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The application of fiber-reinforced polymer bars is rapidly rising in concrete structures because of
corrosion resistance and high tensile strength. By contrast, concrete structures reinforced with Fiber-
Reinforced Polymer (FRP) bars illustrate less ductility and brittle failure without warning than
Reinforced Concrete (RC) structures with conventional steel bars. Hybrid concrete structures with the
combination of FRP and steel bars can simultaneously increase strength and ductility. This paper aims
to estimate the effective moment of inertia in hybrid concrete beams by using a neuro-fuzzy technique
and Artificial Neural Networks (ANN). A new equation has been proposed for hybrid beams with
attention to the importance of calculating the effective moment of inertia in concrete beams. The
proposed equation has been considered the effect of elastic modulus and hybrid reinforcement ratio on
this parameter for hybrid RC beams having FRP bars. This equation has been presented based on the
Neural Networks (NNs) and experimental data conducted by other researchers on the simple beams to
calculate the effective moment of inertia for hybrid RC beams. The result shows that both Soft
Computing (SC) models are highly precise compared to experimental data.

1. Introduction

During recent decades, the corrosion of steel bars in
Reinforced Concrete (RC) structures exposed to deicing salts
and marine environments has become a significant concern.
To avoid deterioration in this condition, the use of Fiber-
Reinforced Polymer (FRP) bars increased because of their

members than concrete members reinforced with pure FRP
bars. Thus, steel and FRP bars significantly improve ductility
and strength in the hybrid beams, respectively. One of the
essential factors for providing the balance between
improving strength and ductility is the hybrid reinforcement

high strength-to-weight ratios, corrosion resistance
compared to conventional steel bars, durability, and non-
magnetic. However, because of linear elastic behavior up to
the failure of FRP bars, concrete structure members
reinforced with this reinforcement exhibit more significant
crack widths and deflection than steel-RC members [1].
Therefore, researchers a combination of FRP and steel bars
suggested as an effective solution in concrete elements to
solve these problems [2]. Using the additional steel bars can
increase the flexural members' ductile behavior in hybrid RC

ratio. Qin et al. [3] recommended this ratio within the range
of 1 to 2.5 in the over-reinforcement hybrid beams. The study
by Akiel et al. [4] showed that members reinforced with
hybrid steel-BFRP bars have less deflection and smaller
crack widths under service conditions than RC members
having BFRP bars only. Sheik and Kharal [5] evaluated the
behavior of Glass Fiber Reinforced Polymer (GFRP)-RC
beams in flexural, shear, tension, and compression. The
results of their studies indicate that the proposed tension-
stiffening model is a significantly improves in the prediction
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of deflection and stiffness of the beams. Salleh et al. [6]
evaluated the load-deflection behavior, ratio, and the
ordinate of GFRP to steel in hybrid RC beams using ATENA
software. Pang et al. [7] investigated the appropriate
reinforcement ratio limits to ensure sufficient strength and
ductility in hybrid FRP-steel RC beams. EL Refai et al. [§]
proposed a bond coefficient to estimate the crack width of
concrete beams reinforced with hybrid bars base on the ACI-
440.1R-06 equation. Kara et al. [9] presented a numerical
method using force equilibrium and strain compatibility to
predict the curvature, deflection, and moment capacity of
hybrid RC beams. Dunder et al. [1] proposed a numerical
method to calculate the deflection of hybrid beams
regardless of the reinforcement type. Al-Sunna et al. [10]
experimentally evaluated deflection in RC beams and slabs
having FRP bars to compare with existing equations.
Naderpour et al. [11] investigated a proposed equation using
the Artificial Neural Network (ANN) to predict the FRP-
confined compressive strength of concrete. Kheyroddin [12]
and Bui et al. [13] presented a new equation to determine the
effect of tension and compression reinforcement ratio,
concrete compressive strength, and the form of loading on
the flexural rigidity (EI) of RC beams. Bui et al. [14]
investigated the ductility of the hybrid RC beams
considering various factors, including the effects of the
FRP/steel reinforcement ratio, the location and form of FRP
bars, and the concrete compressive strength. Shield et al. [15]
performed many experiments to recommend a recalibration
of bond-dependent coefficients in concrete elements
Reinforced with GFRP bars. Nguyen et al. [16] presented a
simple equation for predicting the effective moment of
inertia (/) for FRP beams using Gene Expression
Programming (GEP). Ge et al. [17] investigated the flexural
behavior of concrete beams reinforced with steel-FRP
composite bars. Moolaei et al. [ 18] experimentally evaluated
the flexural behavior of beams reinforced with GFRP and
steel bars and High-Performance Fiber Reinforced
Cementitious Composites (HPFRCC). Wang et al. [19]
investigated the flexural behavior of five hybrid BFRP and
steel bars RC beams subject to four-point bending tests.
Arabshahi et al. [20] proposed an equation for the effective
moment of inertia in concrete beams reinforced with FRP
bars. Lyu et al. [21] studied the usage of back-propagation
Neural Network (NN) and Genetic Algorithm (GA) for the
predicting of torsional strength RC beams. Li et al. [22] used
an artificial NN and an imperialist competitive algorithm to
provide an accurate method for simulating the deflection of
the RC beam. Jayasinghe et al. [23] using ANN showed that
the new equation for the shear strength of the RC beam in
ACI 318-19 and AS 3600-2018 is more accurate compared
to other provisions. Alagundi and Palanisamy [24] proposed
a model of ANN for prediction of shear strength of an
exterior beam-column joint. Zayan and Mahmoud [25] stated
that the proposed artificial NN can successfully evaluate the
combined flexural torsional strength of Prestressed Concrete

