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Abstract. The main objective of this study is to investigate the vibration behavior of soft
magnetoelastic plates mounted close to the rectangular conductors conducting current that
can be e�ciently applicable in structures. New relationships are derived for electromagnetic
interaction forces with magnetoelastic plates using the general form of Maxwell's equations
and Lorentz forces. Based on von-K�am�an strain-displacement relations and Hamilton's
principle, nonlinear di�erential equations are further derived for the plate through classical
�rst-order shear deformation theory. This research numerically investigates how di�erent
parameters a�ect the resonance features of these plates by discretizing the nonlinear
equations based on Galerkin method. The obtained results demonstrate that the intensity
of the magnetic �eld and electric current profoundly a�ects the vibration behavior of the
plates. Through these e�ects, loss of energy will happen in the plate which in turn results
in a decrease in the oscillation amplitude over time.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In recent decades, there has been a signi�cant surge in
the construction of structures using ferromagnetic and
magnetoelastic materials in modern engineering [1{3].
These structures include beams, plates, and structures
that can be modeled as beams or plates. Due to their
wide variety of applications, these types of structures
are usually placed in di�erent environments and under
di�erent thermal, electrical, and magnetic loads [4{6].
Therefore, study of the mechanical behavior of these
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structures under a variety of loads signi�cantly comes
to the fore [7,8].

In order to analyze the dynamic response of
the magnetoelastic plates, simpli�ed assumptions are
usually taken into account due to the interaction be-
tween the structure and magnetic �eld [9{11]. In [12],
the linear mathematical equations was derived that
governed the distribution of the magnetic forces and
moments of a clamped plate located in a magnetic �eld.
In another study [13], the impact of magnetic �elds
on the vibration behavior of plates was experimentally
investigated. It was demonstrated that by excessing
the intensity of the magnetic �eld applied to the
magnetoelastic plate, the oscillation frequency of the
plate would be reduced. Hasanyan et al. [14] studied
the buckling and post-buckling of magnetoelastic plates
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conducting electricity. Xue et al. [15] studied the
nonlinear vibration of a magnetoelastic rectangular
plate under the e�ect of magnetic �eld coupled with
harmonic mechanical load. The bending deformation
of a thin conductive plate exposed to the magnetic
�eld was investigated in [16]. In [17], the nonlinear
magnetoelastic dynamic equations of a shell as well
as the electro-dynamic equations and expressions of
the electro-magnetic forces were presented based on
the Maxwell equations. Magnetic-structure coupling
dynamic model of a ferromagnetic plate parallel mov-
ing in an air-gap magnetic �eld was investigated by
Hu et al. [18]. The magnetic potential of the air-
gap magnetic �eld was determined by the magnetic
boundary conditions and separation of variables. Based
on the magnetization force model and Lorentz force
of ferromagnetic thin-walled structures as well as the
electromagnetic constitutive relations and boundary
conditions, a calculation model was established for the
electromagnetic force of a soft ferromagnetic thin plate
moving in an air-gap magnetic �eld.

Murodillayevich et al. [19] proposed a mathemat-
ical model and computational algorithm to simulate
the vibration processes of thin magnetoelastic plates
with complex shapes. Further, Hu and Xu [20] carried
out an analysis of magnetoelastic coupling natural
oscillations of annular plates in an induced non-uniform
magnetic �eld. They derived the relevant expressions
for the magnetic �eld, electromagnetic force, and
torque acting on the plate based on the electromagnetic
theory. They �nally obtained an analytical second-
approximation solution using multiple scales followed
by the expressions for the �rst three nondimensional
natural frequencies of the plate. Xu et al. [21] studied
the magnetoelastic nonlinear free vibration of thin con-
ductive annular plates under a nonuniform magnetic
�eld generated by a long wire carrying current. Their
results indicated that with an increase in the current,
the natural frequency would be notably enhanced and
then stabilized in the inner-clamped and out-clamped
boundaries; however, it would be reduced and stabi-
lized in the inner-simple and out-simple boundaries.
Vlasov et al. [22] studied the nonlinear precession of
the second-order magnetization in a magnetoelastic
plate. Employing a model of potential, they developed
a parametric portrait for magnetization and elastic
displacement. An analytical study by Pourreza et
al. [23] examined the buckling behavior of graphene
nanosheets and their nonlinear vibrations in a magnetic
�eld. Wang and Shih [24] investigated the vibration of
a cracked rectangular plate subject to an in-plane force
and a transverse magnetic �eld and supported at all its
edges. In [25], Euler-Bernoulli approach was utilized
to investigate the vibration of a ferromagnetic beam
under a 3D magnetic �eld. In addition, the impact
of the intensity and angle of the magnetic �eld on

