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Due to their lightweight, new classes of materials, including aluminum-
based Metal Matrix Composites (MMCs), have been popular in recent years in various
industries, including aircraft and automobiles.
availability, aluminum alloy (LM13) MMCs were developed using Rice Husk Ash (RHA)
as reinforcement in this study rather than traditional reinforcement, and composites were
prepared using the stir casting technique. LM13-15wt.%RHA composite was chosen for
the present machining study. The Central Composite Design (CCD) with three input

Because of its low cost and ease of

parameters at three levels based on the best outcomes was adopted for this experimental
study. A mathematical model was developed to predict the machining responses of Material
Removal Rate (MRR) and surface roughness. The most significant variables were evaluated
using ANOVA. The main and interactive effects of the input variables on the predicted
responses are determined. The experimental and predicted values are nearly identical,
indicating that the developed models can accurately predict responses. The optimal value
of the turning parameters was obtained from desirability analysis. The obtained desirability
value for turning parameters is 0.863, and for output response, the desirability value
for surface roughness and MRR is 0.71663 and 0.747491, respectively, and the combined

desirability is 0.731898.

(© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The emergence of new composite materials is con-
tinually evolving the engineering market globally and
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expanding their use in most engineering applications
such as cylinder block linear, automotive pistons,
calipers, bicycle frames, etc. Composite materials are
currently piquing the interest of researchers owing to
their admirable mechanical attributes. Metal Matrix
Composites (MMCs) have excellent impact resistance,
tensile strength, and wear resistance. Composites
are more extensively used than traditional materials
because of their adaptability in extending mechanical
properties [1]. Aluminum matrix composites have
developed a firm place in the lightweight materials
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category due to a wide range of desirable properties,
including low density, good wear resistance, and corro-
sion resistance [2,3].

Many researchers and authors [4-7] have worked
and reported the considerable benefits of AI-MMC and
MMC compared to well-known conventional engineer-
ing materials. Due to their immense availability and
cheap nature, agricultural products and by-products
have been explored as noteworthy reinforcement con-
stituents. As a result, several researchers have looked
at various farming wastes and discovered they are high
in silicon and magnesium oxide elements, among other
things [8]. Coconut shell, corn cob, groundnut shell,
bagasse, and rice husk are some of the well-known agro
wastes.

It was demonstrated by several researchers that
conventional agricultural waste such as rice husk,
coconut shell ash, fly ash, corn cob ash, red mud,
and other agricultural wastes could all be employed
as potential enhancers for aluminum-based composites.
Ash from rice husks belongs to this category, and
it’s a waste by-product from agriculture that’s readily
available. This waste product is created from rice
husks and is widely available as an agricultural waste
by-product. As a result, researchers are working to
discover ways and means to utilize this agricultural
waste effectively. According to current research, Rice
Husk Ash (RHA) includes between 85 and 90% amor-
phous silica [9]. This silica converts into cristobalite,
which is crystalline in nature when heated. However,
if the heating temperature is controlled in the fur-
nace, amorphous silica may occur. This manufactured
material usually has a high surface area, a fine size,
and a high reactivity. Consequently, micro-silica can
be used to make advanced materials such as SiC,
elemental Si, Mg,Si, and SizNy [10]. As a result, it is
crucial to explore ways to make aluminum-reinforced
RHA composite materials for numerous structural and
engineering utilisations such as automotive, aerospace,
and sporting goods. Hence, studying such mate-
rials’ machining has become vital and highly com-
pelling [11].

The complications of machining MMCs have been
examined in further depth from a variety of perspec-
tives. The reinforcing phase’s shape, volume fraction,
and distribution, as well as the matrix traits, are
the utmost indispensable aspects influencing the entire
machining process, according to the existing research
on particulate MMCs [12]. One of the most crucial con-
siderations that affect composites’ practical application
is their machined surface quality. Several researchers

have experimented with MMC machining. Sahin et
al. [13] have stated the dominant influence of input
speed on surface roughness. Parameters like cutting
speed, depth of cut, feed, cutting fluid, and rake angle
influence chip shape, forces, wear, Material Removal
Rate (MRR), and surface roughness, according to
Hocheng et al. [14].