(PSC) beams. Zhang et al. [26] application Convolutional
Neural Networks (CNNs) to recognize the symmetry group
and symmetry order in planar structures. Khan et al. [27]
used an artificial NN and a random forest to estimate the
Flexural Strength of beams. The results of the ANN showed
that the bottom flexural bars of the beam are the most
effective factor in yielding flexural capacity. Peng et al. [28]
proposed the Adaptive Neural Fuzzy Inference System
(ANFIS) method to investigate the flexural behavior of
corroded concrete beams. Because in the finite element
method, many inputs are required that it was expensive to
collect this amount of data. Barkhordari et al. [29] showed
that the Hybrid Algorithm (PSO-ANN) for computing the
shear strength of deep RC beams has high accuracy and used
SHapley Additive exPlanations (SHAP) method to exhibit
the effective parameters for estimating shear strength beams.
In this study, due to the lack of accuracy of the existing
equations in calculating the effective moment of inertia in the
hybrid RC beams, equations were proposed. Machine
learning and numerical studies are widely used to investigate
the behavior of beams, columns, and bridges [30-32].

2. Research significance

The short-term deflection is estimated using the effective
moment of inertia at the service load [33]. The primary
purpose of this study is to investigate the effect of the elastic
modulus of FRP and steel bars and hybrid reinforcement
ratio, A7/As, on the effective moment of inertia for hybrid RC
beams. Besides, existing methods for calculated the effective
moment of inertia are not suitable in hybrid beams. Because
these equations proposed to calculate the effective moment
of inertia in beams reinforced with FRP or steel bars and they
do not have enough accuracy in hybrid beams. Consequently,
a new model is presented based on an artificial NN, and then
this model provides a comparison of experimental data and
other present equations.

3. Existing models

Serviceability is defined as satisfactory performance at
service load levels that can be described in terms of cracking
and deflection criteria. Excessive deflection is undesirable
for the appearance and efficiency of the structure. Excessive
crack width also seriously affects the aesthetic and durability
of the structure [34]. One common and plain method for
calculating deflection is the use of /.. As the cracking load
exceeds, flexural stiffness changes due to the existence of
discrete cracks along with the member [35]. . accounted for
considering the effect of the flexural stiffness variation and
concrete tension stiffening. The Eq. (1) proposed by Branson
[36] is applicable to steel-RC beams at the service loads.

3 3
Mrr Mcr
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where I, is the gross moment of inertia, /., is the cracked
moment of inertia, M., and M, are the cracking moment and
applied moments at the critical section, respectively.