the system frequency was investigated. K�edzia et al.
[26] numerically studied the vibration of polyethylene
rectangular plates under the e�ect of magnetic forces.
In one of the most recent studies in this �eld, Zhang
et al. [27] used an analytical method to investigate
the changes in the natural frequencies of Functionally
Graded Porous (FGP) cylinders under the in-plane
magnetic �eld. Hosseinian and Firouz-Abadi [28] con-
ducted an investigation of the vibrations and stability
of double current-carrying metal strips with a magnetic
�eld. Firouz-Abadi and Hosseinian [29] studied the
interaction between the vibrations and buckling of
double current-carrying strips. In order to obtain four
coupled equations of motion, they used Hamilton's
principle to include the rotational and transverse de-
formations of the strip. They also employed Galerkin
method to extract the mass and sti�ness matrices and
considered the eigenvalue problem to determine the
stability of the system. In a real working area, Pourreza
et al. [30] proposed an approach to determine the
nonlinear vibration of the nanoplate carrying current
located in the magnetic �eld. They concluded that
the magnetic �eld decreased the nonlinear natural
frequency of the nanoplate and increased the linear
natural frequency.

Most magnetoelastic plates are exposed to mag-
netic �elds created by conductors carrying current.
Whenever a plate is placed near a conductor with
current, additional magnetic stresses are generated
in the plate, thus resulting in an alteration in their
dynamic behavior and vibration characteristics. For
this reason, it is important to study the e�ect of the
conductors on the dynamics of magnetoelastic plates.
However, few research has been done in this �eld, and
the impact of the electric current and magnetic �eld
on the nonlinear dynamic behavior of the conductive
plates located in a magnetic �eld caused by conductors
with the current has not been extensively investigated.
As a result, new equations were derived for the elec-
tromagnetic tractions of magnetoelastic plates placed
near conductors carrying electric current using a more
realistic hypothesis. Based on Maxwell's electromag-
netic theory and von K�am�an strain-displacement rela-
tionships, new nonlinear motion equations were derived
using the Hamilton's principle. Further, according to
the Galerkin discretization and a numerical solution of
the obtained nonlinear coupled equations, the impact
of some factors on the dynamic performance of these
plates were assessed.

2. Deriving motion equations

According to Figure 1, a homogeneous conductive plate
made of soft magnetoelastic material with the length
of D, width of R, and thickness of H was exposed
to the e�ect of magnetic �eld created by a conductor
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Figure 1. Geometry of the magnetoelastic plate a�ected by the magnetic �eld and rectangular conductor carrying electric
current.

carrying electrical current and external mechanical load
of P .

2.1. Magnetic �elds equations
Figure 1 illustrates the spatial distribution of the
magnetic �eld determined in the proposed geometry
where a magnetoelastic plate is placed under the e�ect
of a rectangular conductor carrying electric current and
external mechanical load.

