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ABSTRACT 

 

This paper proposes a new linearized mathematical model to solve integrated cell formation and job scheduling 

problem. The model aims to minimize the exceptional elements, voids and the make-span of the jobs. The results 

of test problems show that the proposed model is very effective to obtain best solutions for small sized problems 

in reasonable computation times. However, due to the NP-hard nature of the considered problem, the best 

solutions couldn’t be obtained in acceptable times for large sized test problems whereas the real-life applications 

of the problem addressed here are often much larger in size. To meet the requirement of solving larger sized 

problems, Genetic Algorithm (GA), which is, today, considered as one of the artificial intelligence and machine 

learning technique and Marine Predators Algorithm (MPA) as a new and a nature-inspired metaheuristic, are 

proposed. The success of the algorithms was investigated and compared. The test results reveal the fact that the 

MPA with optimized parameters has a high potential to solve real life problems. At last, an attempt is made to 

re-design an existing real-life production system by the proposed algorithms. Eventually, a considerable 

improvement is obtained on performance compared to the current situation of the system. 

 

Keywords: Cell Formation, Marine Predators Algorithm, Genetic Algorithm, Exceptional Elements, Make-span, 

Voids 

 

1. Introduction 

The Cellular Manufacturing System (CMS) is an effective production system that enables a group of machines to 

be grouped into a machine cell to process a group of product. CMS enables production control to be performed 

independently in each cell, with the aim of creating units that deal with a limited number of parts. CMS have 

many benefits such as to minimize setup time, throughput time, material flow and transport times, work in 

process inventories and finished product stocks [1]. 

 

CMS includes the following decisions: “Cell formation (CF)”, “Group Layout (GL)”, “Cellular Part Scheduling 

(CPS)” and “Resource Allocation (RA)”. The formation of cells is known as the principal activity in cell design. 

This phase includes the assignment of parts families and machines to the cells to be formed [2]. However, some 
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machines required for some operations for the part families on certain cells may be unavailable. Therefore, it 

may be necessary to process some parts in machines in two or more cells. The requirement arising from that 

intercellular movement of a part between cells is called exceptional element (EE) [3]. CMS designers try to 

minimize the number of EEs, to avoid intercellular movements, in turn, to obtain shorter completion times and 

consequently lower costs. Customarily, CMS designers were satisfied by parts-machines grouping only, by 

ignoring job scheduling. However, it is more realistic to consider the CF problem together with CPS. 

 

Scheduling is a decision making process encountered in many manufacturing and service industries. In this 

process, allocating of resources to jobs and sequencing of them in certain periods is aimed to optimize one or 

more objectives [4]. Li et al. [5] note that: “The objective of CPS is to identify the sequence of parts in cells that 

minimizes some effectiveness criteria.”. 

 

In this study, the flexible job shop scheduling (FJSS) is considered. Amongst the scheduling, make-span is 

selected to utilize the advantage of idle time reduction to improve the machine utilization. Moreover, minimizing 

make-span will directly minimize the production costs [6]. In FJSS, each operation of a job can be processed on 

any machine that is previously selected among a set of machines [7]. 

 

Compared to FJSS literature, there are relatively few publications dealing with CF and CPS together in CMS. 

Wu et al. [8] consider CF, machine layout and scheduling decisions in CMS with the aim of minimizing make-

span and propose a hierarchical Genetic Algorithm (GA) to solve the integrated cell design problem. The results 

show that simultaneous solution process is more successful than sequential one. Wang et al. [9] aim to minimize 

the total delay by using of a penalty cost in an integrated decision process of CPS. Ghezavati and Saidi-

Mehrabad [10] consider a stochastic environment where the processing times of jobs in different machines are 

random. CF and CPS decisions are handled concurrently by a hybrid method. Kesen et al. [11] develop a 

heuristic approach based on GA for job scheduling problem in virtual cells where duplicate machines and 

alternative sequences and routes are assumed. Tang et al. [12] consider the problem of scheduling parts in CMS 

sequentially with the aim of minimizing intra-cell movements and propose a random search algorithm. 

Aryanezhad et al. [13] consider assembly processes in CMS. Li et al. [5] consider the issue of scheduling parts in 

CMS. Ant colony optimization approach (ACO) is used on flexible routes. Tang et al. [14] present an integrated 

approach for CPS decisions taking into consideration CF and part scheduling by mathematical optimization and 

random search approaches. Liu and Wang [15] propose a non-linear integer mathematical model to solve CF and 

scheduling problem in a dual-resource constrained setting. Rafiei et al. [16] consider the problem of CPS and 

propose a non-linear mixed-integer model and a hybrid approach. Liu et al. [17] research the problem of CF and 

job scheduling in a multi-functional worker and machine environment by proposing a discrete bacteria foraging 

algorithm (DBFA). Iqbal et al. [18] address the CF and CPS to ensure minimum energy consumption and make-

span. Costa et al. [19] study a CMS and investigate the flow-shop sequence-dependent group scheduling problem 

with the objective of make-span minimization. They propose a hybrid metaheuristic method that integrates GA 

and random sampling search methods. Buruk Sahin and Alpay [3] develop a new mathematical model for 

optimization of CPS and CF problems. They aim to minimize the EEs in cells and the make-span of the jobs, 

simultaneously. Feng et al. [20] show that integration of CF and CPS can remarkably reduce the flow time of 
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CMS. Far et al. [21] deal with CPS problem in deterministic and fuzzy environments. Forghani and Ghomi [22] 

present classical and virtual cells configurations. They integrate CF, GL and CPS problems with the aim of 

minimizing total handling costs and average cycle time. 