When machining MMC, the main problem is inor-
dinately excessive tool wear; ceramic fibers or particles
produce an abrasive effect. Thus, materials with excep-
tional abrasion resistance are frequently endorsed [15].
High Speed Steel (HSS) tools are insufficient for rough
machining; cemented carbide tools are used for rough
machining, and Polycrystalline Diamond (PCD) tools
are used for finish machining [16]. Because PCD tools
are expensive, it is required to conduct fundamental
machinability studies to identify machining parameters
for carbide tools that will result in high output at a
reasonable cost.

Several investigations on AI-MMC machining sug-
gest that maximizing MRR and reducing surface rough-
ness is challenging and must be managed. The preem-
inent intent of this investigation is to understand how
machining parameters affect the MRR and surface fin-
ish of L13-RHA MMC in the process of turning. During
turning L13-RHA composites under roughing condi-
tions, three primary cutting parameters were selected
(cutting speed, feed rate, and cut depth) and tuned to
maximize MRR and minimize surface roughness. For
Central Composite Design (CCD), ANOVA was used to
determine the values of cutting parameters that opti-
mize these response variables. For predicting surface
roughness, a mathematical model was created using
Response Surface Methodology (RSM). Measured and
predicted values are highly consistent, demonstrating
the model’s efficacy in predicting surface roughness on
the machining of L13-RHA composites.

2. Materials and methods

2.1. Materials

Aluminum alloy LM13 was selected as the matrix
material, and RHA powder with a mesh size of less than
120 pm was chosen as the reinforcement. According
to Alaneme’s directions [17], RHA was synthesized by
thoroughly burning rice husks, thermal processing, and
sieving afterward. The X-Ray Fluorescence (XRF)
spectroscopy analysis was carried out. As determined
by XRF, RHA’s chemical composition is presented
in Table 1. The primary elements of the ash were
confirmed by XRF analysis to be SiO,, Al,Og3, and

Table 1. The chemical composition of RHA.

Element SiO, Al;03 Fez03

CI‘203

Ca0O MgO K20 Others

Wt.% 38.12 26.52 17.38

6.34 1.59 1.61 0.40

Remaining
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FeyO3. The inclusion of hard substances (SiOs, Al,Os,
and FeyO3) in the ash indicates that it contains hard
substances [17,18]. Other oxides (NayO, KO, and
MnO) were also detected in trace amounts. The
presence of hard components indicates that RHA could
be employed as a particle-reinforcing material.

2.2. Methods

The materials and casting technique are explained
in detail elsewhere [19]. Stir casting was used to
produce composites containing 0, 3, 6, 9, 12, and
15wt.%RHA. At 750°C, the aluminum alloy LM13
was molten. A graphite stirrer was used to stir
this melt at a speed of 450 rpm. During stirring,
Particles of the preheated RHA were slowly added to
the melt in the form of pellets. Hexachloroethane
(CoClg) tablets were included to degas the molten
metal and eliminate the entrapped gases and other
impurities. After completing the RHA particle mixing,
the melt was put into the preheated mold and allowed
to solidify. The hardness of the material was measured
using the ASTM E10 standard on the manufactured
specimens by Brinell hardness equipment (a Wilson
instruments hardness tester). In addition, mechanical
characteristics were assessed using UTM in accordance
with ASTM E8. The Scanning Electron Microscope
(SEM) was used to verify that the reinforcement in the
composite was distributed uniformly.

3. Response Surface Methodology (RSM)

A statistical and mathematical tool for examining
and assessing the behavior of a data set since the fit
of a polynomial equation is known as the response
surface technique. When numerous variables influence
a response or a collection of responses of concern, this
strategy can be useful. The second-order polynomial
model was created to link the selected parameters to
the answer, Eq. (1):

7 7
Yy =ag+ Z a;x; + Zaiifﬂz + Zan‘xiiﬂj + a. (1)
k—2

K-1

The coefficients ai of Eq. (1) are determined by
least square fitting of higher order response surface
model for controllable process parameters (x;) values,
and using this model, response optimization can be
carried out.

The linear, higher-order, and interaction effects
are represented by the second, third, and fourth terms,
respectively, in the constructed model [20,21]. The
CCD under RSM was preferred in the Design-Expert
8.0 statistical software for choosing the set of experi-
ments and the objective. The tally of the experiments
chosen is determined by the count of parameters for
each test. DBased on the literature survey [22,23],
the three parameters selected for the trials were the

Table 2. Machining parameter factors and their levels.

