)2+(Zim;i � Zima;i)2� ; (16)

where wi is the inverse square of impedance magnitude.
Moreover, Zre;i and Zrea;i respectively, represent the
real parts of the measured and analytical impedance
at the ith frequency. Additionally, Zim;i and Zima;i
indicate the imaginary part of measured and analytical
impedance at the ith frequency, respectively. The
above equation was used in this paper to measure the
error rate of the impedance diagram. Lower values
of this equation represent the lower error rate of the
corresponding technique, and the lowest possible value
of this equation is zero. Therefore, as this value
decreases toward zero, the error rate decreases as well.

Another appropriateness criterion of the �tted
impedance diagram in the CNLS method is given in
Eqs. (17) and (18) [27]. In these equations, �re and
�im denote the residual value of the real and imaginary
parts of the impedance at the ith frequency, respec-
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Figure 6. Impedance magnitude plot of the series circuit in the condition described in Table 2.

Table 3. The errors in the series circuit.

Error type FFT Linear Second-order Third-order

�re 0:0198 0:0011 0:0020 0:1591

�im 0:0031 9:0724� 10�4 0:0046 0:2303

s 46:6118 1:0855� 10�4 0:0075 4:3554� 106

tively. In addition, Za;i is the analytical impedance at
the ith frequency.

�re =
NX
i=1

Zre;i � Zrea;i
jZa;ij ; (17)

�im =
NX
i=1

Zim;i � Zima;i
jZa;ij : (18)

The values of these equations vary at di�erent fre-
quencies. In the present paper, the average value of
these equations was used for calculating the relative
error. The mean values of Eqs. (17) and (18) was then
calculated through Eqs. (19) and (20), respectively.
In these equations, N is the number of the measured

data. Similar to the previous paragraph, as the value of
these equations decreases, their error rates decrease as
well. Hence, it can be concluded that the corresponding
method can be more appropriate than its counterparts.

�re =
1
N

NX
i=1

����Zre;i � Zrea;ijZa;ij
���� ; (19)

�im =
1
N

NX
i=1

����Zim;i � Zima;ijZa;ij
���� : (20)

The error rates of the simulated sample of the series cir-
cuit (according to Table 2 terms) are given in Table 3.
Apparently, the error rates of the linear method are
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Figure 7. Impedance phase plot of the series circuit in the condition described in Table 2.

lower than those of the FFT, second-order polynomial,
and third-order polynomial methods. Therefore, it can
be concluded that increasing the solution order of the
FT from zero up to one can improve the responses.
More increase (greater than one), however, proved to
deteriorate the responses.

The Nyquist diagrams of the parallel circuit
impedance (according to Table 2) calculated from the
FFT, linear, second-order polynomial, and third-order
polynomial methods are demonstrated in Figure 8(a){
(d), respectively. Of note, sharper oscillations are
observed in the diagram of the FFT method than that
observed in the analytical impedance Nyquist diagram.
All in all, the linear method is in good agreement with
the analytical Nyquist plot. Moreover, the second-
order and third-order polynomial methods considerably
di�er from the analytical mode (no semicircle form);
hence, no correct responses were obtained. In this
regard, despite the fact that increasing the solution
order of the FT from zero up to one would yield

good results, further increase would no longer improve
responses and instead, it would deteriorate them.

The parallel circuit impedance magnitude dia-
grams with respect to the frequency (the bode plot)
calculated from the FFT, linear, second-order polyno-
mial, and third-order polynomial methods are depicted
in Figure 9(a){(d), respectively. The impedance phase
diagrams of the parallel circuit (bode plot) calculated
through the FFT, linear, second-order polynomial, and
third-order polynomial methods are also demonstrated
in Figure 10(a){(d), respectively. A similar outcome
to the Nyquist impedance diagrams can be detected
in the mentioned diagrams (impedance magnitude and
phase bode plots). Additionally, there are some parts
with high oscillations in the corresponding diagram
of the FFT method. However, the linear method
shares a signi�cant resemblance with the analytical
method. It should also be mentioned that the second-
and third-order polynomial methods did not yield a
correct response at all. The results obtained from
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Figure 8. Impedance Nyquist plot of the parallel circuit in the condition described in Table 2.

Table 4. The errors in the parallel circuit.

Error type FFT Linear Second-order Third-order

�re 1:6180 0:0140 0:3045 0:2401

�im 7:8625 0:0169 0:8588 0:8589

s 3:3725� 107 0:2441 8:3841� 106 2:3467� 1014

the error measurement are presented in Table 4. As
perceived, the linear method shows less error than all
other methods; hence, it can be concluded that it is
the most appropriate technique among the investigated
methods. As mentioned earlier, increasing the solution
order from one to higher orders deteriorates the ac-
quired responses.