Some of the design attributes of the models considered in CF and CPS literature are inter-cellular transportation 

times [14, 15, 23], cell size restriction [15], operation sequence and processing times [14, 15, 23, 24], duplicate 

machines [20, 25], setup times [16, 19, 23], reentrant parts [20, 26], energy efficient routings [18], non-

permutation schedules [27], variable cell number [20], maintenance [28], learning and forgetting effects [29, 30], 

fuzzy model [31], and capacity measurement [32]. 

 

Some recent papers integrating CF and CPS decisions in CMS, along with the objectives of the models, the 

solution approaches and the software used are summarized in Table 1. Due to the critical role on determining the 

performance of the algorithms, the parameter tuning approaches in the studies are also examined. 

 

<<Please Insert Table 1 here>> 

 

 

Although there are studies in which CF and CPS are taken independently of each other in the relevant literature, 

many studies have shown that the cell formation problem and the CPS problem are interrelated and should not be 

considered separately [8, 18, 20, 24, 26]. Feng et al. [20] emphasize that integrated cell formation and scheduling 

decisions are correlated and the integrated approach may provide time savings up to 13.2% by offering more 

successful solutions than the sequential approach.  

The main contributions of this study are explained as follows: 

 Different from the others on CF and parts scheduling problems, a new mathematical model has been 

developed for the first time considering voids, EEs and make-span simultaneously. 

 A GA and a Marine Predators Algorithm (MPA) are proposed for large sized instances of the addressed 

problem to produce good/applicable solutions in reasonable times. 

 The proposed algorithms are applied to a real-life problem, and considerable improvements are 

observed compared to present practices. 

 

2. Problem Formulation and Mathematical Model 

In this study, a new mathematical model with the following assumptions is developed. Parts can be processed by 

different types of machines. In each type, there exists one machine. Each machine and each part can be allocated 

to only one cell. Some part operations can be processed on an alternative machine set. In this set, the processing 

time can be same or different from each other. Each part has a sequence of operations processed in a given order. 

The processing time for the operations of each part type on a machine is known and fixed. No preemption is 

allowed. Set-up times for the parts are assumed sequence independent and considered to be included to the 

processing times. The i
th

 operation of each job can only be started after the (i - 1)
th

 operation of that part has been 

completed and the time at which the required machine has completed its operation of the current job. There is a 

lower bound for the number of machines and parts allocated to each cell. 
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Indices 

i            index for the part types         1, ,i n   

j           index for the operations required by parts      0, , ij n   

k        index for the machine types          0, ,k m   

l            index for the position number of assigned operation in machine   0, , il l   

c        index for the cells 

 

Parameters 

n               total number of parts 

m              total number of machines 

ij              total number of operations of job i 

ijO             thi  operation of part j 

ijkp            standard time to process ijO     

ijka            1,  the operation   is required processing on machine k,  and  0 otherwiseijO  

M              A large positive number 

pw              weight of objective p 

 

Decision Variables 

i, j,k,l,cx         1,  if   is processed on machine   in the   position in cell  , and 0 otherwisethO k l cij  

,k cz              1,  if machine type   is assigned to cell  , and 0 otherwisek c  

,i cy              1  ,  if part type   is assigned to cell  , and 0 otherwisei c  

, ,i k cv           1  ,  if part   is processed on machine   in cell  , and 0 otherwisei k c  

,i jt                starting time of ijO  

,k lTm            starting time of ijO  (in machine k and in the  thl order) 

EE                exceptional element 

maxC             maximum completion time  

objZ              scalarized objective function 

 

Objective Functions and Constraints 

   , , , , , , , , , ,    * * 1 *  * 1obj i j k l c k c i c i c k c i k c max

i j k l c i k c

MinZ x z y y z v C     

  

 (1) 
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, , , , 1i j k l c

k l c

x    
 

   ,i j  

 

(2) 

, , , , 1i j k l c

i j

x    
 

   , ,k l c  

 

(3) 

, , , , , ,i j k l c i j k

l c

x a   
 

   , ,i j k  

 

(4) 

, 1 , , , , , , ,*i j i j i j k l c i j k

k l

t t x p     
 

   , ,ji j n c   

 

(5) 

, 1 , , , , , , ,*k l k l i j k l c i j k

i j

Tm Tm x p     
 

   , ,ik l l c   

 

(6) 

 , , , , , ,* 1k l i j i j k l cTm t M x        , , , ,i j k l c  (7) 

 , , , , , ,* 1k l i j i j k l cTm t M x       , , , ,i j k l c  (8) 

, , , , , , ,*max i j i j k l c i j k

k l

C t x p    
 

  i  

 

(9) 

, 1k c

c

z    
 

  k  

 

(10

) 

, 1k c

k

z    
 

  c  

 

(11

) 

, 1i c

c

y    
 

  i  

 

(12

) 

, 1i c

i

y    
  c  (13

) 

, , , , , , ,*i j k l c i j k k cx a z     , , , ,i j k l c  (14

) 

, ,, k c i cz y ,  , , , ,   0,1i j k l cx      ,k c    ,i c  

  , , , ,i j k l c  

(15

) 

, ,,  ,  , 0k l i j max objTm t C Z      ,k l    ,i j  (16

) 
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In the model, equation (1) shows the scalarized objective function. It includes three sub-objectives: minimization 

of EE, minimization of number of voids and minimization of make-span. Constraint (2) imposes that each part 

process is assigned to one cell and only one position of the existing machines. The constraint (3) states that some 

capabilities of some machines cannot be fully used depending on alternative machine sets. Constraint (4) 

guarantees that each operation is performed on the respective predetermined machines. Constraint (5) ensures the 

precedence relationships related to the starting time of the operations. The constraint (6) ensures that, in 

assignments for each position of a machine, the occupancy of previous positions of that machine is controlled. 

