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The application of fiber-reinforced polymer bars is rapidly rising in concrete structures because of 
corrosion resistance and high tensile strength. By contrast, concrete structures reinforced with Fiber-
Reinforced Polymer (FRP) bars illustrate less ductility and brittle failure without warning than 
Reinforced Concrete (RC) structures with conventional steel bars. Hybrid concrete structures with the 
combination of FRP and steel bars can simultaneously increase strength and ductility. This paper aims 
to estimate the effective moment of inertia in hybrid concrete beams by using a neuro-fuzzy technique 
and Artificial Neural Networks (ANN). A new equation has been proposed for hybrid beams with 
attention to the importance of calculating the effective moment of inertia in concrete beams. The 
proposed equation has been considered the effect of elastic modulus and hybrid reinforcement ratio on 
this parameter for hybrid RC beams having FRP bars. This equation has been presented based on the 
Neural Networks (NNs) and experimental data conducted by other researchers on the simple beams to 
calculate the effective moment of inertia for hybrid RC beams. The result shows that both Soft 
Computing (SC) models are highly precise compared to experimental data. 

1. Introduction
During recent decades, the corrosion of steel bars in 
Reinforced Concrete (RC) structures exposed to deicing salts 
and marine environments has become a significant concern. 
To avoid deterioration in this condition, the use of Fiber-
Reinforced Polymer (FRP) bars increased because of their 
high strength-to-weight ratios, corrosion resistance 
compared to conventional steel bars, durability, and non-
magnetic. However, because of linear elastic behavior up to 
the failure of FRP bars, concrete structure members 
reinforced with this reinforcement exhibit more significant 
crack widths and deflection than steel-RC members [1]. 
Therefore, researchers a combination of FRP and steel bars 
suggested as an effective solution in concrete elements to 
solve these problems [2]. Using the additional steel bars can 
increase the flexural members' ductile behavior in hybrid RC 