Based on [31], the magnetic �eld H is genereted
by the in�nitely-long thin current-from distance r in
Gaussian approach, as shown below [32]:

jH(x; y; z)j = 1
4�

Z jdj� rj
jrj2

�
A
m

�
=

j
2�r2 ; (1)

where j is the electrical current.
As shown in Figure 1 and according to Eq. (1), the

magnetic �eld of elementary wire at any point A(x; z)
can be presented as Eq. (2) where the conductor cross-
section is divided into in�nite numbers of wires with
section:

dHx =
j sin�
2�r

dxdz;

dHy = 0;

dHz = �j cos�
2�r

dxdz; (2)

where r =
q

(x0 �X)2 + (z0 + Z)2 is the slightest gap
from the elementary wire to the position A, � angle
among vector r and axis X, and:

sin� =
z0 + Zq

(x0 �X)2 + (z0 + Z)2
;

cos� =
x0 +Xq

(x0 �X)2 + (z0 + Z)2
: (3)

The complete magnetic �eld in position A(x0; z0) can
be determined by a combination of expression of Eq. (2)
across the conductor overlapped area:
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Z H

0
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dZ; (4)
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=
j

2�

Z H

0
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0

�p
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�
dZ; (5)

where p represents the integrals of the Hx and Hz, as
follows:

Hx(x0; z0) =
j

2�

Z H

0

Z p

0

z0 + Z
p2 + (z0 + Z)2 dpdZ; (6)

Hz(x0; z0) =
j

2�

Z H

0

Z p

0

�p
p2 + (z0 + Z)2 dpdZ; (7)
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which can be mentioned by the analytics functions:

Hx(x0; z0) =
j

4�

�
p ln

�
H2 + 2z0H
p2 + z2

0

�
+2(z0 +H) arctan

�
p

z0 +H

�
�2z arctan

�
p
z0

��
; (8)
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��
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There is a magnetic constitutive equation of linear
condition for the soft ferromagnetic materials [33]:

M = �H or B = �0�rH: (10)

The force of body f = fxi + fyj + fzk, body
couple c = cxi + cyj + czk, and normal components
qMech (x; y;�h/2) of the external mechanical force on
the faces of the plate are identi�ed. Based on the thin
plates theory [24], the equivalent lateral force can be
obtained qz(x; y) as [33]:

qz (x; y)=
Z h/2

�h/2
fz(x; y; z)dz +

@
@x

Z h/2

�h/2
cy(x; y; z)dz

� @
@y

Z h/2

�h/2
cx(x; y; z)dz + qMech (x; y;�h/2) :

(11)

Lorentz ponderomotive forces are representatives
of the interaction between the mechanical and electro-
magnetic �elds. Subsequently, the entire magnetic �eld
in a position in a magnetic material is granted and then,
the body force f and body couple c of Magnetic used
on the body will be calculated as:

f = M:rB; (12)

c = M�B: (13)

By substituting Eq. (11) into Eqs. (12) and (13),
we have:

f =
�0�r

2
r �H2� : (14)

2.2. Equations of motion
To obtain the equations governing the 
exural vibra-

tion of the plate, the classical plate theory takes into
account the von K�am�an nonlinear strain-displacement
relations. In this respect, the plate displacement �elds
are presented in terms of the middle plate deformations
as:
u(x; y; z; t) = u0(x; y; z; t)� z�x(x; y; z; t);

v(x; y; z; t) = v0(x; y; z; t)� z�y(x; y; z; t);

w(x; y; z; t) = w0(x; y; z; t): (15)

In the above equation, (u; v; w), (u0; v0; w0), and
(�x; �y) represent the displacement �eld components in
the direction of (x; y; z) axes, displacements of a point
located in the middle plane of the plate, and rotation
of the normal vectors around the x and y axes.