Level-1 Level-2 Level-3
Parameters -1 0 +1
Cutting speed (RPM) 750 1000 1250
Feed (mm/rev) 0.1 0.2 0.3
Depth of cut (mm) 0.5 1 1.5

cutting speed, feed, and depth of cut, with MRR
and surface roughness being the response. The three
parameters are varied over the ranges of 750-1250
rpm, 0.1-0.2 m/rev, and 0.1-0.3 mm, respectively, and
20 experiments for LM13-15wt.%RHA composite have
been generated, as shown in Table 2.

3.1. Central Composite Design (CCD)

CCD can be implemented in response surface tech-
nique to generate a second-order (quadratic) model
for the response variable, obviating the need for a
full three-level factorial design [24]. Most statistical
software applications support three types of CCD: face-
cantered, rotatable, and inscribed. To obtain adequate
results, the specified experiment is carried out, and
linear regression might be performed repeatedly [25].

3.2. Experimental designs

RSM is an excellent tool for enhancing, refining and
developing quality. The number of trials in this study
was calculated using RSM. The CCD response section
is a full-factorial design with most of the parameter
sequences at three stages (high 1, medium 1, and low
—1). The CCDs have twenty experimental values at
three input elements, and the output responses are
calculated when the trials are completed. Table 3
lists the responses which have been recorded. Fitted
summary output from the Design-Expert 8.0 program
indicates a statistically significant endorsement for the
quadratic model for further evaluation.

4. Result and discussion

4.1. Hardness test

Figure 1 presents the alteration in hardness with
varying wt.% of RHA reinforcement. The hardness
of the composite augments as the RHA content is
enhanced from Owt.% to 15wt.%. The formation of
hard-ceramic phases in the ductile matrix phase, such
as Al; O3, SiC, Fe; O3, and SiO; is responsible for such
a large increase in hardness. With augmentation in
RHA content, the proportion of brittle and hard phases
in the matrix increases. The differing Coeflicients of
Thermal Expansion (CTE) of the brittle and hard
reinforcement and the ductile and soft cause the matrix
and reinforcement to become elastic and plastically
incompatible, resulting in increased hardness. Similar
findings were reported by Rajan et al. [26].
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Table 3. Experimental designs and results.
Exp. Run Cutting speed Feed Depth of Surface roughness MRR
run order (RPM) (mm/rev) cut (mm) (pm) (mm?® /s)
1 9 750 0.1 0.1 1.97 1005
2 8 1250 0.1 0.1 2.37 1260
3 2 750 0.2 0.1 2.89 1517
4 6 1250 0.2 0.1 2.98 1080
5 7 750 0.1 0.3 2.35 1548
6 12 1250 0.1 0.3 3.29 1910
7 1 750 0.2 0.3 2.78 2020
8 4 1250 0.2 0.3 3.42 1490
9 3 1000 0.15 0.2 2.63 1310
10 10 1000 0.15 0.2 2.61 1555
11 5 1000 0.15 0.2 2.65 1550
12 11 1000 0.15 0.2 2.65 1665
13 17 750 0.15 0.2 2.07 1660
14 13 1250 0.15 0.2 2.67 1585
15 20 1000 0.1 0.2 2.67 1625
16 16 1000 0.2 0.2 3.19 1380
17 15 1000 0.15 0.1 2.52 1505
18 18 1000 0.15 0.3 2.93 1600
19 14 1000 0.15 0.2 2.62 1590
20 19 1000 0.15 0.2 2.62 1680
100 interaction decreases while the interaction between the
35 reinforcement particles with poor wettability increases,
o 90 providing a cushioning effect with the matrix particles
@ 85 and reducing hardness [27].
2 80
_% 75 4.2. Tensile and yield strength
g Figures 2 and 3 demonstrate the tensile strength and
T 70 . .. . . . .
yield variations of composites with varied RHA particle
65 wt.%. The ultimate tensile strength of composites
60 = = = = = = = improves to a higher value as RHA is in.creased from
S 2; z; s e S« z« 0% to 15%. The aforementioned properties presented
= g 3= 3= = Z g Z g maximum values of 176 MPa and 142 MPa at 15wt.% of
= H = 3 a3 4 RHA. The noteworthy performance of the composites
% of RHA

Figure 1. Hardness of LM13-RHA composite.