The results of studies provide reveal that this equation
overestimates /. in concrete beams reinforced with FRP bars,
especially in beams are under reinforcement [37-40].

Bischoff [41] suggested an equation for /., which could
be computed from Egs. (2) and (3). This equation compared
with experimental results illustrates that is suitable for both
steel and FRP RC beams:

1

[ = fe  oq. 2
Colenp(M, /M)t @
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The ACI 440.1R-15 [34] committee offered an additional
factor v, in the equation proposed by Bischoff to consider the
variety in stiffness along the length of the member, as
illustrated in Eq. (4). The new expression presents a
reasonable approximation of the deflection for RC beams
with FRP and one-way slabs [42].

I = ! o <1, where M,>2M,, . 4
M, I,
I—y| e | 1=
M, I,

The factor y is defined based on the load and boundary

conditions and considers the length of the uncracked regions
of the element and change in stiffness in the crack regions
[34]. This factor could be computed from Eq. (5).

y=172-0.72(M_/M,). (5)

Benmokrane et al. recommended Eq. (6), which calibrated
utilizing a few numbers of experimental data [37].

I,=al, + (%— al“’]{ﬁj\//[[:r } . (6)

The factor a which exhibiting the diminished composite

behavior between the FRP bars and concrete is equal to 0.84.
The factor § is equal to 7, which was applied to provide a
faster transition from /g to /..

Pirayeh Gar et al. [35] have proposed an equation to
predict the deflection of FRP, PSC beams regardless of the
L., /1, ratio.

Mousavi and Esfahani [43] evaluated the effect of several
parameters on the power m in the equation of Branson utilizing
the GA method. The proposed equations for /. can be
determined as follows:

The objective function of model A has been described by Eq. (7):

Oy = Ot - (7

exp cal

Model A is described by Egs. (8) and (9) as follows.

M(‘r m MLV m
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The objective function of Model B has been described by Eq. (10):

(Ié’ )exp - (Ié’ )then .

Model B is described by Egs. (11) and (12):

Mcr m Mcr m
(IE)MME[B:O.N[MJ 1g+0.94[1—(M } 116,5122, an

a a

e=

(10)

E
m=1.69—0.51ﬂ+1.77%+6.67?f, (12)

Pp M, s
where Erand E; are the elastic modulus of FRP and steel bars,
respectively. The pris the FRP reinforcement ratio, and pp is
the FRP balance ratio.
In FRP reinforced beams, the balance reinforcement
ratio could be calculated by Eq. (13) where the rupture of
FRP bars and concrete crushing occur simultaneously.

fo  Ese.,

pfb=0.85ﬂlzm, (13)
where f; is the ultimate tensile stress of FRP bars, S,
considers between 0.85 and 0.65 with attention to concrete
strength, £." and &, are the concrete compressive strength
and maximum concrete compressive strain, respectively.

Kheyroddin and Maleki [44] suggested an equation for
calculating /. in hybrid RC beams using the GA method and
experimental data, the proposed expression presented in Egs.
(14) and (15).

M‘, m MC" m
(15){/16020.136[1‘4*} 1g+1.117[1—[M J 11 (14)

E, 4, M,
m=0.836—L+0.208p, L +3.709=< (15)
E, ” 4, M

s s a

4. Soft Computing (SC)

The SC method which was first introduced by Zadeh [45],
mimics the ability of the human brain and how it relates to the
environment of uncertainty and inaccuracy. SC aims to use
human knowledge to solve complex problems with acceptable
precision to have high similarity with human decision making
[46]. Methods in SC were inspired by nature and has been
considered as a main technique in structural engineering fields
[47-52]. One of the most important reasons for the importance
of SC and intelligence Computation is the existence of
uncertainties and ambiguities in the real world. The purpose of
combining the methods of GA, fuzzy system, and NN in SC is
to achieve the ability to solve problems that each method can't
solve alone.



F. Maleki et al./ Scientia Iranica (2025) 32(7): 6576

Table 1. Experimental studies of hybrid steel/FRP RC beams.