Constraints (7-8) provide that an operation can be assigned to only one position of a machine. Constraint (9) 

determines maximum completion time of operations on all available machines by considering last completed 

time for all operations. Constraint (10) ensures that each machine can be assigned to one cell. Constraint (11) 

ensures lower bound for assigning machines to cells. Constraint (12) determines that only one cell must be 

assigned for each part. Constraint (13) ensures a lower bound for assigning parts to cells. Constraint (14) 

guarantees that each part operation can be done only in the cell to which a relevant machine is assigned. 

Constraints (15) and (16) illustrate the binary and continuous decision variables respectively. 

 

The proposed model is non-linear and auxiliary binary variables ( , , , ,i j k l cF , , , , ,i j k l cS , , ,i k cU , , , ) i k cH were used to 

reformulate the model by introducing new sets of variables. The variables, , , , , , , , , ,* i j k l c i j k l c k cF x z  , 

, , , , , , , , , , , , , ,    * *  ,     * i j k l c i j k l c k c i c i k c i c k cS x z y U y z   and , , , , , ,  * *i k c i c k c i k cH y z v  were used to linearized terms in the 

objective function. Additionally, , ,i k cv  is determined to calculate the number of voids. The constraints (17-28) 

were used to linearize the model. Equation (29) shows the scalarized weighted objective function in the linear 

structure. 

 

, , , , , , , , ,2* i j k l c k c i j k l cx z F       , , , ,i j k l c  (17) 

, , , , , , , , ,1  i j k l c k c i j k l cx z F        , , , ,i j k l c  (18) 

, , , , , , , , , ,3* i j k l c k c i c i j k l cx z y S        , , , ,i j k l c  (19) 

, , , , , , , , , ,2  i j k l c k c i c i j k l cx z y S         , , , ,i j k l c  (20) 

, , , ,2* i c k c i k cy z U       , ,i k c  (21) 

, , , ,1  i c k c i k cy z U        , ,i k c  (22) 

, , , , , ,3* i c k c i k c i k cy z v H        , ,i k c  (23) 
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, , , , , ,2  i c k c i k c i k cy z v H         , ,i k c  (24) 

, , , , , ,i k c i j k l c

j l

v x   
   , ,i k c  (25) 

 , , , , , , , , , , , , , ,,  ,  ,  ,    0,1i j k l c i j k l c i k c i k c i k cF S U H v       , , , ,i j k l c  (26) 

, , , , , , , ,(   )i j k l c i j k l c

i j k l c

EE F S    
 

(27) 

 , , , ,i k c i k c

i k c

Void U H    
 

(28) 

1 2 3         obj maxMinZ w EE w void w C     
 

(29) 

,  ,  0objEE void Z       ,     ,k l i j   (30) 

 

Optimal results could not be reached for medium and large sized test problems within reasonable times, because 

of their combinatorial structures. As Chaudhry and Khan [7] note: “In terms of computational complexity, JSS 

problem is NP-hard. So, for even small instances, an optimal solution cannot be guaranteed. Additionally, FJSS 

problem is more complex than JSSP as it considers the determination of machine assignment for each 

operation”. On the other hand, most real-life CF and job scheduling problems are both larger in size and more 

complex in structure. As the problem size grows, the time required to reach the best solutions is far from being 

acceptable. Whereas, the time is quite valuable in competitive conditions of practical business environment.  

3. Solution Methodology 

To reach acceptable solutions in shorter/acceptable times in real life problems, a GA and MPA are presented in 

the following section. 

3.1 Genetic Algorithm 

GA was first introduced by Holland [33] and today, it is considered as one of the artificial intelligence and 

machine learning algorithms [34]. The structure of potential solutions to a problem is designed at the initial step 

of GA to constitute chromosomes. Each component of this chromosome is referred as gene and a set of 

chromosomes is referred as population. An initial population, consisting of feasible solutions, is created 

randomly. GA includes “selection”, “reproduction (crossover)” and “mutation” mechanisms. In the selection 

step, the chromosomes are elected by using a kind of biased random process from the population. Crossover 

enables to produce new feasible solutions and mutation is used to increase the variety of the population. A new 

generation is formed by some of the parents. After several generations, GA converge to hopefully an optimal or 

suboptimal solution to the problem represented by the best chromosome of the last population. Fitness function 

is the measure of a chromosome's performance.  A fitness function is proposed by this study as in equation (31): 
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Fitness function=total no. of exceptional elements+ total no. of voids+ make-span + total penalty    (31) 

 

Total number of EEs are calculated by considering the total number of jobs could not be performed in the 

assigned cell. A void refers to a part operation does not require processing on a machine inside its own cell.  

Make-span has been calculated by the help of machine part operation matrices and by selecting the largest one 

among the completion times of the last jobs considering machine and part suitability times.  