Hardness exhibits a maximum value at 15wt.% of
RHA and further declines with increased RHA content.
Because RHA has a low density, it takes up more
space in the composite. The amount of reinforcement
trapped in the matrix enhances with an increase in % of
reinforcement. Consequently, the reinforcement-matrix

in terms of tensile strength can be ascribed to the
RHA particles, which act as impediments to dislocation
motion and carry the imposed stress in a comparable
pattern [28]. The hard RHA particles also hinder the
dislocation front from moving forward, thus strength-
ening the matrix. The considerable enhancement in
tensile strength is attributed to the enhanced matrix
and higher reinforcement adhesion. However, as the
RHA % increased to 15wt.%, the tensile strength was
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Figure 2. Tensile strength of LM13-RHA composite.
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Figure 3. Yield strength of LM13-RHA composite.

reduced owing to agglomeration and segregation of
RHA. Similar results were found by Aigbodion and
Hassan [29].

4.3. Microstructural analysis

Figure 4 depicts the microstructure of the LM/RHA
composites. The microstructure significantly demon-
strates the homogeneous distribution of RHA grains
and microscopic discontinuities. The ceramic phase
was dark, whereas the metal phase was white, and
the microstructures of the composites showed excellent
persistence of RHA particles. However, there has
been aggregation and segregation of RHA particles
reinforced with LM13 alloy with 18% RHA particles.
These structures match the findings of Aigbodion
and Hassan [29] of co-continuous interlaced phases
in aluminum alumina needles. These structures are
consistent with other researchers’ findings [23-26]. The
inclusion of a significant of silicon and iron in the
matrix phase confirmed that the composite elements
examined formed the required bonding. The structure
exhibits a eutectic phase in an aluminum matrix
containing FesSi, AlgFe, etc. The interfaces between
the matrix and the particles had an adhesive quality of
element bonding because they were free of intermediate

10pm  EHT = 20.00 kV
WD = 7.1 mm

Signal A = SE2 ZEISS
Mag = 2.00 KX

()

Agglomeration of

RHA P.nmli
\

L0pum EHT = 20 kV  Signal A = Ae3 Date: 25 Mar 2015 /e
WD = 9.2 mm Mag = 2.00 KX Time: 14:28:48

(b)

Figure 4. SEM image (a) (LM/12% RHA and (b)
LM/15% RHA composite.

phases and precipitates. Furthermore, they had a high
degree of homogeneity (no microcracks) and bonding
strength. It agrees with Lakshmikanthan and Prabu
findings [30].

4.4. Selection of material for turning
operation

It is evident from experimental analysis that LM13-
15wt.% shows higher tensile strength and hardness
compared to LM13 alloy, and other combinations were
investigated. The following factors contributed to an
increase in the hardness of LM13-15wt.%RHA: (a) high
hardness and density of RHA particles, (b) homoge-
neous distribution of RHA in the aluminum matrix and
(c) a large amount of RHA (ceramic) creates additional
dislocations, increasing hardness. The enhancement
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Table 4. ANOVA for surface roughness.

Source Sum of squares df Mean square F-value p-value (Prob > F)

Block 0.014 1 0.014

Model 2.49 9 0.28 600.8 < 0.0001 Significant
Aspeed 0.71 1 0.71 1549.67 < 0.0001

B-feed 0.68 1 0.68 1480.8 < 0.0001

C-depth of cut 0.42 1 0.42 904.64 < 0.0001

AB 0.047 1 0.047 101.11 < 0.0001

AC 0.15 1 0.15 322.83 < 0.0001

BD 0.12 1 0.12 255.66 < 0.0001

A? 0.19 1 0.19 405.82 < 0.0001

B? 0.24 1 0.24 512.18 < 0.0001

c? 0.022 1 0.022 48.61 < 0.0001

Residual 0.000414 9 0.000460

Lack of fit 0.000304 5 0.000608 2.21 0.231 Not significant
Pure error 0.000110 4 0.000275

Cor total 2.51 19

R-squared 0.998338

Adj R-squared 0.996677

Pred R-squared 0.988902

Adeq precision 92.03817

in tensile strength can be ascribed to the LM13
matrix’s homogeneous distribution of reinforcements,
which minimizes porosity inside the composites and
helps to promote uniform load distribution. Based
on the experimental analysis, LM13-15wt.%RHA com-
posite specimen got optimum mechanical properties.
Therefore, LM13-15wt.%RHA is taken for further ma-
chining studies. The turning operation is performed
on the selected specimen, and the process parameter
is optimized using a multi-objective optimization by
RSM.

