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ABSTRACT 

The application of fiber-reinforced polymer bars is rapidly rising in concrete structures because of corrosion 

resistance and high tensile strength. By contrast, concrete structures reinforced with Fiber-Reinforced Polymer 

(FRP) bars illustrate less ductility and brittle failure without warning than reinforced concrete structures with 

conventional steel bars. Hybrid concrete structures with the combination of FRP and steel bars can 

simultaneously increase strength and ductility. This paper aims to estimate the effective moment of inertia in 

hybrid concrete beams by using a neuro-fuzzy technique and Artificial Neural networks. A new equation has 

been proposed for hybrid beams with attention to the importance of calculating the effective moment of inertia 

in concrete beams. The proposed equation has been considered the effect of elastic modulus and hybrid 

reinforcement ratio on this parameter for hybrid reinforced concrete beams having FRP bars. This equation has 

been presented based on the neural networks and experimental data conducted by other researchers on the 
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simple beams to calculate the effective moment of inertia for hybrid reinforced concrete beams. The result 

shows that both soft computing models are highly precise compared to experimental data.    

Keywords: Artificial neural networks; ANFIS; Effective moment of inertia; Hybrid concrete beam; FRP bars  

 

1. Introduction 

During recent decades, the corrosion of steel bars in Reinforced Concrete (RC) structures exposed to deicing 

salts and marine environments has become a significant concern. To avoid deterioration in this condition, the 

use of Fiber-Reinforced Polymer (FRP) bars increased because of their high strength-to-weight ratios, corrosion 

resistance compared to conventional steel bars, durability, and non-magnetic. However, because of linear elastic 

behavior up to the failure of FRP bars, concrete structure members reinforced with this reinforcement exhibit 

more significant crack widths and deflection than steel-reinforced concrete members [1]. Therefore, researchers 

a combination of FRP and steel bars suggested as an effective solution in concrete elements to solve these 

problems [2]. Using the additional steel bars can increase the flexural members' ductile behavior in hybrid RC 

members than concrete members reinforced with pure FRP bars. Thus, steel and FRP bars significantly improve 

ductility and strength in the hybrid beams, respectively. One of the essential factors for providing the balance 

between improving strength and ductility is the hybrid reinforcement ratio. Qin et al.[3] recommended this ratio 

within the range of 1 to 2.5 in the over-reinforcement hybrid beams. The study by Akiel et al. [4] showed that 

members reinforced with hybrid steel-BFRP bars have less deflection and smaller crack widths under service 

conditions than RC members having BFRP bars only. Sheik and Kharal [5] evaluated the behavior of GFRP-RC 

beams in flexural, shear, tension, and compression. The results of their studies indicate that the proposed 

tension-stiffening model is a significantly improves in the prediction of deflection and stiffness of the beams. 

Salleh et al. [6] evaluated the load-deflection behavior, ratio, and the ordinate of GFRP to steel in hybrid RC 

beams using ATENA software. Pang et al. [7] investigated the appropriate reinforcement ratio limits to ensure 

sufficient strength and ductility in hybrid FRP-steel RC beams. Refai et al. [8] proposed a bond coefficient to 

estimate the crack width of concrete beams reinforced with hybrid bars base on the ACI-440.1R-06 equation. 

Kara et al. [9] presented a numerical method using force equilibrium and strain compatibility to predict the 

curvature, deflection, and moment capacity of hybrid RC beams. Dunder et al. [1] proposed a numerical method 

to calculate the deflection of hybrid beams regardless of the reinforcement type. Al-Sunna et al. [10] 

experimentally evaluated deflection in RC beams and slabs having FRP bars to compare with existing 
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equations. Naderpour et al. [11]  investigated a proposed equation using the artificial neural network (ANN) to 

predict the FRP-confined compressive strength of concrete. Kheyroddin and Mirza [12, 13]  presented a new 

equation to determine the effect of tension and compression reinforcement ratio, concrete compressive strength, 

and the form of loading on the flexural rigidity (EI) of RC beams. Bui et al. [14] investigated the ductility of the 

hybrid RC beams considering various factors, including the effects of the FRP/steel reinforcement ratio, the 

location and form of FRP bars, and the concrete compressive strength. Shield et al. [15] performed many 

experiments to recommend a recalibration of bond-dependent coefficients in concrete elements Reinforced with 