The strain-displacement relationships based on
the �rst-order shear deformation plate approach are as
follows:8<: "x

"y

xy

9=; =

8><>: "(0)
x

"(0)
y


(0)
xy

9>=>;+ z

8<: �x
�y
�xy

9=; ; (16)

where "0
x; "0

y; 
0
xy are the mid-plane strains that are

de�ne as:

"(0)
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1
2

�
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;

"(0)
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@u0
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+

1
2

�
@w0
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�2

;


(0)
xy =

1
2

�
@u0

@y
+
@v0
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+
@w0

@x
@w0

@y

�
;

�x = �@2w
@x2 ; �y = �@2w

@y2 ; �xy = �2
@2w
@x@y

: (17)

Hamilton's principle is applied to derive the equa-
tions of motion. The Hamilton principle takes the
following form:Z T

0
(�K + �W � �U)dt = 0; (18)

where �, K, W , and U represent the variation operator,
kinetic energy, work done by the external forces, and
strain potential energy, respectively, the values of which
can be obtained as:

�K =
Z


0

Z h
2

�h2
�
��

_u0 � z @ _w0

@x

��
� _u0 � z @� _w0

@x

�
+
�

_v0 � z @ _w0

@y

��
� _v0 � z @� _w0

@y

�
+ _w0� _w0

�
dzdxdy; (19)
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dz
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�V =
Z


0

p(x; t)�w0 dxdy; (21)

where p(x; t) indicates the external forces applied to
the plate.

By de�ning the resultant force and moment, we
have:

(Nxx; Nyy; Nxy) =
Z h

2

�h2
(�xx; �yy; �xy) dz;

(Mxx;Myy;Mxy) =
Z h

2

�h2
(�xx; �yy; �xy) zdz;

(I0; I1; I2) = �
Z h

2

�h2

�
1; ; z; z2� dz: (22)

By substituting Eqs. (18){(20) into Eq. (17) and
through the unity the coe�cients of �u0, �v0, and �w0
on the two sides of the relation, we can obtain the
governing equations of motion as:

�u0 :
@Nxx
@x

+
@Nxy
@y

+fx = I0
@2u0

@t2
� I1 @

2

@t2

�
@w0

@x

�
;

�v0 :
@Nxy
@x

+
@Nyy
@y

+fy = I0
@2v0

@t2
� I1 @

2

@t2

�
@w0

@y

�
;

�w0 :
@2Mxx

@x2 + 2
@2Mxy

@x@y
+
@2Myy

@y2 + N(w0) + qz

= I0
@2w0

@t2
� I2 @

2

@t2

�
@2w0

@x2 +
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@y2

�
+I1

@2

@t2

�
@u0

@x
+
@v0

@y

�
: (23)

It should be noted that these force components
are created in the plate by the magnetic �eld and
electric current, and these terms are not incorporated
in the conducted studies by other researchers in this
�eld.

For uniform isotropic plate, the outcomes of the
forces and bending moments are obtained as follows:

8<: Nxx
Nyy
Nxy

9=; =
Eh

1� v2

24 1 v 0
v 1 0
0 0 0

358<: "0
x
"0
y


0
xy

9=; ;

8<: Mxx
Myy
Mxy

9=; =
h2

12
A

24 1 v 0
v 1 0
0 0 0

358><>: "(1)
x

"(1)
y


(1)
xy

9>=>; : (24)

Lastly, by determining the axial and shear forces
as well as the bending moments of Eq. (24) based on
the assumptions of the beam-plate approach and also
ignoring the longitudinal inertia along the x and y
axes, we can derive the equation governing the 
exural
vibration behavior of the magnetoelastic plate placed
near the current caring conductor using Eq. (23) as:

A66

�
@2v0

@x2 +
@2u0

@x@y
+
@w0

@x
@2w0

@x@y
+
@w0
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@2w0
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+
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@2w0
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�
; (25)
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@w0

@y
@2w0
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+
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; (26)

�D11
@4w0

@x4 � 2(D12 + 2D66)
@4w0

@x2@y2

�D22
@4w0

@y4 +N(w0) = I0
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+I1
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+
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@y

�
�I2 @

2
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�
@2w0

@x2 +
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�
+qz(x; t): (27)