4.5. Analysis of developed quadratic model
The ANOVA study was carried out to evaluate the
created model with 95% confidence intervals and has
been reported in Tables 4 and 5. Regression model
significance testing, individual model coefficient signif-
icance testing, and incompatibility testing are all per-
formed with the statistical tool. The regression model
automatically eliminates insignificant model terms.
The acceptable reliability measures R?, adjusted R?,
and predicted R? are shown in Table 4 and 5. The
quality of fit of the models is measured using the R?
degree of confidence, which assesses how much variance
in measured predicted values can be attributed to
controllable factors. All R? regression equations are
essentially equal to 1 in this case. [31].

Tables 4 and 5 highlight the ANOVA for surface
roughness and MRR. Since the ‘p’ (‘Prob. > F”) result
is less than 0.05 (i.e., a = 0.05, or 95% confidence),
the created models are statistically significant, which is
desired because it indicates that the model terms have
a substantial influence on the response. The degree of
compatibility is measured by the ratio of variance to
overall variation (R?) [32]. The prediction coefficients
are the term coined for this finding in the ANOVA
tables.

A higher R? value indicates a better fit between
the model and the data. R? values for surface
roughness and MRR are 0.998 and 0.998, which are
close to unity, demonstrating the model is adequate
[33,34]. The following are the final quadratic response
equations for MRR and surface roughness.

Surface Roughness (SR) = +2.63 4+ (0.27 x A)
+(0.26 x B) + (0.20 x C) — (0.076 x A x B)
+(0.14x AxC)—(0.12x BxC)

—(0.26 x 4%) + (0.30 x B?) + (0.091 x C?), (2)

Metal Removal Rate (MRR) = + 1568.68

+(70.50 x A) — (153.00 x B) — (22.50 x C)
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Table 5. ANOVA for Metal Removal Rate (MRR).

1993

Source Sum of squares df Mean square F-value p-value (Prob > F)

Block 35191.88 1 35191.88

Model 1.05E+06 9 1.17E+05 610.79 < 0.0001 Significant
A-speed 49702.5 1 49702.5 259.91 < 0.0001

B-feed 2.34E+05 1 2.34E+05 1224.12 < 0.0001

C-depth of cut 5062.5 1 5062.5 26.47 0.0006

AB 1.01E+405 1 1.01E+405 529.46 < 0.0001

AC 1.54E4-05 1 1.54E4-05 805.37 < 0.0001

BC 4.85E+405 1 4.85E+05 2536.77 < 0.0001

A? 754.41 1 754.41 3.95 0.0783

B? 12877.77 1 12877.77 67.34 < 0.0001

Cc? 470.2 1 470.2 2.46 0.1513

Residual 1721.09 9 191.23

Lack of fit 815.59 5 163.12 0.72 0.6421 Not significant
Pure error 905.5 4 226.38

Cor total 1.09E4-06 19

R-squared 0.9984

Adj R-squared 0.9967

Pred R-squared 0.9899

Adeq Precision 99.799

+(112.50 x A x B) — (138.75 x A x C)
—(246.25 x B x C) — (16.76 x A?)

—(69.26 x B?) + (13.24 x C?). (3)

4.6. Restdual plot

Residual analysis has also been used as a major analyt-
ical tool to assess the adequacy of results. Figure 5(a)-
(d) shows a normal probability map of residuals for
surface roughness and MRR. The straight line connects
all the data points, indicating a strong connection
between the projected model and experimental values.
As a result, the data is disseminated normally. Figure
5(a)—(d) demonstrates this. It aids in detecting a
value, or a group of values, that the model is unable
to predict. The figure indicates that most values are
concentrated on the 45° line; hence, the model assump-
tions are correct [35]. As a result, the created second-
order mathematical model may be used to estimate
surface roughness while machining LM13-15wt.%RHA
composites effectively.