A penalty function, is added to the fitness value for each chromosome in the population that violate any 

constraint in the mathematical model to eliminate unfeasible solutions [2, 6]. Total penalty (TP) proposed by this 

study, to eliminate the chromosomes that do not comply with the constraints (11) and (13) in the mathematical 

model and infeasibility in schedule is given in equation (32). 

 

TP= 
1 *total(part related penalties)+

2 *total(machine related penalties)+
3 *total(time related 

penalties) 

   (32) 

 

In case of not assigning at least one piece, the penalty for the part is applied. And machine penalty is applied for 

each case in which at least one machine is not assigned to each cell.  Non-feasible solutions regarding the 

calculation of the completion time are also reflected to the penalty function as time related penalties and the 

acceptance of these solutions are prevented. Other constraints in the model used in defining the problem are 

provided by the developed chromosome structure. The coefficients 
1 , 

2 and 
3  of the penalty function are 

adopted in accordance with the problem size and the magnitude of the objective function value.  

 

GA parameters are generally thought that they should be determined by the experimental analysis [35]. A 

concise pseudocode of the proposed GA for the studied integrated problem is seen in Figure 1 [36]. Here, P(t) 

and C(t) are parents and offspring in the current generation t. And, recombination involves crossover and 

mutation to yield offspring.  

 

<<Please Insert Figure 1 here>> 

 

 

Chromosome Structure 

Developing of chromosome structure is the first step for obtaining high quality results for the problem. There are 

various chromosome structures for FJSS and CF problems [16]. Figure 2 shows an example representation of the 

designed chromosome structure for considered problem in this study. It consists of three sections for assignments 

to cells, assignments to machines and job-operation sequences.  

 

<<Please Insert Figure 2 here>> 

 

The first section of the chromosome includes as many genes as the total number of machines and parts. The 

assignment of machines and parts to cells is represented in this section. The size of the second section is equal to 



9 
 

the total number of part-operations assigned to the machines. Each value in this structure represents the chosen 

machine alternative for the related part-operation. The chromosome represents operations sequentially from left 

to right. The third section that represents the operation sequence includes as many genes as the total number of 

part-operations and represents the operations sequentially from left to right. This section also represents the 

replacements of operations on Gantt chart. Finally, chromosome size is represented by the following equation: 

number of parts + number of machines + 2*total number of operations. 

 

Deciding on Genetic Operators 

 

A number of methods as genetic operator alternatives are found in literature to construct a proper GA. Three 

types of "selection" methods namely, “Tournament selection”, “Roulette wheel selection” and “Stochastic 

uniform selection” [37], three types of "cross-over" operators namely, “One-point crossover”, “Two-point 

crossover” and “Scattered crossover” and, "adaptive feasible mutation" as the “mutation” operator [38] are 

considered in this study. It should also be noted that, the chromosome structure proposed in the study, prevents 

to obtain unfavorable solutions after crossover and mutation processes. An experimental design based on 

Taguchi technique is used to decide on mentioned operators and calculate the optimum values of the parameters 

[35]. 

 

 

3.2 Marine Predators Algorithm 

Faramarzi et al. [39] developed MPA, inspired by the Lévy and Brownian motions in ocean predators. MPA is a 

meta-heuristic optimization algorithm that simulates the hunting process based on the relationship between prey 

and predators in the sea. While marine predators exhibit Brownian motion in half of this hunting period, they 

spend the remaining half in Lévy motion. Predators aim to maximize the possibility of catching their prey with 

such different movement patterns. 

 

In the MPA, the best course of action for catching prey is of great importance, and the MPA tries to maintain a 

balance in the Lévy and Brownian motions. In this way, MPA provides an opportunity to evaluate different 

strategies for optimizing the hunting process [40].  

For generation of the initial population, below equation (33) is used: 

 

 

 ij j j jX bL R bU bL      
  𝑖 = 1, 2, . . . , n 

 𝑗 = 1, 2, . . . , d 

 

(33) 

 

where n denotes the population size and d denotes the dimension of the search agent. R is  the uniform random 

number vector, and jbU  and jbL  denote the upper and lower bounds respectively of the search agent in the 𝑗th 

dimensional search space. 

Using equation (33) the Prey matrix is constructed and the fitness values for all individuals are calculated. Then, 

the Elite matrix is formed from the ones called top predators with the optimal fitness values of the same size as 

the Prey matrix. Elite matrix and top predators are updated with each iteration. For this reason, an individual who 

was a predator before may become the prey of other top predators later on. Also, the Prey matrix is updated 
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depending on the different velocity ratios. Thus, a prey will be able to be in a different position in each iteration 

gets displaced. Below, Prey and Elite matrixes are expressed: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

I I I

d

I I I

d

I I I

n n n d n d

X X X

X X X

Elit

X X X


 
 
 
 

  
 
 
 
  

  

(34) 

1,1 1,2 1,

2,1 2,2 2,

3,1 3,2 3,

,1 ,2 ,

d

d

d

n n n d n d

X X X

X X X

X X X
Prey

X X X


 
 
 
 

  
 
 
 
  

  

 (35) 

 

Depending on the different movement rates of Predator and Prey, there are 3 movement phases in the MPA 

optimization process.  