2.3. Solution method
For the vibrations of thin magnetoelastic plates, the
Bubnov-Galerkin variation method was employed to
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solve the governing Eqs. (25){(27). The Bubnov-
Galerkin method is the most widely used weighted
average method [34{36]. This problem can be solved
through the following steps:

1. Creation of a sequence of coordinate functions that
satisfy the speci�ed boundary conditions;

2. Substitution of the coordinate functions in the
governing equations and integrating the result over
the whole plate area;

3. Discretization versus spatial variables, i.e., con-
struction of discrete equations;

4. Numerical solution of the discrete equations and
determination of unknown components of solution
structures;

5. Determination of unknown functions. Of note, the
tangential displacement and normal displacement
of the middle plate are also determined in this step.

In the �rst step, the constructive method of
normal mode shapes is used to construct a sequence
of coordinate functions that meet the boundary condi-
tions given the complex plate. Note that the vibration
mode shapes build a sequence of coordinate functions
in the form of the structure of solutions satisfying the
boundary conditions at almost any complex con�gu-
ration contour of plates in the plan. In accordance
with the simple supported boundary conditions around
the plate, the following coordinate functions can be
expressed as:

u0(x; y; t) =
NX
n=1

MX
m=1

Umn(t) sin
2m�x
a

sin
n�y
b
;

v0(x; y; t) =
NX
n=1

MX
m=1

Vmn(t) sin
m�x
a

sin
2n�y
b

;

w0(x; y; t) =
NX
n=1

MX
m=1

Wmn(t) sin
m�x
a

sin
n�y
b
; (28)

where m and n are both positive integers denoting
di�erent vibrations modes of the magnetoelastic plate.
Here, Umn(t), Vmn(t), and Wmn(t) are the general
coordinates. By substituting the hypothetical solution
Eqs. (28) into Eqs. (25)-(27) and using the Galerkin
approach, the equations of motion are discretized
as nonlinear coupled Ordinary Di�erential Equations
(ODEs) based on which the unknown functions of
standard coordinates can be determined.

For N = 1 and M = 1, through the Galerkin
approach, both U(t) and V (t) functions will be ob-
tained in terms of W (t) from Eqs. (25) and (26).
By substituting these functions into Eq. (27), the
nonlinear di�erential equation governing time section
of the megnetoelastic plate 
exural de
ection, which is
a second-order di�erential equation, can be derived as:

d2W (t)
dt2

+�1W (t) + �2W 2(t) + �3W 3(t)+�4
dW (t)
dt

= � sin(
t); (29)

where the �i coe�cients are the constant components
of the sti�ness matrices and geometric derivatives of
the plate. The values of these constants for n = m = 1
are obtained as:

�1 = � �2

I0a4b4

�
�2Da4 + b4�2D +R9a4b2 � I2b4a2

+R7b4a2 + 2�2D�a2b2 � I2a4b2
�
;

�2 =
16

9I0 (256�2 � 81�4) a4b4

�
�162R4�4b4

+81R1b2�4 � 144R1�2a2�2 + 512�2R4b2
�
;

�3 =
16

9I0 (256�2 � 81�4) a4b4

�
�162R4�4b4

+81R1b2�4 � 144R1�2a2�2 + 512�2R4b2
�
;

�4 =
�1

32I0 (256�2 � 81�4)�2a4b4

�
729��4b4

+81�4b2a2 � 2304�2b4 + 1152� (1 + �)�2b2a2

�2304�2�
�
a4 + �2b4

�� 2048�2b4 + 4096�a2b2

+3840�2a2b2 � 2048�3a4
�
: (30)

Once Eq. (29) is solved using the fourth-order
Runge-Kutta method and consequently, the associated
vibration mode and phase plane can be obtained. The
time step used in the computation is t = 0:0001.
In each case, the plate is assumed to be initially
at rest, that is, roots at _w(t) = 0. The following
section evaluates the impact of di�erent parameters on
the dynamic behavior of magnetoelastic plates under
magnetic �elds using this numerical solution.