3.2. Battery circuit
In the EIS method, various models are considered to be
implemented in the Li-ion batteries. One of the most
famous models is the second-order Thevenin topology,
which is demonstrated in Figure 11. In this �gure,

R1, R2, and R0 represent the ohmic resistance, and C1
and C2 indicate the capacitor. Numerous studies have
considered the application of model in the Li-ion bat-
teries [28{31]. A parallel resistor and capacitor de�ne
the order of each circuit. According to this de�nition,
the circuit shown in Figure 11 is a second-order type
since it has two pairs of parallel capacitor and resistor.
As the order of circuits increases, the model becomes
more real; however, such increase enhances the model
complexity. In many cases, the resulting complexity
is signi�cantly greater than the required accuracy.
For this reason, making a balance and achieving an
optimum state between the complexity and accuracy
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Figure 9. Impedance magnitude plot of the parallel circuit in the condition described in Table 2.

seem necessary. In such cases, second- and third-order
models are often employed [32,33]. Numerous studies
veri�ed that the second-order Thevenin circuit was the
best circuit for the Li-ion battery. To be speci�c,
[34] investigated this �nding and con�rmed that this
circuit would be a good candidate circuit for the Li-ion
battery.

The impedance of the equivalent circuit presented
in Figure 11 can be calculated using Eq. (21). In this
equation, ZB is the impedance of the battery equivalent
circuit, and ! is the frequency.

ZB =
R1

1 + jR1C1!
+

R2

1 + jR2C2!
+R0: (21)

The battery model is developed based on Figure 11,
and the parameters of this model are determined
according to Table 5. The data presented in Table 5
resemble that given in Ref. [31] that were obtained
for the NMC Li-ion battery at SoC=1 under real
circumstances. By substituting the parameters of
Table 5 into Eq. (21), the analytical impedance of the
battery model can be achieved in actual circumstances.

Next, the battery model (Figure 11) is simulated
in Scilab software according to Table 2 (except for
the resistance and capacitance values) to obtain the
system response. Subsequently, the battery model
impedance is calculated by FFT, linear, and second-
and third-order polynomial FT of voltage and current.
Finally, the calculated impedances are compared with
the analytical impedance, as discussed in the previous
section.

The Nyquist diagram of the battery model
impedance calculated by the FFT, linear as well as
the second- and third-order polynomial methods are
demonstrated in Figure 12(a){(d). Some outliers
accompanied by sharp oscillations are observed in the
corresponding diagram of the FFT method. However,
the points here are similar to those of the analytical
method in the linear method diagram. Moreover, in
the second-order polynomial method, the general form
of the diagram resembles the analytical mode; however,
the distances between the points in the analytical
method are longer than those in the linear method.
In the third-order polynomial technique, there are
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Figure 10. Impedance phase plot of the parallel circuit in the condition described in Table 2.

Figure 11. Battery model in according to second-order
or Thevenin circuit model.

extreme outlier points that cannot ensure appropriate
responses. Therefore, in its corresponding diagram
(Figure 12(d)), the values of the lower and upper
bounds of the horizontal and vertical axes of the
diagram are not similar to those in the other three
Figure 12(a){(c).

The diagram of the battery model impedance

magnitude with respect to the frequency (the bode
plot) calculated by the FFT, linear, and second- and
third-order polynomial methods are illustrated in Fig-
ure 13(a){(d), respectively. As perceived, similar to the
previous sections, sharp oscillations are observed in the
corresponding diagram of the FFT method. However,
the linear method share signi�cant resemblance with
the analytical method. In addition, the second-order
polynomial method is in good agreement with the
analytical method. However, no correspondence exists
between the corresponding diagrams of the simulated
data of the third-order polynomial and analytical
methods. It must be mentioned that identical to the
previous paragraph, the upper and lower bounds of the
vertical axis of Figure 13(d) are not similar to those of
other diagrams for better demonstration of all obtained
data of the third-order polynomial.

The diagram of the battery model impedance
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Figure 12. Impedance Nyquist plot of the battery model in the condition described in Tables 2 and 5.

Table 5. The actual value of the NMC li-ion battery parameters [31].

SoC Vs (v) R0(
) R1 (
) C1 (F) R2 (
) C2 (F)

1 4.195754 0.01889 0.001540 1.241 0.002314 4.626

phase with respect to the frequency (the bode plot)
calculated using the FFT, linear, second-order polyno-
mial, and third-order polynomial methods are depicted
in Figure 14(a){(d), respectively. Accordingly, high
oscillations are evident in the corresponding diagram
of the FFT method. However, similar to the pre-
vious sections, there is excellent agreement between
the simulated data of the linear method and the
analytical diagram. Moreover, there is a good re-
semblance between the corresponding diagrams of the
second-order polynomial method data and analytical
method diagram; nevertheless, this resemblance is
less than that of the linear method. In the third-
order polynomial method, there is no similarity be-
tween the analytical diagram and simulated data (the
obtained simulation data are outliers). Therefore,

the vertical axis of Figure 14(d) is entirely di�er-
ent from that of other diagrams to better represent
data.