Reference Numbel: ofbeam Number of Type of

specimens data FRP bar

Aiello and Ombres [56] 4 29 AFRP?
Quetal. [57] 6 46 GFRP®
Leung and Balendran [58] 4 6 GFRP
Almusallam et al. [59] 2 3 GFRP
Safan [60] 4 4 GFRP
Yang et al. [61] 1 1 GFRP
Refai et al. [§] 6 33 GFRP

b

* AFRP: Aramid Fiber Reinforced Polymer;

GFRP: Glass Fiber Reinforced Polymer

Table 2. Properties of the experimental data.

Parameter I (mm?*)  A4y/As M./M. EpyEs I.(mm*) P Le.exp (mm?)
Mean 2.71E+8 1.18 0.44 0.23 6.86E+7 0.0036 8.8E+7
Minimum 6.67E+7  0.25 0.11 0.19 1.57E+7  0.0013 1.25E+7
Maximum 5.18E+8 2.88 0.99 0.73 1.62E+8 0.0073 3.35E+8
Standard deviation 1.66E+8 0.66 0.19 0.05 446E+7  0.00134 6.93E+7
Coefficient of variation 0.612 0.564 0429 0.219 0.65 0.372 0.788

Table 3. Scaling equation for parameters.

Parameter Scaling equation

Ig (l’Ill’Il4) Igf,\‘ = (08) X (Ig— Ig—min)/ (Igfmax- Igfmin) +0.1

A//Ac (A/’/Av)s = (08) X ((A//As)— (A//Av)mm)/ ((A//Ar)max- (A//Av)mm) +0.1

Mer/Ma (Mcr/Ma 5= (08) X ((Mcr/Ma)- (Mcr/Ma)min)/ ((Mcr/Ma max= (Mcr/Ma)min) +0.1
Ef/Es (Ef/Es s = (08) X ((Ef/Es)- (Ef/Es)min)/ ((Ef/Es max= (Ef/Es)min) +0.1

Ly (rnrn4) Lers= (08) X (]cr Icr—min)/ (Icr—max— Icr—min) +0.1

P po-s=(0.8) X (= pso-min)/ (psp-max- ppo-min) + 0.1

1, e-exp (mm“)

Ie-exp-s = (08) X (Ie-exp- Ie-exp-min)/ (Ie-exp-mux- Ie-exp-min) +0.1

ANN and fuzzy systems are examples of the most
important SC models that are widely used in various
sciences. In the last few years, powerful systems called the
ANFIS have been used in various sciences. These types of
systems, by taking advantage of the training power of NNs
and the linguistic advantage of fuzzy systems, have been able
to benefit from These two models should be used for process
analysis. As one of the common neuro-fuzzy systems,
ANFIS was suggested by Jang [53] in 1993. This system uses
back-propagation gradient descent and the least-squares
methods for the training process.

This study was used as two methods consist of ANN and
ANFIS models to determine /. in hybrid beams. To achieve
the desired output, for each method select the best model,
and the results are evaluated with the experimental.

5. ANN modeling

The artificial NN is one of the branches of soft-computing
which has been used in modeling complex nonlinear
systems. In recent years, the artificial NN has been
considered a powerful computational method. That solves
complex problems and can be applied to simulate, evaluate,
and approximate with high accuracy.

For the correct equation of Branson, one hundred twenty-
two data as follow have been applied. These data are the number
of points on the curve of load-deflection hybrid FRP/steel RC
beams with four-point loading. Table 1 presents the detail of the
experimental specimens used in this study.

The parameters include reinforcement ratio (As /Ay),
elastic modulus ratio (E//E;), level of loading (M., /M,), the
gross moment of inertia (/,), the balance ratio (psp), and
cracked moment of inertia (/.) used as the six input nodes,
the target node was the effective moment of inertia. Two
hidden layers were utilized in this ANN modeling, where
transfer functions,

Log-Sigmoid and Purline

respectively. Normalization /scaling for all data was

were

performed and for this purpose, all data were scaled between
0.1 and 0.9. Tables 2 and 3 presented the values of
experimental data and normalization equations, respectively.
In the Levenberg-Marquardt method input and target
nodes randomly have distributed into three sets, consist of
the train, validate, and test the network. Varying the relative
percentages of those three sets could slightly improve the
generate method. The regression values and Mean Square
Error (MSE) of the networks with the different number of
hidden nodes exhibit in Figures 1 and 2, respectively.
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Table 4. Details of ANN.
Input weights Bias to
Layer .
Node . Hidden  Output
Input1l Input2 Input3 Input4 Input5 Input6é  weights layer layer