3. Results and discussion

The purpose of this study is to evaluate the e�ects of
the intensity of the magnetic �eld, electrical current
in the conductor, and imposed mechanical force on
the dynamic and vibration behavior of the plate. In
the current research, aluminum is assumed to be the
material of the magnetoelastic plate. The geometric
and mechanical characteristics of this plate are shown
in Table 1. An error of 1 � 10�6 is considered in all
numerical results.
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Table 1. Geometric and mechanical characteristics of magnetoelastic plate.

Parameter Values

Density, � (kg/m3) 2450

Elastic modulus, E (GPa) 72

Poisson's ratio, � 0.26

Thickness, h (mm) 1.70

Length, L (mm) 150

Magnetic permeability, � (H=m) 3� 6� 10�5

Conductivity, � 1:3� 106

Susceptibility of the soft ferromagnetic medium, �m 6

Table 2. linear and nonlinear resonance frequency of the simply supported magnetoelastic plate with the intensity of the
electrical current.

R=H = 10 R=H = 2

J 
L 
N 
N=
L 
L 
N 
N=
L

0 5.71 5.45 0.95 5.32 3.42 0.64

5 7.37 5.34 0.72 6.41 2.61 0.41

10 8.86 5.28 0.60 7.57 2.04 0.27

15 10.10 3.72 0.37 8.13 1.56 0.19

20 12.48 1.09 0.09 10.96 1.03 0.09

3.1. Free vibrations
This section examines the vibration characteristics of
the plate including the response of free vibrations and
natural frequency. In order to determine the free
vibration response of a system, the external mechanical
excitation force in Eq. (29) is assumed to be zero.
Initially, we investigated the e�ect of electric current in-
tensity on the dynamic behavior of the central point of
the plate in the absence of external mechanical forces.
In Figure 2, the plate response is illustrated for di�erent
values of the electric current and R=H = 10 without
mechanical forces. As demonstrated in Figure 2(a), the
system response oscillates with a constant amplitude
in the absence of the electric current. The electric
current dissipates energy as the current density of the
conductor increases, thus resulting in a reduction in the
oscillation amplitude. Given that energy consumption
in the plate increases upon increasing the current
intensity, buckling does not occur. In addition, the
electric current causes permanent de
ection in the
plate and as the intensity of electric current increases,
the steady state de
ection of the plate increases even
more. According to the results from Figure 2(b)
and (c), the steady state de
ections of the plate for
the current density 2 � 102 A=m2 and 4 � 102 A=m2

are equal to 0.44 mm and 0.8 mm, respectively. The
steady state de
ection increases up to 82% when the
current density is doubled. Therefore, increasing the
electric current applied to the conductor decreases its

equivalent sti�ness, thus resulting in an increase in the
system oscillation amplitude.

Furthermore, according to the spectrum curve,
the electrical current has a signi�cant e�ect on the
frequency of oscillations in the system. Increasing the
current intensity results in a decrease in the natural
frequency. For the current density of 2�102 A=m2 and
4� 102 A=m2, the natural frequencies are obtained as
4.26 Hz and 2.31 Hz, respectively. Hence, as the current
increases up to 100%, the natural frequency decreases
by approximately 46% due to the e�ect of the electric
current on the equivalent rigidity of the structure. As
observed in Figure 2, with the application of the electric
current, the rigidity of the structure is reduced, thus
resulting in a reduction in the normal frequency of the
system as well as the sheet durability.