GFRP bars. Nguyen et al. [16] presented a simple equation for predicting the effective moment of inertia (Ie) for 

FRP beams using gene expression programming (GEP). Ge et al. [17] investigated the flexural behavior of 

concrete beams reinforced with steel-FRP composite bars. Moolaei et al. [18] experimentally evaluated the 

flexural behavior of beams reinforced with GFRP and steel bars and  High Performance Fiber Reinforced 

Cementitious Composites (HPFRCC). Wang et al.[19] investigated the flexural behavior of five hybrid BFRP 

and steel bars RC beams subject to four-point bending tests. Arabshahi et al. [20] proposed an equation for the 

effective moment of inertia in concrete beams reinforced with FRP bars. Lyu et al. [21] studied the usage of 

back-propagation Neural Network (NN) and Genetic Algorithm (GA) for the predicting of torsional strength RC 

beams. Li et al.[22] used an artificial neural network and an imperialist competitive algorithm to provide an 

accurate method for simulating the deflection of the RC beam. Jayasinghe et al. [23] using ANN showed that the 

new equation for the shear strength of the RC beam in ACI 318–19 and AS 3600–2018 is more accurate 

compared to other provisions. Alagundi and Palanisamy [24] proposed a model of ANN for prediction of shear 

strength of an exterior beam-column joint. Zayan and Mahmoud [25] stated that the proposed artificial neural 

network can successfully evaluate the combined flexural torsional strength of prestressed concrete beams. 

Zhang et al. [26] application Convolutional Neural Networks (CNNs) to recognize the symmetry group and 

symmetry order in planar structures. Khan et al. [27] used an artificial neural network and a random forest to 

estimate the Flexural Strength of beams. The results of the ANN showed that the bottom flexural bars of the 

beam are the most effective factor in yielding flexural capacity.  Peng et al. [28] proposed the Adaptive Neural 

Fuzzy Inference System (ANFIS) method to investigate the flexural behavior of corroded concrete beams. 

Because in the finite element method, many inputs are required that it was expensive to collect this amount of 

data. Barkhordari et al. [29] showed that the Hybrid Algorithm (PSO-ANN) for computing the shear strength of 

deep RC beams has high accuracy and used SHapley Additive exPlanations (SHAP) method to exhibit the 

effective parameters for estimating shear strength beams. In this study, due to the lack of accuracy of the 
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existing equations in calculating the effective moment of inertia in the hybrid RC beams, equations were 

proposed. Machine learning and numerical studies are widely used to investigate the behavior of beams, 

columns, and bridges [30-32]. 

2. Research significance 

The short-term deflection is estimated using the effective moment of inertia at the service load [33]. The 

primary purpose of this study is to investigate the effect of the elastic modulus of FRP and steel bars and hybrid 

reinforcement ratio, Af/As, on the effective moment of inertia for hybrid RC beams. Besides, existing methods 

for calculated the effective moment of inertia are not suitable in hybrid beams. Because these equations 

proposed to calculate the effective moment of inertia in beams reinforced with FRP or steel bars and they do not 

have enough accuracy in hybrid beams. Consequently, a new model is presented based on an artificial neural 

network, and then this model provides a comparison of experimental data and other present equations.  