Node I 1.0586 -1.0264 -1.9345 26546 -1.8642 -1.9836 -1.0917  -4.4309 -
Node2  -1.2625 2.0084 -1.5379 14949 24722 -1.9054 0.64216  3.9394 -
Node3 29143 -1.1867 0.58662 1.6268 -1.995 23412  -0.6328  2.946 -
Node4  -135 1489 -1.8677 -1.5295 -1585 -2.9664  -1.0239 22105 -
Node5 25372 -0.0875 -2.057 -1.2016 035133 3.1498  -1.8568  -0.8106 -
Node 6  0.25862 13789  1.7669 -2.1967 -0.1888 -2.995  -1.5746  -0.5444 -
Node7  -0.1379 24461 026625 -0.4596 17655 2.8143 13585  0.37002 -
Node8  -1.0545 -0.0605 2.9446 28226 0.15898 -1.5928  -0.1011  -0.1590 -
Node9  1.6029  2.1827 -3.1115 027195 -1.6601 0.30525 0.87172  -0.4882 -
Node 10 1.9747 -1.9675 -0.3196 13692 17427 29141 098504  1.1482 -
Node 11 -0.0468  2.1972  0.13591  1.1114  -2.6795 2.7945 096851  1.1291 -
Node 12 -2.1131 -2.6384 1.1274  1.1272 13603 -1.8536  -1.8381  0.7921 -
Node 13 -0.5279 -03021 2724 29029 12099 13633  -2.6271  0.80781 -
Node 14 0.0365 -2.7636  -1.7993 091934 -1.4456 24717  0.1776  3.0041 -
Node 15 -0.9784 19368 -0.7579 -1.8431 -1.362  2.8226  -0.2872  -3.9263 -
Node 16  -0.1474 -1.7758 -2.8125 03824 -1.9395 -22417  0.0681  -4.4138 -
Output - - - - - - - - -0.2269
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Figure 1. R-values vs the different number of hidden nodes.
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RN

for training are summarized in Figures 3-5. /
Ie— () \

6. Sensitivity analysis

To calculate the influence of the input data on the effective Figure 3. Scheme of ANN.
moment of inertia has used the weight matrix according to
Table 4 and the equation of Milne [54]. This study used the the absolute values of weights. Milne's formula is presented

modified version of Grason's equation [55] because it considers in Eq. (16):
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Best validation performance is 0.00099444 at epoch 3 Training : R=0.98826
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Figure 5. Regressions of training, validation, and test data
where wy; and w,; are the weight between neuron j in the simulated by ANN.

hidden layer with input Node | and the weight between

] ) Table 5. The input parameters range and reference values.
neuron j and neuron o in the output layer, respectively.

Input parameters Minimum Maximum Reference

In Figure 6, the percentage influence of each of the six I (mm*) 6.67E+7 5.18E+8 2.7E+8

; : : o Ap/A 0.25 2.88 1.2
input parameters on the effective moment of inertia is shown. s

putp Jeenvetn HmerHa 15 Show Ma/Ma 0.1 0.99 0.40
Table 4 presents the details of weights and their bias of the E/E, 0.19 0.73 0.45
proposed NN. Iy (mm*) 1.57E+7 1.62E+8 6.9E+7

ol 0.0013 0.0073 0.004

7. Proposed approach

considered close to the mean values. As the first step, /L. is
The range and the reference value of the six inputs data plotted against psp while the other input parameters have the

are represented in Table 5. The reference numbers were reference values, as shown in Figure 7. To account for the
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effect of other factors on [, the correction function can be
computed from Eq. (17).
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To draw a curve in Figure 8, reference values are considered
for the input parameters except for Ay /4, and M.,./M,. For As/As
one of the values specified in the figure and for M.,/M, the entire
data range is applied as input. To determine C ( M./ M,), the
result obtained 7, from the above NN divided by the value in the
case where M. /M, also has a reference value. Another 9
curves are plotted in the figure with the same method and
various values of A;/As. A similar method was applied to
draw C(M../M,) versus other input parameters including
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Ig, Er /E, and I (Figures 9-11). The same method has been
utilized to achieve the correction factors for the other input
parameters. Some of them are exhibited in Figures 12—15.