members than concrete members reinforced with pure FRP 
bars. Thus, steel and FRP bars significantly improve ductility 
and strength in the hybrid beams, respectively. One of the 
essential factors for providing the balance between 
improving strength and ductility is the hybrid reinforcement 
ratio. Qin et al. [3] recommended this ratio within the range 
of 1 to 2.5 in the over-reinforcement hybrid beams. The study 
by Akiel et al. [4] showed that members reinforced with 
hybrid steel-BFRP bars have less deflection and smaller 
crack widths under service conditions than RC members 
having BFRP bars only. Sheik and Kharal [5] evaluated the 
behavior of Glass Fiber Reinforced Polymer (GFRP)-RC 
beams in flexural, shear, tension, and compression. The 
results of their studies indicate that the proposed tension-
stiffening model is a significantly improves in the prediction 
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of deflection and stiffness of the beams. Salleh et al. [6] 
evaluated the load-deflection behavior, ratio, and the 
ordinate of GFRP to steel in hybrid RC beams using ATENA 
software. Pang et al. [7] investigated the appropriate 
reinforcement ratio limits to ensure sufficient strength and 
ductility in hybrid FRP-steel RC beams. EL Refai et al. [8] 
proposed a bond coefficient to estimate the crack width of 
concrete beams reinforced with hybrid bars base on the ACI-
440.1R-06 equation. Kara et al. [9] presented a numerical 
method using force equilibrium and strain compatibility to 
predict the curvature, deflection, and moment capacity of 
hybrid RC beams. Dunder et al. [1] proposed a numerical 
method to calculate the deflection of hybrid beams 
regardless of the reinforcement type. Al-Sunna et al. [10] 
experimentally evaluated deflection in RC beams and slabs 
having FRP bars to compare with existing equations. 
Naderpour et al. [11] investigated a proposed equation using 
the Artificial Neural Network (ANN) to predict the FRP-
confined compressive strength of concrete. Kheyroddin [12] 
and Bui et al. [13] presented a new equation to determine the 
effect of tension and compression reinforcement ratio, 
concrete compressive strength, and the form of loading on 
the flexural rigidity (EI) of RC beams. Bui et al. [14] 
investigated the ductility of the hybrid RC beams 
considering various factors, including the effects of the 
FRP/steel reinforcement ratio, the location and form of FRP 
bars, and the concrete compressive strength. Shield et al. [15] 
performed many experiments to recommend a recalibration 
of bond-dependent coefficients in concrete elements 
Reinforced with GFRP bars. Nguyen et al. [16] presented a 
simple equation for predicting the effective moment of 
inertia (Ie) for FRP beams using Gene Expression 
Programming (GEP). Ge et al. [17] investigated the flexural 
behavior of concrete beams reinforced with steel-FRP 
composite bars. Moolaei et al. [18] experimentally evaluated 
the flexural behavior of beams reinforced with GFRP and 
steel bars and High-Performance Fiber Reinforced 
Cementitious Composites (HPFRCC). Wang et al. [19] 
investigated the flexural behavior of five hybrid BFRP and 
steel bars RC beams subject to four-point bending tests. 
Arabshahi et al. [20] proposed an equation for the effective 
moment of inertia in concrete beams reinforced with FRP 
bars. Lyu et al. [21] studied the usage of back-propagation 
Neural Network (NN) and Genetic Algorithm (GA) for the 
predicting of torsional strength RC beams. Li et al. [22] used 
an artificial NN and an imperialist competitive algorithm to 
provide an accurate method for simulating the deflection of 
the RC beam. Jayasinghe et al. [23] using ANN showed that 
the new equation for the shear strength of the RC beam in 
ACI 318–19 and AS 3600–2018 is more accurate compared 
to other provisions. Alagundi and Palanisamy [24] proposed 
a model of ANN for prediction of shear strength of an 
exterior beam-column joint. Zayan and Mahmoud [25] stated 
that the proposed artificial NN can successfully evaluate the 
combined flexural torsional strength of Prestressed Concrete 

(PSC) beams. Zhang et al. [26] application Convolutional 
Neural Networks (CNNs) to recognize the symmetry group 
and symmetry order in planar structures. Khan et al. [27] 
used an artificial NN and a random forest to estimate the 
Flexural Strength of beams. The results of the ANN showed 
that the bottom flexural bars of the beam are the most 
effective factor in yielding flexural capacity.  Peng et al. [28] 
proposed the Adaptive Neural Fuzzy Inference System 
(ANFIS) method to investigate the flexural behavior of 
corroded concrete beams. Because in the finite element 
method, many inputs are required that it was expensive to 
collect this amount of data. Barkhordari et al. [29] showed 
that the Hybrid Algorithm (PSO-ANN) for computing the 
shear strength of deep RC beams has high accuracy and used 
SHapley Additive exPlanations (SHAP) method to exhibit 
the effective parameters for estimating shear strength beams. 
In this study, due to the lack of accuracy of the existing 
equations in calculating the effective moment of inertia in the 
hybrid RC beams, equations were proposed. Machine 
learning and numerical studies are widely used to investigate 
the behavior of beams, columns, and bridges [30-32]. 

2. Research significance 

The short-term deflection is estimated using the effective 
moment of inertia at the service load [33]. The primary 
purpose of this study is to investigate the effect of the elastic 
modulus of FRP and steel bars and hybrid reinforcement 
ratio, Af/As, on the effective moment of inertia for hybrid RC 
beams. Besides, existing methods for calculated the effective 
moment of inertia are not suitable in hybrid beams. Because 
these equations proposed to calculate the effective moment 
of inertia in beams reinforced with FRP or steel bars and they 
do not have enough accuracy in hybrid beams. Consequently, 
a new model is presented based on an artificial NN, and then 
this model provides a comparison of experimental data and 
other present equations.  