3. Existing models  

Serviceability is defined as satisfactory performance at service load levels that can be described in terms of 

cracking and deflection criteria. Excessive deflection is undesirable for the appearance and efficiency of the 

structure. Excessive crack width also seriously affects the aesthetic and durability of the structure [34]. One 

common and plain method for calculating deflection is the use of Ie. As the cracking load exceeds, flexural 

stiffness changes due to the existence of discrete cracks along with the member [35]. Ie accounted for 

considering the effect of the flexural stiffness variation and concrete tension stiffening. The Eq. (1) proposed by 

Branson [36] is applicable to steel-reinforced concrete beams at the service loads. 
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where Ig is the gross moment of inertia, Icr is the cracked moment of inertia, Mcr and Ma are the cracking 

moment and applied moments at the critical section, respectively.  

The results of studies provide reveal that this equation overestimates Ie in concrete beams reinforced with FRP 

bars, especially in beams are under reinforcement [37-40]. 

Bischoff [41] suggested an equation for Ie, which could be computed from Eqs. (2) and (3). This equation 

compared with experimental results illustrates that is suitable for both steel and FRP reinforced concrete beams: 
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The ACI 440.1R-15 [34] committee offered an additional factor γ, in the equation proposed by Bischoff to 

consider the variety in stiffness along the length of the member, as illustrated in Eq. (4). The new expression 

presents a reasonable approximation of the deflection for RC beams with FRP and one-way slabs [42]. 
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The factor γ is defined based on the load and boundary conditions and considers the length of the uncracked 

regions of the element and change in stiffness in the crack regions [34]. This factor could be computed from Eq. 

(5).  

  1.72 0.72 cr aM M    (5) 

Benmokrane et al. recommended Eq. (6), which calibrated utilizing a few numbers of experimental data [36]. 
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The factor  which exhibiting the diminished composite behavior between the FRP bars and concrete is equal to 

o.84. The factor 𝛽 is equal to 7, which was applied to provide a faster transition from Ig to Icr. 

Pirayeh Gar et al.[35] have proposed an equation to predict the deflection of FRP prestressed concrete (PSC) 

beams regardless of the Icr/Ig ratio.   

Mousavi et al.[43] evaluated the effect of several parameters on the power m in the equation of Branson 

utilizing the genetic algorithm method. The proposed equations for Ie can be determined as follows.  

The objective function of model A has been described by Eq. (7) 
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Model A is described by Eqs. (8) and (9) as follows. 
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The objective function of model B has been described by Eq. (10) 
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Model B is described by Eqs. (11) and (12). 
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Where Ef  and Es are the elastic modulus of FRP and steel bars, respectively. The ρf is the FRP reinforcement 

ratio, and ρfb is the FRP balance ratio.  

In FRP reinforced beams, the balance reinforcement ratio could be calculated by Eq. (13) where the rupture of 

FRP bars and concrete crushing occur simultaneously. 
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Where ffu is the ultimate tensile stress of FRP bars, 𝛽1 considers between 0.85 and 0.65 with attention to 

concrete strength, fc
'
 and 𝜀𝑐𝑢 are the concrete compressive strength and maximum concrete compressive strain, 

respectively. 

Kheyroddin and Maleki [44] suggested an equation for calculating Ie in Hybrid RC beams using the genetic 

algorithm method and experimental data, the proposed expression presented in Eqs. (14) and (15). 
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4. Soft Computing 

The Soft Computing (SC) method which was first introduced by Zadeh [45], mimics the ability of the human 

brain and how it relates to the environment of uncertainty and inaccuracy. Soft computing aims to use human 
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knowledge to solve complex problems with acceptable precision to have high similarity with human decision 

making [46]. Methods in soft computing were inspired by nature and has been considered as a main technique in 

structural engineering fields [47-52]. One of the most important reasons for the importance of soft computing 

and intelligence Computation is the existence of uncertainties and ambiguities in the real world. The purpose of 

combining the methods of genetic algorithm, fuzzy system, and neural network in soft computing is to achieve 

the ability to solve problems that each method can't solve alone. 

Artificial neural networks and fuzzy systems are examples of the most important soft computing models that are 

widely used in various sciences. In the last few years, powerful systems called the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) have been used in various sciences. These types of systems, by taking advantage of 

the training power of neural networks and the linguistic advantage of fuzzy systems, have been able to benefit 

from These two models should be used for process analysis. As one of the common neuro-fuzzy systems, 

ANFIS was suggested by Jang [53] in 1993. This system uses back-propagation gradient descent and the least-

squares methods for the training process. 