The obtained results from error calculation are
presented in Table 6 according to which, the linear
method has less error rate than all other methods,
hence the most appropriate technique among the ex-
amined methods. Similar to the previous section,
increasing the solution order to the second- and third-
order does not yield good results and instead, it
deteriorates the acquired responses.

4. Conclusion

In the present research, the e�ect of higher-order inte-
gration on the simulation of Fourier Transform (FT) for
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Figure 13. Impedance magnitude plot of the battery model in the condition described in Tables 2 and 5.

Table 6. The errors in the battery model.

Error type FFT Linear Second-order Third-order

�re 0:129 0:0016 0:0060 0:2872

�im 0:0249 0:0057 0:0103 0:2730

s 278:1929 0:0044 0:0541 5:1271

discrete data was investigated. The main inspiration
behind this study originated from the failure of the
conventional Fast Fourier Transform (FFT) method
in obtaining accurate results when applied to noisy
data, the case in the experimental tests. To investigate
the e�ects of higher-order integration, �rst-, second-,
and third- order polynomial methods were compared
to calculate the numerical FT of both voltage and
current. These methods were then applied to obtain
the impedance spectra of three di�erent circuits namely
(a) a capacitor and resistor in series, (b) a capacitor
and resistor in parallel, and (c) a conventional battery

circuit model. All the series were triggered by a
noisy step-wise signal. The obtained results were then
compared with those from the FFT method. It was
expected that increasing the FT solution order would
improve the responses. The �ndings revealed that
although moving from zero- to �rst-order polynomial
enhanced the method robustness, further increase led
to a negative outcome. In other words, increasing the
solution order of the integration did not necessarily
improve the responses. Ultimately, it was concluded
that the most appropriate method for the electrochem-
ical impedance spectroscopy in the time domain under
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Figure 14. Impedance phase plot of the battery model in the condition described in Tables 2 and 5.

noisy conditions was the linear method that also helped
calculate the FT of both current and voltage.

Abbreviations

EIS Electrochemical Impedance
Spectroscopy

FFT Fast Fourier Transform
FT Fourier Transform
Li Lithium
Li� S Lithium sulfur
NMC Nickel Manganese Cobalt
SoC State of Charge
SoH State of Health

Nomenclature

a0; :::; am�1;am Constant coe�cients of the mth-order
polynomial of voltage between tnm+1
and t(n+1)m+1

C Capacitance, F

C1 Capacitance of the negative electrode,
F

C2 Capacitance of the positive electrode,
F

Fk Discrete Fourier transform of the
function f at k frequency

fi Value of the function f at the ith point
f(t) Arbitrary function
f(!) Fourier transform of arbitrary function

f(t)
I Current, A
I(!) Fourier transform of current
ImI(!) Imaginary part of current Fourier

transform
ImV (!) Imaginary part of voltage Fourier

transform
i Counter of the number of points
m Degree of polynomial
mp Impedance magnitude of parallel

circuit, 
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ms Impedance magnitude of series circuit,



Ng Number of mth-order polynomials
R Resistance, 

R0 Electrolyte resistance, 

R1 Resistance of negative electrode, 

R2 Resistance of positive electrode, 

ReI(!) Real part of current Fourier transform
ReV (!) Real part of voltage Fourier transform
s Object function, the criterion for

calculation of error
t Time, s
tnm+1 Beginnig time of integration, s
t(n+1)m+1 End time of integration, s
V Voltage, v
v0; � � � ; vm�1; vmCorresponding voltages of each m + 1

successive points of t0,� � � ,tm�1,tm, v
V (!) Fourier transform of voltage
wi Inverse of the square of the vector

length of impedance in ith frequency
Z(!) Impedance, 

ZB Battery model impedance, 

Za;i Analytical impedance in ith frequency,



Zim;i Measured imaginary part of impedance

in ith frequency, 

Zima;i Analytical imaginary part of impedance

in ith frequency, 

Zp Parallel circuit impedance, 

Zp;re Real part of parallel circuit impedance,



Zp;im Imaginary part of parallel circuit

impedance, 

Zre;i Measured real part of impedance in ith

frequency, 

Zrea;i Aanalytical real part of impedance in

ith frequency, 

Zs Series circuit impedance, 

Zs;re Real part of series circuit impedance,



Zs;im Imaginary part of series circuit

impedance, 


Greek

�im Mean relative error of imaginary part
of impedance

�re Mean relative error of real part of
impedance

! Frequency, Hz
� Phase, deg

�p Impedance phase of parallel circuit,
deg

�s Impedance phase of series circuit, deg
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