3. Existing models  
Serviceability is defined as satisfactory performance at 
service load levels that can be described in terms of cracking 
and deflection criteria. Excessive deflection is undesirable 
for the appearance and efficiency of the structure. Excessive 
crack width also seriously affects the aesthetic and durability 
of the structure [34]. One common and plain method for 
calculating deflection is the use of Ie. As the cracking load 
exceeds, flexural stiffness changes due to the existence of 
discrete cracks along with the member [35]. Ie accounted for 
considering the effect of the flexural stiffness variation and 
concrete tension stiffening. The Eq. (1) proposed by Branson 
[36] is applicable to steel-RC beams at the service loads. 
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where Ig is the gross moment of inertia, Icr is the cracked 
moment of inertia, Mcr and Ma are the cracking moment and 
applied moments at the critical section, respectively.  

The results of studies provide reveal that this equation 
overestimates Ie in concrete beams reinforced with FRP bars, 
especially in beams are under reinforcement [37-40]. 

Bischoff [41] suggested an equation for Ie, which could 
be computed from Eqs. (2) and (3). This equation compared 
with experimental results illustrates that is suitable for both 
steel and FRP RC beams: 

( )21
cr

e g
cr a

II I
M Mη

= ≤
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1 cr

g
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I

η = − . (3) 

The ACI 440.1R-15 [34] committee offered an additional 
factor γ, in the equation proposed by Bischoff to consider the 
variety in stiffness along the length of the member, as 
illustrated in Eq. (4). The new expression presents a 
reasonable approximation of the deflection for RC beams 
with FRP and one-way slabs [42]. 
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The factor γ is defined based on the load and boundary 
conditions and considers the length of the uncracked regions 
of the element and change in stiffness in the crack regions 
[34]. This factor could be computed from Eq. (5).  

( )1.72 0.72 cr aM Mγ = − . (5) 

Benmokrane et al. recommended Eq. (6), which calibrated 
utilizing a few numbers of experimental data [37]. 
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The factor α which exhibiting the diminished composite 
behavior between the FRP bars and concrete is equal to 0.84. 
The factor 𝛽𝛽 is equal to 7, which was applied to provide a 
faster transition from Ig to Icr. 

Pirayeh Gar et al. [35] have proposed an equation to 
predict the deflection of FRP, PSC beams regardless of the 
Icr /Ig ratio.   

Mousavi and Esfahani [43] evaluated the effect of several 
parameters on the power m in the equation of Branson utilizing 
the GA method. The proposed equations for Ie can be 
determined as follows:  
The objective function of model A has been described by Eq. (7): 

exp cale δ δ= − . (7) 

Model A is described by Eqs. (8) and (9) as follows. 
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The objective function of Model B has been described by Eq. (10): 

( ) ( )expe e theoe I I= − . (10) 

Model B is described by Eqs. (11) and (12): 
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where Ef  and Es are the elastic modulus of FRP and steel bars, 
respectively. The ρf is the FRP reinforcement ratio, and ρfb is 
the FRP balance ratio.  

In FRP reinforced beams, the balance reinforcement 
ratio could be calculated by Eq. (13) where the rupture of 
FRP bars and concrete crushing occur simultaneously. 

'
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where ffu is the ultimate tensile stress of FRP bars, 𝛽𝛽1 
considers between 0.85 and 0.65 with attention to concrete 
strength, fc

' and 𝜀𝜀𝑐𝑐𝑐𝑐 are the concrete compressive strength 
and maximum concrete compressive strain, respectively. 