This study was used as two methods consist of ANN and ANFIS models to determine Ie in hybrid beams. To 

achieve the desired output, for each method select the best model, and the results are evaluated with the 

experimental. 

5. ANN modeling 

 The artificial neural network is one of the branches of soft-computing which has been used in modeling 

complex nonlinear systems. In recent years, the artificial neural network has been considered a powerful 

computational method. That solves complex problems and can be applied to simulate, evaluate, and 

approximate with high accuracy.  

For the correct equation of Branson, one hundred twenty-two data as follow have been applied. These data are 

the number of points on the curve of load-deflection hybrid FRP/steel RC beams with four-point loading. Table 

1 presents the detail of the experimental specimens used in this study. 

 

The parameters include reinforcement ratio (Af/As), elastic modulus ratio (Ef/Es), level of loading (Mcr/Ma), the 

gross moment of inertia (Ig), the balance ratio (ρfb),and cracked moment of inertia (Icr) used as the six input 

nodes, the target node was the effective moment of inertia. Two hidden layers were utilized in this ANN 

modeling, where Log-Sigmoid and Purline were transfer functions, respectively.  Normalization /scaling for all 

data was performed and for this purpose, all data were scaled between 0.1 and 0.9. Tables 2 and 3 presented the 

values of experimental data and normalization equations, respectively. 
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In the Levenberg –Marquardt method input and target nodes randomly have distributed into three sets, consist of 

the train, validate, and test the network. Varying the relative percentages of those three sets could slightly 

improve the generate method. The regression values and Mean Square Error (MSE) of the networks with the 

different number of hidden nodes exhibit in Fig. 1 and Fig. 2, respectively. 

 

 

 

Network with 16 nodes of the hidden layer was chosen since it presents good results in the case of R-values and 

also has the least value of MSE among all networks. The results for training are summarized in Figs. 3–5. 

 

 

6. Sensitivity analysis 

To calculate the influence of the input data on the effective moment of inertia has used the weight matrix 

according to table 4 and the equation of Milne [54]. This study used the modified version of Grason's equation 

[55] because it considers the absolute values of weights. Milne's formula is presented in Eq. 16.  
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Where wjl and woj are the weight between neuron j in the hidden layer with input node l and the weight between 

neuron j and neuron o in the output layer, respectively. 

In Fig. 6, the percentage influence of each of the six input parameters on the effective moment of inertia is 

shown. Table 4 presents the details of weights and their bias of the proposed neural network. 

 

7. Proposed approach 

The range and the reference value of the six inputs data are represented in Table 5. The reference numbers were 

considered close to the mean values. As the first step, Ie is plotted against ρfb while the other input parameters 

have the reference values, as shown in Fig. 7. To account for the effect of other factors on Ie, the correction 

function can be computed from Eq. 17.  
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To draw a curve in Figure 8, reference values are considered for the input parameters except for Af/As and 

Mcr/Ma. For Af/As one of the values specified in the figure and for Mcr/Ma the entire data range is applied as 

input. To determine C(Mcr/Ma), the result obtained Ie from the above neural network divided by the value in the 

case where Mcr/Ma also has a reference value. Another 9 curves are plotted in the figure with the same 

method and various values of Af/As. A similar method was applied to draw C(Mcr/Ma) versus other input 

parameters including Ig, Ef/Es, and Icr (Figs. 9-11). The same method has been utilized to achieve the correction 

factors for the other input parameters. Some of them are exhibited in Figs. 12–15. 

 

 

 

To determine the following equation (18–22), according to 40 curves related to each correction factor, a line 

with the least squared error was drawn and the corresponding equations were presented: 
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Consequently, the effective moment of inertia will be established from Eq. (23) in which, (Ie) curve can be read 

from Fig. 7. 
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8. Neuro-Fuzzy approach 

The neuro-fuzzy model defined in this article has five Gaussian membership functions for each input variable. 