Table 2 shows the linear and nonlinear resonance
frequency of the simply supported magnetoelastic plate
as a function of the intensity of the electrical current.
According to this table, the linear natural frequency in-
creases upon increasing the electrical current intensity
but the nonlinear frequency decreases substantially.
It is believed that this behavior arises from the fact
that as the current intensity increases, the e�ect of
geometrical nonlinear terms becomes more intensi�ed,
thus resulting in a dramatic decrease in the ratio of
nonlinear frequency to the linear frequency. These
results suggest that the coe�cient of nonlinear sen-
tences increases as the intensity of the electrical current
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Figure 2. Time response, phase portraits, and spectrum of the magnetoelastic plate for di�erent values of the electric
current intensity of the conductor: (a) J = 0, (b) J = 2� 102 A=m2, and (c) J = 4� 102 A=m2.

increases; therefore, in order to achieve accurate and
realistic geometric irritation results at larger values,
the intensity of the electrical current must be taken
into consideration.

Figure 3 shows the plate time trace for three
di�erent values of R=H and current intensity of 0:4 �
103 A=m2. The results show that for high value of
R=H, the system response will be oscillating. In
addition, the magnetic �eld causes nonlinear damping
in the Lorentz force (Eq. (11)) which depends on the
intensity of the magnetic �eld, electric current, and
R=H. As the R=H intensi�es, the magnetic damping
increases, hence increased energy dissipation. This
causes the oscillation amplitude to move towards the

steady state, as depicted in Figure 3. According
to this �gure, for the R=H values of 1 and 10, the
steady state de
ections of the system are 2.4 mm and
9.2 mm, respectively, indicating the signi�cant impact
of the magnetic �eld and distance between the plat and
conductor on the deformation of the magnetoelastic
plates. Table 3 demonstrates the plate steady state
de
ection for di�erent values of R=H and electric
current intensity. According to the observations, upon
increasing the R=H value and electric current, the
steady-state de
ection decreases. It should be noted
that the R=H e�ect on the plate steady state de
ection
is much greater than that of the electric current. Upon
increasing the R=H and electric current up to 10
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Figure 3. Time traces of the conductive plate under the e�ect of di�erent �eld intensity values: (a) R=H = 20, (b)
R=H = 10, and (c) R=H = 1.

Table 3. Steady-state de
ection of the plate for di�erent values of R=H and electric current intensity.

R=H

1 2 5 10 15 20 J (A/m2)

5.24 4.38 3.88 1.58 1.14 0.64 20

8.45 7.05 5.01 2.05 1.35 0.68 50

9.69 8.05 5.64 2.21 1.44 0.70 100

10.09 8.36 5.83 2.27 1.47 0.78 150

10.55 8.71 6.04 2.32 1.49 0.85 200

11.21 9.12 6.27 2.37 1.52 0.93 400

11.52 9.45 6.47 2.43 1.55 1.21 1000
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times, the maximum steady state de
ection of the plate
changes by about 350% and 3.8%, respectively. OF
note, a decrease in the oscillation amplitude can be
observed by reducing plate distance from the conductor
and intensifying the electrical current intensity.

Since oscillation frequency in nonlinear systems
is a function of amplitude, changing the amplitude of
response oscillation causes variations in the frequency
of the system. As the results show, applying electric
current reduces the amplitude of the conductive plate
oscillations over time by damping the Lorentz force.
As a result, the frequency of the oscillations will also
change with time, as clearly shown in Figure 4. In
this �gure, the response wavelet of the conductive plate
proved to be a�ected by the magnetic �eld for the
R=H values 20, 10, and 1. The results show that in
the large value of R=H, the �rst two frequencies of
the system are about 5 Hz and 20 Hz (Figure 4(a)).
Upon applying the magnetic �eld, the frequency of
nonlinear oscillations will increase. For R=H = 10,
the �rst two frequencies of the system at the initial
moment are about 25 Hz and 65 Hz (Figure 4(b)).
As observed in Figure 4(c), for R=H = 1, the �rst
two frequencies of the system at the initial moment
are about 38 Hz and 92 Hz. The amplitude of the
oscillations decreases over time in the presence of
the magnetic �eld, and the frequency of oscillations
in nonlinear systems is a function of the amplitude;
hence, it can be concluded that the nonlinear frequency
decreases with time. These changes become more
intense upon increasing the R=H.