Kheyroddin and Maleki [44] suggested an equation for 
calculating Ie in hybrid RC beams using the GA method and 
experimental data, the proposed expression presented in Eqs. 
(14) and (15). 
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4. Soft Computing (SC) 
The SC method which was first introduced by Zadeh [45], 
mimics the ability of the human brain and how it relates to the 
environment of uncertainty and inaccuracy. SC aims to use 
human knowledge to solve complex problems with acceptable 
precision to have high similarity with human decision making 
[46]. Methods in SC were inspired by nature and has been 
considered as a main technique in structural engineering fields 
[47-52]. One of the most important reasons for the importance 
of SC and intelligence Computation is the existence of 
uncertainties and ambiguities in the real world. The purpose of 
combining the methods of GA, fuzzy system, and NN in SC is 
to achieve the ability to solve problems that each method can't 
solve alone. 
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Table 1. Experimental studies of hybrid steel/FRP RC beams. 

Reference Number of beam 
specimens 

Number of 
data 

Type of 
FRP bar 

Aiello and Ombres  [56] 4 29 AFRP a 

Qu et al.  [57] 6 46 GFRP b 
Leung and Balendran  [58] 4 6 GFRP 
Almusallam et al.  [59] 2 3 GFRP 
Safan [60] 4 4 GFRP 
Yang et al. [61] 1 1 GFRP 
Refai et al. [8] 6 33 GFRP 
a AFRP: Aramid Fiber Reinforced Polymer; b GFRP: Glass Fiber Reinforced Polymer 

 
Table 2. Properties of the experimental data. 

Parameter Ig (mm4) Af/As Mcr/Ma Ef/Es Icr (mm4) ρfb Ie-exp (mm4) 

Mean 2.71E+8 1.18 0.44 0.23 6.86E+7 0.0036 8.8E+7 

Minimum 6.67E+7 0.25 0.11 0.19 1.57E+7 0.0013 1.25E+7 

Maximum 5.18E+8 2.88 0.99 0.73 1.62E+8 0.0073 3.35E+8 
Standard deviation 1.66E+8 0.66 0.19 0.05 4.46E+7 0.00134 6.93E+7 
Coefficient of variation 0.612 0.564 0.429 0.219 0.65 0.372 0.788 

 
Table 3. Scaling equation for parameters. 

Parameter Scaling equation 
Ig (mm4) Ig-s = (0.8) × (Ig- Ig-min)/ (Ig-max- Ig-min) + 0.1 
Af/As (Af/As)s = (0.8) × ( (Af/As)- (Af/As)min)/ ((Af/As)max- (Af/As)min) + 0.1 
Mcr/Ma (Mcr/Ma)s = (0.8) × ( (Mcr/Ma)- (Mcr/Ma)min)/ ((Mcr/Ma)max- (Mcr/Ma)min) + 0.1 
Ef/Es (Ef/Es)s = (0.8) × ( (Ef/Es)- (Ef/Es)min)/ ((Ef/Es)max- (Ef/Es)min) + 0.1 
Icr (mm4) Icr-s = (0.8) × (Icr- Icr-min)/ (Icr-max- Icr-min) + 0.1 
ρfb ρfb-s= (0.8) × (ρfb- ρfb-min)/ (ρfb-max- ρfb-min) + 0.1 
Ie-exp (mm4) Ie-exp-s = (0.8) × (Ie-exp- Ie-exp-min)/ (Ie-exp-max- Ie-exp-min) + 0.1 

 
ANN and fuzzy systems are examples of the most 

important SC models that are widely used in various 
sciences. In the last few years, powerful systems called the 
ANFIS have been used in various sciences. These types of 
systems, by taking advantage of the training power of NNs 
and the linguistic advantage of fuzzy systems, have been able 
to benefit from These two models should be used for process 
analysis. As one of the common neuro-fuzzy systems, 
ANFIS was suggested by Jang [53] in 1993. This system uses 
back-propagation gradient descent and the least-squares 
methods for the training process . 

This study was used as two methods consist of ANN and 
ANFIS models to determine Ie in hybrid beams. To achieve 
the desired output, for each method select the best model, 
and the results are evaluated with the experimental. 

5. ANN modeling 
The artificial NN is one of the branches of soft-computing 
which has been used in modeling complex nonlinear 
systems. In recent years, the artificial NN has been 
considered a powerful computational method. That solves 
complex problems and can be applied to simulate, evaluate, 
and approximate with high accuracy.  