Each membership function represents a language expression for the variable. For example, membership function 

number 1 represents very low values and membership function number 5 represents very high values. Each of 

the above Gaussian functions, also shown in Fig. 16, has two parameters, including the mean value m as well as 

the value of variance v, the details of which can be seen in Table 6.  

 

 

 

In adjusting the structure of the above system (Fig. 17), five fuzzy rules are considered, which will be used to 

estimate the output parameter. Using the data used in the neural network training process, the best neuro-fuzzy 

model was determined, the results of training and test datasets can be seen in Fig. 18. 

 

As shown in Fig. 17, the proposed model has five linear functions. These functions (F1,…, F5), which include a 

set of coefficients for each of the input variables and a constant, are shown in Eq. 24 to 28. The above 

coefficients (Table 7) are determined by the neuro-fuzzy optimization algorithm in the training process of the 

model. 

 
1 1 2 3 4 5 62.13 0.51 1.92 0.99 1.848 1.55 0.9F X X X X X X         (24) 

 
2 1 2 3 4 5 61.97 25.33 0.94 11.74 0.49 15.01 3.33F X X X X X X         (25) 

 
3 1 2 3 4 5 61.75 0.08 0.33 0.6 0.63 2.29 0.58F X X X X X X         (26) 

 
4 1 2 3 4 5 60.06 0.01 0.27 3.53 0.27 0.08 0.17F X X X X X X         (27) 

 
5 1 2 3 4 5 63.89 0.16 0.11 6.13 0.16 0.06 1.63F X X X X X X        (28) 
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Using the number of input variables, the value of each of the linear functions is determined. Then, the value of 

the output variable is estimated by Eq. 29 .It should be noted that the output value obtained by this equation is 

normalized and needs to be converted to its real value by the relation provided in Table 3. 
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The parameter W in the above equation is related to the set of fuzzy rules of the system (five rules for the 

proposed model) whose values can be calculated using Eq. 30 to 34 with consideration of the Gaussian 

membership functions provided in Table 6. 

 
1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6X X X X X XW G G G G G G  (30) 

 
2 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6X X X X X XW G G G G G G  (31) 

 
3 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6X X X X X XW G G G G G G  (32) 

 
4 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6X X X X X XW G G G G G G  (33) 

 
5 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6X X X X X XW G G G G G G  (34) 

 

9. Comparison study 

To verify the proposed ANN and ANFIS models compared with the genetic algorithm method and existing 

models, respectively, Fig. 19 and Fig 20 have been presented. Also, the distribution of error and percentage 

error for various equations is shown in Table 8 and Table 9, respectively. 

 

 

 

At first, the error value of existing and proposed models is calculated from Eq. 35 then the calculating average 

error is presented in Table 10. 
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According to the results of the proposed methods and their comparison with existing methods, it can be seen 

that the use of ANFIS and ANN models have higher accuracy and lower error percentage in estimating the 

effective moment of inertia. The proposed equation using the ANN method reduces the error in the calculation 

of Ie by about 51.22, 17.36, 30.33, and 3.07 percent, compared with the equations proposed by Branson, 

Bischoff, ACI, and Benmokrane, respectively. Also, this error reduction in the proposed equation with ANFIS is 

87.77, 79.28, 82.54, and 75.70 percent respectively. 