 

a) High movement rate: At this phase, the prey has a higher movement rate than the predator. This phase 

is called as Exploration phase and applied while the current iteration (Iter) < 
1

3
 IterMax (maximum 

number of iterations). Required calculations are made with the following expressions: 

 i B i B iS R E R X      

i i iX X P R S      
𝑖 = 1,2,...,n (36) 

 

where R denotes the uniform random number vector between 0 and 1, 
BR  denotes Brownian motion, ⊗ 

represents entry-wise multiplications, and P is a constant value of 0.5. 

  

b) Unit movement rate:  At this phase, the moving speeds for both prey and predator are uniform. 

Population is divided by two and first part (prey) fulfills exploitation by employing Lévy motion and 

the second part (predator) fulfills exploration by employing Brownian motion during   
1

3
 IterMax < Iter 

< 
2

3
 IterMax.  For Lévy motion of prey below expressions are used for calculation: 

 

 i L i L iS R E R X      

i i iX X P R S      

𝑖 = 1,2,...,n/2 (37) 

 
where 𝑅𝐿 denotes Lévy motion.  
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For Brownian motion of predator following expressions are used for calculation: 

 

 i B B i iS R R E X      

i i iX E P CF S      

𝑖 = n/2,…, n 

2 

1
Max

Iter

Iter

Max

Iter
CF

Iter

 
  
  

  
 

  
(38) 

 
where 𝐶𝐹 denotes step size control parameter for the predator movement. 

 

c) Low movement rate: The predator has a higher movement rate than the prey. This phase is called as 

Exploitation phase and applied while the current iteration (Iter) > 
2

3
 IterMax. The necessary 

calculations are made with the following expressions: 

 

 i L L i iS R R E X      

i i iX E P CF S      

𝑖 = 1,2,...,n (39) 

 

In the MPA process, it is also thought that environmental factors such as eddy formation or Fish Aggregating 

Devices (FADs) may have an impact on the behavior of marine predators, and this effect can be calculated with 

the help of the following expressions. 

 

 

   1 2

,      

1 ,        

i

i

i r r

X CF bL R bU bL U if r FADs
X

X FADs r r X X if r FADs

         
 

       

  
(40) 

 

where 𝑈 is a binary vector in which each array contains only 0 and 1, r denotes the uniform random number 

between 0 and 1, subscripts r1 and r2 denote two randomly selected index values of the prey matrix. 

 
Figure 3 shows the pseudocode associated with the working structure of MPA [41].  

 

<<Please Insert Figure 3 here>> 

 

In addition to the algorithm given in Figure 3, it should be noted that for solving of the problem addressed in this 

study, the chromosome structure of MPA is also same as for GA above. 

 

4. Computational Analysis 

Since an original problem is considered, no test problem that matches to all terms of the model is found in 

literature. Nevertheless, the test problems given by Fattahi et al. [42] for FJSS is modified in this study to test the 

scheduling performance of the proposed model by adding some randomly produced parameter values. The data 
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sets include 20 test problems. Three sets of test problems, small size (SFJSCF_1-10), and medium and large size 

(MFJSCF_1-20), are derived by means of  , , ,n h m c  schema where n  denotes the number of jobs, h  denotes 

the number of operations, m  denotes the number of machines, and c  denotes the number of cells. Those test 

problems include the number of jobs vary 2 to 12, number of machines vary 2 to 8, and number of operations 

vary 4 to 48. All generated test problems structured for the proposed mathematical model are solved by GAMS 

24.2.1 software CPLEX solver. The proposed GA and MPA is coded in MATLAB R2017b on a PC with Intel 

CORE (Tm) i5-3330 CPU, 3.2 GHz processor and 8 GB RAM to solve the test problems. 

 

To improve the performance of GA, different experimental design techniques are used in the literature. Taguchi 

experimental design is one of the most effective techniques for convenient parameter settings in terms of more 

performance of GA [43-47]. Therefore, in this study, Taguchi experimental design have been used for 

determining the proper types of operators and optimum levels of parameters of the proposed GA [48, 49]. Table 

2 shows the determined levels of parameters of GA.  

 

<<Please Insert Table 2 here>> 

 

When the parameters are evaluated in view of MPA, the parameter value of P for MPA is 0.5. The population 

size and the maximum number of iterations Itermax  are set to 50 and 500 respectively.  

 

Optimal solutions are obtained for small sized test problems in acceptable computation times by the 

mathematical model as well as by GA and MPA. Mathematical model performance on the small sized test data is 

very effective and the global optimal solutions could be obtained for those sizes of problems. Table 3 shows the 

computational results for both GA and MPA for small sized test problems. In the Table, 
GAZ  and 

MPAZ  denote 

the objective function (fitness) values of the GA and MPA respectively. On the other hand, for medium and large 

sized problems, the computational results in terms of the best values could be reached in 3600 seconds (1 hour) 

by GAMS are presented in Table 4. In the table, 
MMZ  denotes corresponding bound value for related problems.  

The Table 4 also shows the best integer values obtained by GA and MPA in terms of fitness values and CPU 

times. Please note that considering the numbers of part, machine and cell in the relevant literature, the number of 

cells is assumed to be “2” in small size problems, “2” and “3” in medium and large sizes.  %  GA and  %MPA  

express the variations between the results of developed mathematical model and the proposed algorithms GA 

and MPA respectively and calculated as follows. 