For the correct equation of Branson, one hundred twenty-
two data as follow have been applied. These data are the number 
of points on the curve of load-deflection hybrid FRP/steel RC 
beams with four-point loading. Table 1 presents the detail of the 
experimental specimens used in this study. 

The parameters include reinforcement ratio (Af /As), 
elastic modulus ratio (Ef /Es), level of loading (Mcr /Ma), the 
gross moment of inertia (Ig), the balance ratio (ρfb), and 
cracked moment of inertia (Icr) used as the six input nodes, 
the target node was the effective moment of inertia. Two 
hidden layers were utilized in this ANN modeling, where 
Log-Sigmoid and Purline were transfer functions, 
respectively. Normalization /scaling for all data was 
performed and for this purpose, all data were scaled between 
0.1 and 0.9. Tables 2 and 3 presented the values of 
experimental data and normalization equations, respectively. 

In the Levenberg-Marquardt method input and target 
nodes randomly have distributed into three sets, consist of 
the train, validate, and test the network. Varying the relative 
percentages of those three sets could slightly improve the 
generate method. The regression values and Mean Square 
Error (MSE) of the networks with the different number of 
hidden nodes exhibit in Figures 1 and 2, respectively. 
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Table 4. Details of ANN. 

Node 
Input weights Layer 

weights 

Bias to 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Hidden 
layer 

Output 
layer 

Node 1 1.0586 -1.0264 -1.9345 2.6546 -1.8642 -1.9836 -1.0917 -4.4309 - 
Node 2 -1.2625 2.0084 -1.5379 1.4949 2.4722 -1.9054 0.64216 3.9394 - 
Node 3 -2.9143 -1.1867 0.58662 1.6268 -1.995 2.3412 -0.6328 2.946 - 
Node 4 -1.35 1.489 -1.8677 -1.5295 -1.585 -2.9664 -1.0239 2.2105 - 
Node 5 2.5372 -0.0875 -2.057 -1.2016 0.35133 3.1498 -1.8568 -0.8106 - 
Node 6 0.25862 1.3789 1.7669 -2.1967 -0.1888 -2.995 -1.5746 -0.5444 - 
Node 7 -0.1379 2.4461 0.26625 -0.4596 1.7655 2.8143 1.3585 0.37002 - 
Node 8 -1.0545 -0.0605 2.9446 2.8226 0.15898 -1.5928 -0.1011 -0.1590 - 
Node 9 1.6029 2.1827 -3.1115 0.27195 -1.6601 0.30525 0.87172 -0.4882 - 
Node 10 1.9747 -1.9675 -0.3196 1.3692 1.7427 2.9141 0.98504 1.1482 - 
Node 11 -0.0468 2.1972 0.13591 1.1114 -2.6795 2.7945 0.96851 1.1291 - 
Node 12 -2.1131 -2.6384 1.1274 1.1272 1.3603 -1.8536 -1.8381 0.7921 - 
Node 13 -0.5279 -0.3021 2.724 2.9029 1.2099 1.3633 -2.6271 0.80781 - 
Node 14 0.0365 -2.7636 -1.7993 0.91934 -1.4456 2.4717 0.1776 3.0041 - 
Node 15 -0.9784 1.9368 -0.7579 -1.8431 -1.362 2.8226 -0.2872 -3.9263 - 
Node 16 -0.1474 -1.7758 -2.8125 0.3824 -1.9395 -2.2417 0.0681 -4.4138 - 
Output - - - - - - - - -0.2269 

Figure 1. R-values vs the different number of hidden nodes. 

Figure 2. MSE versus hidden nodes number. 

Network with 16 nodes of the hidden layer was chosen 
since it presents good results in the case of R-values and also 
has the least value of MSE among all networks. The results 
for training are summarized in Figures 3–5 . 