10. Conclusions 

A wide number of experimental data for hybrid RC beams was collected. To predict the effective moment of 

inertia using the neural network, six related parameters were considered as network inputs. After investigating 

the performance (R and MSE) of 17 neural networks with various numbers of nodes in the hidden layer, a 

network with the highest performance in the simulation was chosen. According to these correction coefficients 

obtained from the simulated results of the neural network, a general equation was presented to calculate Ie in 

hybrid beams independent of the neural network. The average error of the proposed model is 30%, and more 

than 99% simulated result is within a 60% range of error. A comparison of the results from ANN simulation, 

ANFIS model, and available equations with the experimental data showed that the Soft Computing models have 

high accuracy. The precision of the ANN and ANFIS models was verified by existing experimental data and 

exhibited good agreement. Also, the comparison of two SC models revealed that the ANFIS model is less error 

and more accurate than ANN in predicting Ie in hybrid beams.  
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Figure Caption 

Fig. 1. R-values vs the different number of hidden nodes  

Fig. 2. MSE versus hidden nodes number  

Fig. 3. Scheme of ANN 

Fig. 4. Performance and Training state of ANN 

Fig. 5. Regressions of training, validation, and test data simulated by ANN 

Fig. 6. Contribution of input parameters in target 

Fig. 7. Variation of Ie against ρfb. 

Fig. 8. Factor C (Mcr/Ma) for different (Af/As) values. 

Fig. 9. Factor C (Mcr/Ma) for different Ig values 

Fig. 10. Factor C (Mcr/Ma) for different (Ef/Es) values  

Fig. 11. Factor C (Mcr/Ma) for different Icr values  

Fig. 12. Factor C (Af/As) for different (Mcr/Ma) values  

Fig. 13. Factor C (Af/As) for different Ig values  

Fig. 14. Factor C (Af/As) for different (Ef/Ea) values  

Fig. 15. Factor C (Af/As) for different Icr values  

Fig. 16. Gaussian membership functions for the considered inputs 

Fig. 17. Proposed ANFIS structure 

Fig. 18. Regression plots obtained form ANFIS 

Fig. 19. Comparison of predicted values of Ie between the proposed equations and equation 

using genetic algorithm  

Fig. 20. Comparison of predicted values of Ie between the proposed equations and six 

existing equations  

 

Tables Caption 

Table 1. Experimental studies of hybrid Steel/FRP RC beams 

Table 2. Properties of the experimental data 

Table 3. Scaling equation for parameters 

Table 4. Details of ANN 
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Table 5. The input parameters range and reference values 

Table 6. Gaussian membership function details 

Table 7. Output Functions 

Table 8. The errors range for various existing equations versus the ANN and ANFIS models 

Table 9. The percentage errors for various existing equations versus the ANN and ANFIS model 

Table 10. Comparison of average error of Ie between the proposed equation and four existing models 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 1. R-values vs the different number of hidden nodes  
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Fig. 2. MSE versus hidden nodes number  
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Fig. 3. Scheme of ANN 
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Fig. 4. Performance and Training state of ANN 
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Fig. 5. Regressions of training, validation, and test data simulated by ANN 
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Fig. 6. Contribution of input parameters in target 
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Fig. 7. Variation of Ie against ρfb. 
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Fig. 8. Factor C (Mcr/Ma) for different (Af/As) values. 
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Fig. 9. Factor C (Mcr/Ma) for different Ig values 
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Fig. 10. Factor C (Mcr/Ma) for different (Ef/Es) values  
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Fig. 11. Factor C (Mcr/Ma) for different Icr values  

 

 

 

 

 

 

 

 

 

 

 



 29 

 

Fig. 12. Factor C (Af/As) for different (Mcr/Ma) values  
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Fig. 13. Factor C (Af/As) for different Ig values  
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Fig. 14. Factor C (Af/As) for different (Ef/Ea) values  
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Fig. 15. Factor C (Af/As) for different Icr values  
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Fig. 16. Gaussian membership functions for the considered inputs 
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Fig. 17. Proposed ANFIS structure 
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Fig. 18. Regression plots obtained form ANFIS 
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Fig. 19. Comparison of predicted values of Ie between the proposed equations and equation using genetic algorithm  
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Fig. 20. Comparison of predicted values of Ie between the proposed equations and six existing equations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table1 
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Experimental studies of hybrid Steel/FRP RC beams 