3.2. Forced vibration
Nonlinear behavior in the system triggers other dif-
ferent behaviors in the system depending on the
boundary conditions and excitation force parameters.
Figures 5{7 indicate the time traces, phase portraits,
and Poincar�e graphs of the conductive plate under
the e�ect of mechanical force for di�erent values of
excitation frequency. It should be noted that these
curves are plotted for R=H = 5. According to the
observations, di�erent nonlinear dynamic behaviors
appear in the system according to the frequency of the
external excitation force. According to Figure 5, at
the excitation frequency of 10 Hz, the system exhibits
a harmonic behavior, and the Poincar�e map shows only
one point. As the excitation frequency increases, the
system behavior will change, and quasi-periodic motion
will occur at the excitation frequency of 12.3 Hz, as
shown in Figure 6. The chaotic motion at the excita-
tion frequency of 14.2 Hz is demonstrated in Figure 7
where the Poincar�e map expresses self-similarity.

4. Conclusion

A nonlinear di�erential equation was developed in

Figure 4. Wavelet transform of the time response for
di�erent values of the R=H: (a) R=H = 20, (b)
R=H = 10, and (c) R=H = 1.
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Figure 5. Harmonic motion of the system: (a) time trace, (b) phase portrait, and (c) Poincar�e map.

Figure 6. Quasi-periodic motion of the system: (a) time trace, (b) phase portrait, and (c) Poincar�e map.
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Figure 7. Chaotic motion of the system: (a) time trace, (b) phase portrait, and (c) Poincar�e map.

this research that could govern the 
exural dynamic
behavior of the magnetoelastic plates located near the
conductor plates with electrical current under the e�ect
of electric currents and external mechanical forces.
Followed by discretization of the motion equations
therough the Galerkin method, the e�ects of di�erent
parameters on the vibration parameters of the system
were numerically studied by solving the equations. The
nonlinear performance of the system was then inves-
tigated using time traces, phase portraits, Poincar�e
maps, and instantaneous nonlinear frequencies for dif-
ferent values of system parameters. A summary of the
conclusions are given below:

� Intensi�cation of the electric currents and external
mechanical forces in the equations of motion re-
sulted in novel components with in
uential e�ects on
the vibration characteristics of the magnetoelastic
plates;

� As a result of the exposure of the conductive plates
to the magnetic �eld and electrical current, damping
occurred in the system which in turn reduced the
amplitude of oscillations;

� A decrease in the oscillation amplitude was observed
while decreasing the plate distance from the conduc-
tor and increasing the electrical current intensity;

� The system showed di�erent types of behavior in-
cluding harmonic, quasi-periodic, and chaotic mo-

tions, depending on the parameters of the excitation
force.

Nomenclature

Symbols

A Position
abs Absorber
Lm Susceptibility of the soft ferromagnetic

medium
Cp Speci�c heat (J/kg.K)
U0 Magnetic permeability
D Diameter (m)
e Speci�c exergy (kJ/kg), evaporator
H Magnetic �eld
Ib Beam irradiance (W.m�3)
K Kinetic energy
_m Mass 
ow rate (kg/s)
M Molecular mass (kg/kmol)
n Number of solar collectors, day number
P Pressure (bar), pump
q External mechanical force
U Strain potential energy
wa Aperture width (m)
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W Work (kJ)
_W Power (kW)
Yd Exergy destruction ratio (%)
R=H Dimensionless distance
L Length plate
h Thickness of plate
OMC Operation and Maintenance Cost

Greek symbols
� E�ciency
� Angle
" Strains
� Variation operator
� Density of mass
v Young modulus
� Conductivity

Subscripts
D Destruction
Aux Auxiliary heater
i Inlet
e Exit
s Isentropic
f Saturated liquid
ref Reference
CV Control Volume
sat Saturated
t Time
e:v Expansion valve

Abbreviations
EUF Energy Utilization Factor
LHV Lower Heating Value
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