 

 % 100 MM GA

GA

MM

Z Z
x

Z


   

(41) 

 % 100 MM MPA

MPA

MM

Z Z
x

Z


   

(42) 

 

<<Please Insert Table 3 here>> 
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<<Please Insert Table 4 here>> 

 

From the Table 4, one can see that the proposed GA and MPA are very effective to obtain acceptable and 

reasonable solutions for medium and large sized problems in very shorter computational times compared to 

results obtained by the developed model. MPA can also achieve much better fitness values as size increases. 

When considering the NP nature of the problem and the dimensions and complexity of real-life problems are 

much higher than the test problems, it is certain that the potential of the MPA algorithm to produce workable 

good solutions will gain more importance.  

 

5. A Real-life Application 

 

The proposed GA and MPA algorithms have been applied to a large scale real-life problem, at gear-cutting shop 

of a world-class truck manufacturer to test their performances by comparing with present practices. To produce 

different diameter and pitches of gears there are 24 machines positioned by their functions.  Total of 79 

operations on 12 parts are processed in that system (see Appendix). An integrated feasible solution of cell 

forming and part scheduling problem could not be obtained even after running the mathematical model for 10 

hours. 

To provide more convenience and flexibility to decision makers, different weights in the objective function were 

used. Considering that large make-span values have more effect on the objective function, weight values for 

,  EE voidw w  were taken as “1” and 4 different weights were investigated for  Cmaxw as 1, 1/2, 1/4 and 1/8. The 

number of cells to be created for the problem had been selected as 3. The parameters and levels for proposed GA 

and MPA were designed to be the same as in the previous section.  

In the current situation, the cellular production system has not been implemented yet. So it is assumed to be as 

single cell which means EE is not applicable. The current state scheduling is done intuitively, with the number of 

voids and 
maxC  values of 214 and 189, respectively. The performances of the proposed methods were evaluated 

on the average and best values obtained by repeatedly running of the algorithms for 3 times. The computational 

results were presented in Table 5. The value corresponding to the current company heuristic in the application (

CurrentZ ) and the best values obtained with GA (
GAZ ) and MPA (

MPAZ )  were compared and the deviation values 

(% improvement rates) were calculated as (
Current GAZ Z )*100/

CurrentZ  and as (
Current MPAZ Z )*100/

CurrentZ  

respectively.  

<<Please Insert Table 5 here>> 

 

When the values in Table 5 are examined, the average % performance improvement values for both GA and 

MPA are quite close to each other compared to the current situation (57.40% and 56.73% respectively). The 

greatest improvements were achieved at the fourth cases (1,1,1/8 weight set) with the values of 68.7% by the GA 

and 63.34 by MPA. Table 6 and 7 show the results of scheduling and cell assignment related to the fourth cases 

obtained by the GA and MPA. 
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<<Please Insert Table 6 here>> 

 

<<Please Insert Table 7 here>> 

 

As seen in Table 6 and 7, three cells were created by both the GA and MPA. In both test problems and real life 

application, the proposed GA and MPA results show a very superior performance especially in terms of CPU 

times compared to the developed mathematical model.  

6. Conclusion 

In this paper, simultaneous consideration of CF and CPS in CMS environment is investigated. A new 

mathematical model has been developed by considering the assumptions and properties of the problem. The 

developed mathematical model offers a useful representation for the problem and in terms of considered 

objective function components, it is a first study in the CF and CPS literature. The developed mathematical 

model has been tested on small, medium and large sized test problems derived from the literature.  

The results have confirmed that the small sized problems can easily be solved with GAMS software.  These 

optimum values are obtained in very short computational times. However, the times to reach the optimal 

solutions are rapidly growing as the size of the studied problem grows due to its NP-hard structure. On the other 

hand, most of real life CMS-CPS problems are generally larger sized than the instances handled here. So, to 

extend the applicability of the proposed model on much larger sized and more complex problems, a GA and a 

MPA have also been developed and presented in the study.  The GA parameters have been tuned by Taguchi 

method. The results obtained on the generated medium and large sized problem sets show that the both proposed 

GA and MPA have very effective performances and the reasonable and applicable solutions can be reached in 

acceptable shorter times. And finally, the proposed GA and MPA have been applied to a real-life case. The 

improvements obtained are fairly high as expected. 
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Appendix: Data for Real-life Problem 

Part 

no. 

Operation no. Operation type Alternative 

Machines 

Operation time 

(minutes) 

1 1 Turning 1,2,9 35,46,38 

 2 Hobbing 4,5,7 42,35,50 

 3 Washing 8,14 7,9 

 4 Trimming 3,6 8,10 

 5 Carburising 13,15 15,18 

 6 Grinding 16,18,21 34,36,42 

 7 Marking 20,22 10,12 

     

2 1 Hobbing 17,19 38,45 

 2 Fitting the bush 23,24 10,15 

 3 Turning the bush 1,2 6,9 

 4 Washing 8,14 23,25 

     

3 1 Turning 1,9 10,15 

 2 Hobbing 4,5,7 34,36,43 

 3 Washing 8,14 12,14 

 4 Milling 10,11,12 12,16,18 

 5 Trimming 3,6 4,6 

 6 Washing 8,14 10,13 

     

4 1 Carburising 13,15 15,17 

 2 Grinding 16,18,21 5,8,9 

 3 Marking 20,22 4,7 

 4 Honing 17,19 11,16 

 5 Fitting the bush 23,24 5,8 

 6 Turning the bush 1,9 14,16 

 7 Washing 8,14 10,11 

     