Reference Number of beam specimens Number of data Type of FRP bar* 

Aiello and Ombres  (2002) - [56] 4 29 AFRP 

Qu et al (2009) - [57] 6 46 GFRP 

Leung and Balendran (2003) – [58] 4 6 GFRP 

Almusallam et al (2013) – [59] 2 3 GFRP 

Safan (2013) – [60] 4 4 GFRP 

Yang et al (2011) – [61] 1 1 GFRP 

Refai et al (2015) – [8] 6 33 GFRP 

*AFRP (Aramid Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) 
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Properties of the experimental data 

Parameter Ig (mm
4
) Af/As Mcr/Ma Ef/Es Icr (mm

4
) ρfb Ie-exp (mm

4
) 

Mean 2.71E+8 1.18 0.44 0.23 6.86E+7 0.0036 8.8E+7 

Minimum 6.67E+7 0.25 0.11 0.19 1.57E+7 0.0013 1.25E+7 

Maximum 5.18E+8 2.88 0.99 0.73 1.62E+8 0.0073 3.35E+8 

Standard 

deviation 
1.66E+8 0.66 0.19 0.05 4.46E+7 0.00134 6.93E+7 

Coefficient 

of variation 
0.612 0.564 0.429 0.219 0.65 0.372 0.788 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table3 

Scaling equation for parameters 
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Parameter Scaling equation 

Ig (mm
4
) Ig-s = (0.8) × (Ig- Ig-min)/ (Ig-max- Ig-min) + 0.1 

Af/As (Af/As)s = (0.8) × ( (Af/As)- (Af/As)min)/ ((Af/As)max- (Af/As)min) + 0.1 

Mcr/Ma (Mcr/Ma)s = (0.8) × ( (Mcr/Ma)- (Mcr/Ma)min)/ ((Mcr/Ma)max- (Mcr/Ma)min) + 0.1 

Ef/Es (Ef/Es)s = (0.8) × ( (Ef/Es)- (Ef/Es)min)/ ((Ef/Es)max- (Ef/Es)min) + 0.1 

Icr (mm
4
) Icr-s = (0.8) × (Icr- Icr-min)/ (Icr-max- Icr-min) + 0.1 

ρfb ρfb-s= (0.8) × (ρfb- ρfb-min)/ (ρfb-max- ρfb-min) + 0.1 

Ie-exp (mm
4
) Ie-exp-s = (0.8) × (Ie-exp- Ie-exp-min)/ (Ie-exp-max- Ie-exp-min) + 0.1 
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Details of ANN 