4.7. Output responses (MRR and surface
roughness) of process parameters

Figure 6(a)—(c) illustrates the surface roughness and

Figure 7(a)—(c) depicts the MRR being recorded as

a function of process parameters such as speed and
feed, with the third variable being the depth of cut,
kept constant in the center. Upon increased cutting
speed, surface roughness diminished, and MRR in-
creased simultaneously. The graph shows that the
surface roughness at intermediate cutting speed ob-
tained better surface roughness. With an increase in
feed rate, surface roughness increases significantly. If
the feed rate is raised during machining, the normal
loads on the tool will increase as well, generating
heat that will increase the surface roughness [36].
Figure 6(a)—(c) demonstrates a 3-D surface graph, and
Figure 7(a)—(c) illustrates a 3-D MRR plot for the
effect of cutting speed on cut depth when the feed
is kept at an intermediate level. In the machining
of LM13/RHA composites, increasing the depth of
cut has no discernible effect on surface roughness,
whereas MRR increases. The better surface roughness
could only be attained at the maximum level of depth
of cut, as shown in Figure 6. It could be due to
material inhomogeneity, in-house fabrication, machine
tool setup, cutting tool use, machine tool vibration,
and other factors [37].

4.8. Deswrability analysis
The desirability of output parameters is depicted in



1994 P. Lakshmikanthan et al./Scientia Iranica, Transactions B: Mechanical Engineering 30 (2023) 1987-2000

Normal plot of residuals

Normal probability (%)
ot
o
By

T
-3.00 -2.00

T T
-1.00 0.00 1.00 2.00 3.00

Internally studentized residuals

()

Normal plot of residuals

Normal probability (%)
o
o
|
i}

T T T T

T T
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

Internally studentized residuals

(c)

Predicted vs. actual

3.50

3.00

2.50

Predicted

2.00+

1.50 4

Actual

(b)

Predicted vs. actual

2200 4

2000 —

1800

1600

Predicted

1400

1200

1000 —

T T T T T T T
1000 1200 1400 1600 1800 2000 2200

Actual

(d)

Figure 5. (a) Normal probability plot, (b) predicted vs. actual plot for surface roughness, (c) normal probability plot,

and (d) predicted vs. actual plot for MRR.

graphs of the ramp function and the bar chart shown
in Figure 8(a) and (b). The process parameters or
response analysis for that response characteristic is
represented by the pointer on each ramp. The size of
the pointer indicates how valuable it is. A regression
ramp function was generated among the minimal value
and the objective or the maximum value and the
objective. Since the weight for every parameter was
assigned to one, the total desirability function of the
responses is represented by a bar chart. Desirability
ranges from 0 to 1, depending on how close the response
comes to hitting the target. The graph demonstrates
how each parameter fits the requirement, with values
around one regarded as good [38].

The optimal value of the turning parameters was
obtained from desirability analysis and is as follows:
cutting speed of 750 rpm, feed 0.1 mm /rev, and depth
of cut 0.3 mm. A higher level of lower speed, lower feed,
and deeper cut minimizes surface roughness and max-
imises MRR for the produced composite. The obtained
desirability value for all turning parameters is 0.863,
and for output response, the value of desirability for
surface roughness is 0.71663; for MRR, it is 0.747491,
and combined desirability is 0.731898.

4.9. Validation of experiments

Validation experiments are used to validate the pa-
rameters of the model and optimize condition find-
ings. The validation experiment results are shown in
Figure 9. Validation tests were carried out at ideal
levels under three conditions (std run 5, 10, and 8,
as in Table 3). Based on the study of Figure 9, it
can be determined the generated RSM model has a
high degree of agreement with experimental results. In
addition, the ideal cutting condition minimizes surface
roughness and MRR compared to the other studied
cutting conditions.

4.10. Sensitivity analysis

Sengitivity analysis is a critical process for identifying
and evaluating critical components based on their
importance. Model validation is comparing the pre-
dicted outcome to the measured data. This study can
determine which parameters require the most accurate
measure and which input variables significantly impact
model outputs [39]. The partial derivative of a design
empirical optimization problem to its variables reflects
the sensitivity of a function to a design variable in
mathematics. The sensitivity equations for cutting
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Figure 6. 3D surface plot for surface roughness.

speed are obtained by differentiating Eqs. (4) to (9)
with respect to cutting speed. The letter E stands for
sensitivity.