To determine the following Egs. (18)—+22), according to 40
curves related to each correction factor, a line with the least
squared error was drawn and the corresponding equations were
presented:
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Consequently, the effective moment of inertia will be
established from Eq. (23) in which, (/) curve can be read

from Figure 7.

A E
1=(1),.. % c(?é} x C[A/]x c(1,)x c[Efj xC(1,). (23)

a s s

8. Neuro-fuzzy approach

The neuro-fuzzy model defined in this article has five
Gaussian membership functions for each input variable.
Each membership function represents a language expression
for the variable. For example, membership function number
1 represents very low values and membership function
number 5 represents very high values. Each of the above
Gaussian functions, also shown in Figure 16, has two
parameters, including the mean value m as well as the value
of variance v, the details of which can be seen in Table 6.

In adjusting the structure of the above system (Figure
17), five fuzzy rules are considered, which will be used to
estimate the output parameter. Using the data used in the NN
training process, the best neuro-fuzzy model was
determined, the results of training and test datasets can be
seen in Figure 18.

As shown in Figure 17, the proposed model has five
linear functions. These functions (F7, ..., F’s), which include a
set of coefficients for each of the input variables and a
constant, are shown in Egs. (24) to (28). The above
coefficients (Table 7) are determined by the neuro-fuzzy
optimization algorithm in the training process of the model.

F=-213X,-051X,+1.92X,+0.99.X,

(24)
+1.848 X, +1.55X,-0.9,
F,=-197X,-2533X,+094X, ~11.74 X, 25)
~0.49.X, +15.01.X, -3.33,
F,=-1.75X,+0.08X,+033X,-0.6X, 6)
+0.63X, +229X, +0.58,
F,=-0.06X,+0.01X, +0.27X, +3.53 X, on
~0.27X,-0.08X,-0.17,
F,=3.89X,-0.16X,+0.11.X, +6.13X,
(28)

—0.16X;-0.06X-1.63.

Using the number of input variables, the value of each of the
linear functions is determined. Then, the value of the output
variable is estimated by Eq. (29). It should be noted that the
output value obtained by this equation is normalized and
needs to be converted to its real value by the relation
provided in Table 3.

0.1 s[Y =ZIGW} <0.9. (29)
>

5

=1

The parameter 7 in the above equation is related to the set
of fuzzy rules of the system (five rules for the proposed
model) whose values can be calculated using Eq. (30) to (34)
with consideration of the Gaussian membership functions
provided in Table 6.
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Table 6. Gaussian membership function details.

Input Parameter GI G2 G3 G4 G5
v 0.0991 0.0905 0.1769  0.1075 0.1155
= m 0.4045 0.4078 0.8869  0.3711 0.1633
v 0.0937 0.0954 0.1111  0.0880 0.0909
X2 m 0.2060  0.1333  0.5358  0.4446 0.3482
v 0.0891 0.0830 0.0858  0.0816 0.1131
X m 0.2501 0.2850 0.4449  0.3473 0.5661
v 0.02465 0.0203 0.01689 0.02401 0.01897
X m 0.1368  0.1287  0.1907  0.1236 0.1865
v 0.1133  0.1930 0.1085  0.1076 0.1194
o m 0.5207 0.8828 0.4896  0.2751 0.1331
Y6 v 0.0723  0.0906 0.0563  0.0796 0.1350
m 0.5041 0.6325 0.4078  0.5381 0.1518

Membership function for input X1

Membership function for input X2
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Figure 16. Gaussian membership functions for the considered inputs.
Table 7. Output functions.
Input Fl1 F2 F3 F4 F5
X1 -2.1300 -1.9720 -1.7470 -0.0629 3.8920
X2 -0.5103 -25.3300 0.0860 0.0172 -0.1555
X3 1.9180 0.9402 0.3254 0.2661 0.1091
X4 0.9948 -11.7400 -0.6004 3.5290 6.1320
X5 1.8480 -0.4929 0.6282 -0.2726 -0.1599
X6 1.5500 15.0100 2.2860 -0.0850 -0.0603
Constant _ -0.8997 -3.3320 0.5812 -0.1729 -1.6260
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Membership Functions

Inputs 1

X\ Final Output

Figure 17. Proposed ANFIS structure.