Node 

Input weights 
Layer 

weights 

Bias to 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 
Hidden 

layer 

Output 

layer 

Node 1 1.0586 -1.0264 -1.9345 2.6546 -1.8642 -1.9836 -1.0917 -4.4309 - 

Node 2 -1.2625 2.0084 -1.5379 1.4949 2.4722 -1.9054 0.64216 3.9394 - 

Node 3 -2.9143 -1.1867 0.58662 1.6268 -1.995 2.3412 -0.6328 2.946 - 

Node 4 -1.35 1.489 -1.8677 -1.5295 -1.585 -2.9664 -1.0239 2.2105 - 

Node 5 2.5372 -0.0875 -2.057 -1.2016 0.35133 3.1498 -1.8568 -0.8106 - 

Node 6 0.25862 1.3789 1.7669 -2.1967 -0.1888 -2.995 -1.5746 -0.5444 - 

Node 7 -0.1379 2.4461 0.26625 -0.4596 1.7655 2.8143 1.3585 0.37002 - 

Node 8 -1.0545 -0.0605 2.9446 2.8226 0.15898 -1.5928 -0.1011 -0.1590 - 

Node 9 1.6029 2.1827 -3.1115 0.27195 -1.6601 0.30525 0.87172 -0.4882 - 

Node 10 1.9747 -1.9675 -0.3196 1.3692 1.7427 2.9141 0.98504 1.1482 - 

Node 11 -0.0468 2.1972 0.13591 1.1114 -2.6795 2.7945 0.96851 1.1291 - 

Node 12 -2.1131 -2.6384 1.1274 1.1272 1.3603 -1.8536 -1.8381 0.7921 - 

Node 13 -0.5279 -0.3021 2.724 2.9029 1.2099 1.3633 -2.6271 0.80781 - 

Node 14 0.0365 -2.7636 -1.7993 0.91934 -1.4456 2.4717 0.1776 3.0041 - 

Node 15 -0.9784 1.9368 -0.7579 -1.8431 -1.362 2.8226 -0.2872 -3.9263 - 

Node 16 -0.1474 -1.7758 -2.8125 0.3824 -1.9395 -2.2417 0.0681 -4.4138 - 

Output - - - - - - - - -0.2269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

The input parameters range and reference values 

Input parameters Minimum Maximum Reference 

Ig(mm
4
) 6.67E+7 5.18E+8 2.7E+8 

Af/As 0.25 2.88 1.2 
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Mcr/Ma 0.11 0.99 0.40 

Ef/Es 0.19 0.73 0.45 

Icr(mm
4
) 1.57E+7 1.62E+8 6.9E+7 

ρfb 0.0013 0.0073 0.004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Gaussian membership function details 

Input Parameter G1 G2 G3 G 4 G5 

X1 v
 

0.0991 
0. 

0905 
0.1769 0.1075 0.1155 
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m 0.4045 0.4078 0.8869 0.3711 0.1633 

X2 
v 0.0937 0.0954 0.1111 0.0880 0.0909 

m 0.2060 0.1333 0.5358 0.4446 0.3482 

X3 
v 0.0891 0.0830 0.0858 0.0816 0.1131 

m 0.2501 0.2850 0.4449 0.3473 0.5661 

X4 
v 0.02465 0.0203 0.01689 0.02401 0.01897 

m 0.1368 0.1287 0.1907 0.1236 0.1865 

X5 
v 0.1133 0.1930 0.1085 0.1076 0.1194 

m 0.5207 0.8828 0.4896 0.2751 0.1331 

X6 
v 0.0723 0.0906 0.0563 0.0796 0.1350 

m 0.5041 0.6325 0.4078 0.5381 0.1518 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Output Functions 

Input F1 F2 F3 F4 F 5 

X1 -2.1300 -1.9720 -1.7470 -0.0629 3.8920 
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X2 -0.5103 -25.3300 0.0860 0.0172 -0.1555 

X3 1.9180 0.9402 0.3254 0.2661 0.1091 

X4 0.9948 -11.7400 -0.6004 3.5290 6.1320 

X5 1.8480 -0.4929 0.6282 -0.2726 -0.1599 

X6 1.5500 15.0100 2.2860 -0.0850 -0.0603 

Constant -0.8997 -3.3320 0.5812 -0.1729 -1.6260 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

The errors range for various existing equations versus the ANN and ANFIS models 
Range of error 

(%) Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model 

±15 16 33 25 34 31 107 

±30 37 74 61 85 63 121 



 45 

±45 81 107 104 111 92 122 

±60 110 117 119 121 114 122 

±75 122 122 122 122 122 122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9 

The percentage errors for various existing equations versus the ANN and ANFIS models 

Range of error 
(%) 

Branson 
(%) 

Bischoff 
(%) 

ACI (%) 
ANN model 

(%) 
Benmokrane et al. 

(%) 

ANFIS model 
(%) 
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±15 13.11 27.05 20.49 27.87 25.41 87.70 

±30 30.33 60.66 50 69.67 51.64 99.18 

±45 66.39 87.70 85.25 90.98 75.41 100 

±60 90.16 95.90 97.54 99.18 93.44 100 

±75 100 100 100 100 100 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10 
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Comparison of average error of Ie between the proposed equation and four existing models  

Average 
error  

Branson Bischoff ACI ANN model Benmokrane et al. ANFIS model 

62.08 34.64 43.46 30.28 31.24 7.59 

 

 