6612“ = 40.27 — (0.076 x B) + (0.14 x C)

—(0.52 x A), (4)
0Ra _ +0.26 — (0.076 x A) — (0.12 x C)
6B

+(0.60 x B), (5)
0Ra _ +0.20 + (0.14 x A) — (0.12 x B)
6C

+(0.182 x C), (6)
M
SMRR 5fR = 470.50 + (112.50 x B) — (138.75 x C)

—33.52 x A), (7)

M
OMRR 5§R = —153.00 + (11250 x A) — (246.25 x C)

—(138.52 x B), (8)

OMRR
50 = —22.50 + (138.75 x A) — (246.25 x B)

—(26.48 x C). (9)

The sensitivity Eqs. (4)—(9) represent the sensi-
tivity of surface roughness and MRR for cutting speed,
feed, and depth of cut, respectively. This research
aims to anticipate the tendency of surface roughness
and MRR owing to changes in machining process
parameters. A positive sensitivity number shows that
increasing design parameters leads to a higher objective
function, while a negative value implies the contrary.
Table 6 and Figure 10(a) and (b) show the sensitivity
of surface roughness and MRR derived from Eqs. (4)-
(9). When the cutting speed is increased, even a slight
change in the cutting speed enables huge changes in
the MRR and surface roughness. The results show that
cutting speed has a greater impact on MRR and surface
roughness.

5. Conclusion

The following conclusions are derived from the findings
of this research: The LMI13-RHA composites are
successfully manufactured using the stir-casting pellet
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Figure 7. 3D surface plot for MRR.

method by varying the wt.% of Rice Husk Ash (RHA). of a significant amount of RHA in the matrix phase con-
In addition to reinforcement, the tensile strength, yield firmed that the composite elements have good bonding
strength, and hardness values increase. The inclusion strength and a high degree of homogeneity, which is

Table 6. Surface roughness and MRR sensitivities of processes parameters (feed (mm/rev) = 0.15).

Depth of Cutting speed

Sensitivity
cut (mm) (RPM)
C A 6R, 6Rq  6Rg S§MRR SMRR  6MRR
5A 6B §C 64 6B §C
0.1 750 0.65 0.46 0.24 242.77 -19.25 89.77
1000 1.46 0.38 0.38 209.25 93.25 —48.98
1250 -0.39 0.30 0.52 175.73 205.76  —187.73
0.2 750 0.79 0.34 0.06 104.02  -265.50 116.25
1000 0.27 0.26 0.20 70.50 -153.00  —22.50
1250 0.34 0.18 0.34 36.98 -40.50  -161.25
0.3 750 0.65 0.22 -0.12 -34.73 -511.76 142.73
1000 0.41 0.14 0.02 —68.25  —399.25 3.98

1250 -0.11 0.06 0.16 -101.77 -286.76 -134.77
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Figure 8. Sensitivity plot for (a) SR and (b) MRR.

confirmed by Scanning Electron Microscope (SEM)
analysis. The structure exhibits a eutectic phase in an
aluminum matrix containing Fe3Si, AlgFe, etc. To cre-
ate superior requisite qualities, RHA addition should
be between 10-15% for excellent service performances
of this alloy. Based on the experimental analysis
LM13-15wt.%RHA composite specimen got optimum
mechanical properties. Therefore, LM13-15wt.%RHA
has been considered for machining studies.

Using response surface methods, a functional
relation is established between the output response
and cutting parameters. Within the parameters in-
vestigated, the empirical relationship developed can
identify Material Removal Rate (MRR) and surface
roughness in the machining of LM13-15wt.%RHA
composite. ANOVA results and validation experi-

ments have demonstrated that mathematical models
of experiments and predicted values of responses are
close to those measured experimentally with a 95%
confidence interval. A desirability-based method is
used to optimize cutting parameters for the machining
of composite. Within the criteria analyzed, the ideal
settings minimize surface roughness and maximize
MRR in composite machining. A sensitivity analysis
was performed, and it was found that cutting speed
significantly impacts the responses studied. Based on
the findings, LM13-RHA composites have proven to
be a promising material where the lightweight, high
strength, and hardness, with low machining costs, are
primary requirements; examples of real-world applica-
tions could be in pistons, liners, calipers, and brake
rotors.
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