5 1 Milling 10,11,12 6,8,11 

 2 Drilling 20,22 3,5 

 3 Turning 1,2,9 7,9,10 

 4 Milling 10,12 14,17 

 5 Drilling 20,22 3,4 

 6 Hobbing 10,11 8,9 

 7 Washing 8,14 10,12 

     

6 1 Grinding 16,18,21 24,32,29 

 2 Surface Milling 10,11,12 16,21,23 

 3 Drilling 20,22 5,7 

 4 Notcing 1,9 3,2 

 5 Fitting the bush 23,24 4,6 

 6 Honing 17,19 11,14 

     

7 1 Milling 10,11 60,52 

 2 Drilling 20,22 10,12 

 3 Turning 1,9 24,35 

 4 Drilling 20,22 5,6 

 5 Washing 8,14 11,12 
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Appendix: Data for Real-life Problem (continued) 

 

Part no. Operation no. Operation type Alternative 

Machines 

Operation time 

(minutes) 

8 1 Surface Grinding 16,18,21 4,8,6 

 2 Surface Milling 10,11 25,18 

 3 Chamfering 20,22 5,8 

 4 Turning 2,9 17,22 

 5 Fitting the bush 23,24 6,8 

 6 Finish Grinding 16,18 11,13 

 7 Honing 17,19 10,14 

 8 Washing 8,14 14,12 

     

9 1 Rough Milling 10,11,12 22,18,26 

 2 Drilling 20,22 9,10 

 3 Final Milling 10,12 16,17 

 4 Chamfering 20,22 5,3 

 5 Hobbing 10,11 6,7 

 6 Drilling 20,22 11,9 

 7 Washing 8,14 12,14 

 8 Honing 17,19 10,15 

 9 Plug Fitting 10,12 5,8 

     

10 1 Grading 10,11 17,15 

 2 Turning 1,2,9 27,35,36 

 3 Milling 10,11,12 22,18,24 

 4 Boring 1,2 24,30 

 5 Deep drilling 20,22 10,15 

 6 Grinding 16,18,21 8,12,15 

 7 Washing 8,14 11,13 

     

11 1 Turning 1,2,9 17,22,25 

 2 Hobbing 4,5,7 10,15,13 

 3 Washing 8,14 13,11 

 4 Trimming 3,6 8,13 

 5 Carburising 13,15 11,14 

 6 Grinding 16,18,21 6,8,9 

 7 Turning the bush 1,9 21,26 

 8 Washing 8,14 5,9 

     

12 1 Turning 1,2,9 6,7,11 

 2 Hobbing 4,5,7 16,18,14 

 3 Washing 8,14 4,7 

 4 Trimming 3,6 5,9 

 5 Grinding 16,18,21 26,24,28 
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FIGURE CAPTIONS 

Figure 1. Pseudocode for Genetic Algorithm (GA) 

Figure 2. Chromosome representation 

Figure 3. The Pseudo code belonging to the Marine Predators Algorithm (MPA) 
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Figure 1. Pseudocode for GA 

 

Figure 2. Chromosome representation  

 

 
 

Figure 3. The Pseudo code belonging to the MPA 
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TABLES CAPTIONS 

 

Table 1. Literature Review of Part Scheduling in Cellular Manufacturing System (CMS) 

Table 2. Genetic Algorithm (GA) parameters and levels 

Table 3. Small sized test problems and parameters 

Table 4. Medium/Large sized test problems and parameters 

Table 5. Results for Real-life Application 

Table 6. Genetic Algorithm (GA) - Real-life Application Case 4 - (a) Cell Design and Grouping (b) Cell 

Scheduling 

Table 7. Marine Predators Algorithm (MPA) - Real-life Application Case 4 - (a) Cell Design and Grouping (b) 

Cell Scheduling 



22 
 

 

Table 1. Literature Review of Part Scheduling in CMS 

No Reference Problem Objective(s) Solution Method(s) Software Parameter 

Tuning 

1 Tang et al. 

[14] 

Jop Shop Tardeness penalty 

cost 

Mathematical model 

Lagrangian relaxation 

decomposition with a 

heuristic  

Gams 

Java 

- 

 

2 Halat and 

Bashirzadeh 

[23] 

Job Shop Makespan Mathematical model 

Heuristic based on GA 

Lingo 

Matlab 

Factorial 

Design 

3 Liu and 

Wang[15]  

Job Shop Makespan Mathematical model 

Hybrid SA algorithm 

C++ - 

4 Rafiei et al.  

[16] 

Job Shop Intercell/intracell 

transportation costs 

Makespan 

Hybrid SA/GA Gams 

Matlab 

- 

5 Liu et al. 

[17] 

Job Shop Material handling 

costs 

Fixed and 

Operating costs of 

machines/workers 

Discrete bacteria foraging 

algorithm 

C++ - 

6 Costa et al.  

[19] 

Flow 

Shop 

Makespan Hybrid Metaheuristic Matlab ANOVA 

7 Buruk Sahin 

and Alpay 

[3] 

Job Shop Makespan 

EE 

Mathematical model Gams - 

8 Feng et al.  

[20] 

Job Shop Flowtime Improved GA Lingo - 

9 Neufeld et 

al.[27] 

Flowline Total makespan SA algorithms C Full 

factorial 

design 

10 This Study Job Shop Makespan 

EE 

Void 

Mathematical Model 

GA 

MPA 

 

Gams 

Matlab 

Taguchi 
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Table 2. GA parameters and levels 