6. Sensitivity analysis
To calculate the influence of the input data on the effective 
moment of inertia has used the weight matrix according to 
Table 4 and the equation of Milne [54]. This study used the 
modified version of Grason's equation [55] because it considers 

Figure 3. Scheme of ANN. 

the absolute values of weights. Milne's formula is presented 
in Eq. (16): 
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Figure 4. Performance and Training state of ANN. 
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where wjl and woj are the weight between neuron j in the 
hidden layer with input Node l and the weight between 
neuron j and neuron o in the output layer, respectively. 

In Figure 6, the percentage influence of each of the six 
input parameters on the effective moment of inertia is shown. 
Table 4 presents the details of weights and their bias of the 
proposed NN. 

7. Proposed approach
The range and the reference value of the six inputs data 
are represented in Table 5. The reference numbers were 

Figure 5. Regressions of training, validation, and test data 
simulated by ANN. 

Table 5. The input parameters range and reference values. 
Input parameters Minimum Maximum Reference 
Ig (mm4) 6.67E+7 5.18E+8 2.7E+8 
Af/As 0.25 2.88 1.2 
Mcr/Ma 0.11 0.99 0.40 
Ef/Es 0.19 0.73 0.45 
Icr (mm4) 1.57E+7 1.62E+8 6.9E+7 
ρfb 0.0013 0.0073 0.004 

considered close to the mean values. As the first step, Ie is 
plotted against ρfb while the other input parameters have the 
reference values, as shown in Figure 7. To account  for  the 
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Figure 6. Contribution of input parameters in target. 

Figure 7. Variation of Ie against ρfb. 

Figure 8. Factor C (Mcr /Ma) for different (Af /As) values . 

effect of other factors on Ie, the correction function can be 
computed from Eq. (17).  

( ) ( )

, , , ,

      .

f fcr cr
g cr

a s s a

f f
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(17) 

To draw a curve in Figure 8, reference values are considered 
for the input parameters except for Af  /As and Mcr /Ma. For Af /As 
one of the values specified in the figure and for Mcr /Ma the entire 
data range is applied as input. To determine C ( Mcr / Ma), the 
result obtained Ie from the above NN divided by the value in the 
case where Mcr /Ma also has a reference value. Another 9 
curves are plotted in the figure with the same method and 
various values of Af /As. A similar method was applied to 
draw  C(Mcr /Ma)  versus  other  input  parameters  including 

Figure 9. Factor C (Mcr /Ma) for different Ig values. 

Figure 10. Factor C (Mcr/Ma) for different (Ef/Es) values. 

Figure 11. Factor C (Mcr/Ma) for different Icr values. 

Figure 12. Factor C (Af/As) for different (Mcr/Ma) values. 

Ig, Ef  /Es, and Icr (Figures 9-11). The same method has been 
utilized to achieve the correction factors for the other input 
parameters. Some of them are exhibited in Figures 12–15. 

To determine the following Eqs. (18)–(22), according to 40 
curves related to each correction factor, a line with the least  
squared error was drawn and the corresponding equations were 
presented: 
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Figure 13. Factor C (Af/As) for different Ig values. 

Figure 14. Factor C (Af/As) for different (Ef/Ea) values. 

Figure 15. Factor C (Af/As) for different Icr values. 
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Consequently,  the  effective  moment  of inertia will be 
established from Eq. (23) in which, (Ie) curve can be read 
from Figure 7. 

( ) ( ) ( )curve
.f fcr

e e g cr
a s s

A EMI I C C C I C C I
M A E

     
= × × × × ×     

     
 (23) 

8. Neuro-fuzzy approach

The neuro-fuzzy model defined in this article has five 
Gaussian membership functions for each input variable. 
Each membership function represents a language expression 
for the variable. For example, membership function number 
1 represents very low values and membership function 
number 5 represents very high values. Each of the above 
Gaussian functions, also shown in Figure 16, has two 
parameters, including the mean value m as well as the value 
of variance v, the details of which can be seen in Table 6.  