Train data: R=0.9929

Output

0.2 0.4 0.6 0.8
Target
Test data: R=0.97825

0.2 0.4 0.6
Target

Figure 18. Regression plots obtained from ANFIS.
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(€2))
(32)
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(34)

* ANN - Kheyroddin & Maleki = ANFIS

+60% +40%.,:"". 20%
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Ie (Experimental)x10%

Figure 19. Comparison of predicted values of I. between the
proposed equations and equation using GA.
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Figure 20. Comparison of predicted values of I. between the
proposed equations and six existing equations.

9. Comparison study

To verify the proposed ANN and ANFIS models compared
with the GA method and existing models, respectively,
Figures 19 and 20 have been presented. Also, the distribution
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Table 8. The errors range for various existing equations versus the ANN and ANFIS models.

Range of error (%) Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model
+15 16 33 25 34 31 107
+30 37 74 61 85 63 121
+45 81 107 104 111 92 122
+60 110 117 119 121 114 122
+75 122 122 122 122 122 122

Table 9. The percentage errors for various existing equations versus the ANN and ANFIS models.

Branson Bischoff ACI  ANN model Benmokrane ANFIS model
Range of error (%)

(%) (%) (%) (%) et al. (%) (%)
+15 13.11 27.05 20.49 27.87 2541 87.70
+30 30.33 60.66 50 69.67 51.64 99.18
+45 66.39 87.70 85.25 90.98 75.41 100
+60 90.16 95.90 97.54 99.18 93.44 100
+75 100 100 100 100 100 100

Table 10. Comparison of average error of /. between the proposed equation and four existing models.

Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model

Average error

62.08 34.64 43.46

30.28 31.24 7.59

of error and percentage error for various equations is shown
in Tables 8 and 9, respectively.

At first, the error value of existing and proposed models
is calculated from Eq. (35) then the calculating average error
is presented in Table 10.

(7)o = (1)

e=——>—""1x100.

(Ie )exp

According to the results of the proposed methods and their
comparison with existing methods, it can be seen that the use of
ANFIS and ANN models have higher accuracy and lower error
percentage in estimating the effective moment of inertia. The
proposed equation using the ANN method reduces the error in
the calculation of 7, by about 51.22, 17.36, 30.33, and 3.07
percent, compared with the equations proposed by Branson,
Bischoff, ACI, and Benmokrane, respectively. Also, this error
reduction in the proposed equation with ANFIS is 87.77, 79.28,
82.54, and 75.70 percent respectively.

(35)

10. Conclusions

A wide number of experimental data for hybrid Reinforced
Concrete (RC) beams was collected. To predict the effective
moment of inertia using the Neural Network (NN), six
related parameters were considered as network inputs. After
investigating the performance (R and Mean Square Error
(MSE)) of 17 NNs with various numbers of nodes in the
hidden layer, a network with the highest performance in the
simulation was chosen. According to these correction
coefficients obtained from the simulated results of the NN, a
general equation was presented to calculate /. in hybrid
beams independent of the NN. The average error of the
proposed model is 30%, and more than 99% simulated result

is within a 60% range of error. A comparison of the results from
Artificial Neural Networks (ANN) simulation, Adaptive Neural
Fuzzy Inference System (ANFIS) model, and available equations
with the experimental data showed that the Soft Computing (SC)
models have high accuracy. The precision of the ANN and ANFIS
models was verified by existing experimental data and exhibited
good agreement. Also, the comparison of two SC models
revealed that the ANFIS model is less error and more accurate
than ANN in predicting /. in hybrid beams.
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