In adjusting the structure of the above system (Figure 
17), five fuzzy rules are considered, which will be used to 
estimate the output parameter. Using the data used in the NN 
training process, the best neuro-fuzzy model was 
determined, the results of training and test datasets can be 
seen in Figure 18. 

As shown in Figure 17, the proposed model has five 
linear functions. These functions (F1,…, F5), which include a 
set of coefficients for each of the input variables and a 
constant, are shown in Eqs. (24) to (28). The above 
coefficients (Table 7) are determined by the neuro-fuzzy 
optimization algorithm in the training process of the model. 

1 1 2 3 4

5 6

2.13 0.51 1.92 0.99
1.848 1.55 - 0.9,

F X X X X
X X

= − − + +
+ +

(24) 

2 1 2 3 4

5 6

1.97 25.33 0.94 11.74
0.49 15.01 - 3.33,

F X X X X
X X

= − − + −
− +

(25) 

3 1 2 3 4

5 6

1.75 0.08 0.33 0.6
0.63 2.29 0.58,

F X X X X
X X

= − + + −
+ + +

(26) 

4 1 2 3 4

5 6

0.06 0.01 0.27 3.53
0.27X -0.08X -0.17,

F X X X X= − + + +
−

(27) 

5 1 2 3 4

5 6

3.89 0.16 0.11 6.13
0.16X -0.06X -1.63.

F X X X X= − + +
−

(28) 

Using the number of input variables, the value of each of the 
linear functions is determined. Then, the value of the output 
variable is estimated by Eq. (29). It should be noted that the 
output value obtained by this equation is normalized and 
needs to be converted to its real value by the relation 
provided in Table 3. 

5

1
5

1

0.1 0.9.i ii

ii

GW
Y

W
=

=

 
 ≤ = ≤
 
 

∑
∑

 (29) 

The parameter W in the above equation is related to the set 
of fuzzy rules of the system (five rules for the proposed 
model) whose values can be calculated using Eq. (30) to (34) 
with consideration of the Gaussian membership functions 
provided in Table 6. 
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Table 6. Gaussian membership function details. 

Input Parameter G1 G2 G3 G 4 G5 

X1 
v 0.0991 0.0905 0.1769 0.1075 0.1155 
m 0.4045 0.4078 0.8869 0.3711 0.1633 

X2 
v 0.0937 0.0954 0.1111 0.0880 0.0909 
m 0.2060 0.1333 0.5358 0.4446 0.3482 

X3 
v 0.0891 0.0830 0.0858 0.0816 0.1131 
m 0.2501 0.2850 0.4449 0.3473 0.5661 

X4 
v 0.02465 0.0203 0.01689 0.02401 0.01897 
m 0.1368 0.1287 0.1907 0.1236 0.1865 

X5 
v 0.1133 0.1930 0.1085 0.1076 0.1194 
m 0.5207 0.8828 0.4896 0.2751 0.1331 

X6 
v 0.0723 0.0906 0.0563 0.0796 0.1350 
m 0.5041 0.6325 0.4078 0.5381 0.1518 

Figure 16. Gaussian membership functions for the considered inputs. 

Table 7. Output functions. 
Input F1 F2 F3 F4 F 5 

X1 -2.1300 -1.9720 -1.7470 -0.0629 3.8920 
X2 -0.5103 -25.3300 0.0860 0.0172 -0.1555 
X3 1.9180 0.9402 0.3254 0.2661 0.1091 
X4 0.9948 -11.7400 -0.6004 3.5290 6.1320 
X5 1.8480 -0.4929 0.6282 -0.2726 -0.1599 
X6 1.5500 15.0100 2.2860 -0.0850 -0.0603 
Constant -0.8997 -3.3320 0.5812 -0.1729 -1.6260 



10 F. Maleki et al./ Scientia Iranica (2025) 32(7): 6576 

Figure 17. Proposed ANFIS structure. 

Figure 18. Regression plots obtained from ANFIS. 

1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 ,X X X X X XW G G G G G G= (30) 

2 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 ,X X X X X XW G G G G G G= (31) 

3 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 ,X X X X X XW G G G G G G=  (32) 

4 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 ,X X X X X XW G G G G G G= (33) 

5 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 .X X X X X XW G G G G G G=  (34) 

Figure 19. Comparison of predicted values of Ie between the 
proposed equations and equation using GA.  

Figure 20. Comparison of predicted values of Ie between the 
proposed equations and six existing equations.  

9. Comparison study
To verify the proposed ANN and ANFIS models compared 
with the GA method and existing models, respectively, 
Figures 19 and 20 have been presented. Also, the distribution 
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Table 8. The errors range for various existing equations versus the ANN and ANFIS models. 
Range of error (%) Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model 

±15 16 33 25 34 31 107 
±30 37 74 61 85 63 121 
±45 81 107 104 111 92 122 
±60 110 117 119 121 114 122 
±75 122 122 122 122 122 122 

Table 9. The percentage errors for various existing equations versus the ANN and ANFIS models. 

Range of error (%) 
Branson 

(%) 
Bischoff 

(%) 
ACI 
(%) 

ANN model 
(%) 

Benmokrane 
et al. (%) 

ANFIS model 
(%) 

±15 13.11 27.05 20.49 27.87 25.41 87.70 
±30 30.33 60.66 50 69.67 51.64 99.18 
±45 66.39 87.70 85.25 90.98 75.41 100 
±60 90.16 95.90 97.54 99.18 93.44 100 
±75 100 100 100 100 100 100 

.between the proposed equation and four existing models eIComparison of average error of Table 10.  

Average error 
Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model 

62.08 34.64 43.46 30.28 31.24 7.59 

of error and percentage error for various equations is shown 
in Tables 8 and 9, respectively. 

At first, the error value of existing and proposed models 
is calculated from Eq. (35) then the calculating average error 
is presented in Table 10. 

( ) ( )
( )

theo exp

exp

100.e e

e

I I
e

I

−
= ×  (35) 

According to the results of the proposed methods and their 
comparison with existing methods, it can be seen that the use of 
ANFIS and ANN models have higher accuracy and lower error 
percentage in estimating the effective moment of inertia. The 
proposed equation using the ANN method reduces the error in 
the calculation of Ie by about 51.22, 17.36, 30.33, and 3.07 
percent, compared with the equations proposed by Branson, 
Bischoff, ACI, and Benmokrane, respectively. Also, this error 
reduction in the proposed equation with ANFIS is 87.77, 79.28, 
82.54, and 75.70 percent respectively. 

10. Conclusions
A wide number of experimental data for hybrid Reinforced 
Concrete (RC) beams was collected. To predict the effective 
moment of inertia using the Neural Network (NN), six 
related parameters were considered as network inputs. After 
investigating the performance (R and Mean Square Error 
(MSE)) of 17 NNs with various numbers of nodes in the 
hidden layer, a network with the highest performance in the 
simulation was chosen. According to these correction 
coefficients obtained from the simulated results of the NN, a 
general equation was presented to calculate Ie in hybrid 
beams independent of the NN. The average error of the 
proposed model is 30%, and more than 99% simulated result 

is within a 60% range of error. A comparison of the results from 
Artificial Neural Networks (ANN) simulation, Adaptive Neural 
Fuzzy Inference System (ANFIS) model, and available equations 
with the experimental data showed that the Soft Computing (SC) 
models have high accuracy. The precision of the ANN and ANFIS 
models was verified by existing experimental data and exhibited 
good agreement. Also, the comparison of two SC models 
revealed that the ANFIS model is less error and more accurate 
than ANN in predicting Ie in hybrid beams.  
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