  Levels 

 Factors 1 2 3 

A Population Size 30 (small) 

2000 (large) 

50 (small) 

3000 (large) 

 

B Crossover operator one-point two-point scattered 

C Mutation rate 0.05 0.10 0.15 

D Crossover rate 0.7 0.8 0.9 

E Selection operator roulette stochastic tournament 
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Table 3. Small sized test problems and parameters 

  GA MPA Mathematical Model  
            

Problems Size 

(part, 

operation,  

machine, cell) 

CPU 

 
( ,  ,  maxC EE void ) ZGA CPU 

 
( ,  ,  maxC EE void ) ZMPA CPU 

 
( ,  ,  maxC EE void )  

MMZ  
 %GA  and 

 %MPA   

 

SFJSCF_1 (2,2,2,2) 2.5 (66,0,0) 66 0.063 (66,0,0) 66 0.25 (66,0,0) 66 0.0 

SFJSCF_2 (2,2,2,2) 2.1 (107,0,0) 107 0.175 (107,0,0) 107 0.09 (107,0,0) 107 0.0 

SFJSCF_3 (3,2,2,2) 2.9 (221,1,0) 222 0.200 (221,1,0) 222 4.4 (221,1,0) 222 0.0 

SFJSCF_4 (3,2,2,2) 2.3 (355,1,0) 356 0.100 (355,1,0) 356 3.4 (355, 1, 0) 356 0.0 

SFJSCF_5 (3,2,2,2) 2.8 (119, 3,0) 122 0.103 (119, 3,0) 122 16.0 (119, 3, 0) 122 0.0 

SFJSCF_6 (3,3,3,2) 2.5 (320,0,0) 320 0.343 (320,0,0) 320 56.0 (320, 0, 0) 320 0.0 

SFJSCF_7 (3,3,5,2) 3.6 (397,1,0) 398 1.125 (397,1,0) 398 5.0 (397, 1, 0) 398 0.0 

SFJSCF_8 (3,3,4,2) 3.4 (253,1,0) 254 0.375 (253,1,0) 254 505 (253,1,0) 254 0.0 

SFJSCF_9 (3,3,3,2) 4.9 (210,2,0) 212 0.360 (210,2,0) 212 45.2 (210,2,0) 212 0.0 

SFJSCF_10 (4,3,5,2) 4.0 (516,0,0) 516 0.750 (516,0,0) 516 195 (516,0,0) 516 0.0 
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Table 4. Medium/Large sized test problems and parameters  

  GA MPA Mathematical Model 

             

Problem Size 

(part, 

operation,  

machine, 

cell) 

CPU 

(s) 
( ,  ,  maxC EE void ) ZGA   GA %  

 

CP

U(s) 
( ,  ,  maxC EE void ) ZMPA   MPA %  

 

CPU 

(s) 

 

( ,  ,  maxC EE void )  

MMZ

 

MFJSCF_1 (5,3,6,2) 41 (469,2,2) 473 0 1.78 (469,2,2) 473 0,0 3600 (469,2,2) 473 

 (5,3,6,3) 94 (468,3,0) 471 0 2.40 (468,3,0) 471 0,0 3600 (468,3,0) 471 

MFJSCF_2 (5,3,7,2) 73 (446,2,6) 454 0 1.90 (446,2,6) 454 0,0 3600 (446,2,6) 454 

 (5,3,7,3) 97 (446,4,0) 450 +1 2.38 (446,4,0) 450 +1,1 3600 (448,5,2) 455 

MFJSCF_3 (6,3,7,2) 247 (466,3,8) 477 0 4.07 (466,3,8) 477 0,0 3600 (466,3,8) 477 

 (6,3,7,3) 143 (468,6,2) 476 +0.4 5.01 (468,6,2) 476 +0,4 3600 (468,7,3) 478 

MFJSCF_4 (7,3,7,2) 178 (564,2,9) 574 0 11.5 (564,2,9) 574 0,0 3600 (565,1,8) 574 

 (7,3,7,3) 184 (564,5,3) 572 +0.5 10.7 (564,5,3) 572 +0,5 3600 (565,5,5) 575 

MFJSCF_5 (7,3,7,2) 192 (514,3,9) 526 0 12.3 (514,3,9) 526 0,0 3600 (514,3,9) 526 

 (7,3,7,3) 135 (519,5,3) 527 +0.4 9.37 (514,8,5) 527 +0,4 3600 (514,9,6) 529 

MFJSCF_6 (8,3,7,2) 162 (649,4,8) 661 +0.9 23.9 (641,9,6) 656 +1,6 3600 (648,15,4) 667 

 (8,3,7,3) 202 (634,6,4) 644 +0.3 21.9 (634,6,4) 644 +0,3 3600 (634,10,2) 646 

MFJSCF_7 (8,4,7,2) 214 (894,8,7) 909 0 91.6 (881,18,7) 906 +0,3 3600 (881,23,5) 909 

 (8,4,7,3) 204 (910,13,5) 928 +1.3 83.7 (897,19,5) 921 +2,0 3600 (920,17,3) 940 

MFJSCF_8 (9,4,8,2) 311 (944,6,11) 961 +2.5 262 (921,22,9) 952 +3,4 3600 (958,16,11) 985 

 (9,4,8,3) 216 (925,13,4) 942 +5.1 171 (911,17,8) 936 +5,5 3600 (959,26,5) 990 

MFJSCF_9 (11,4,8,2) 308 (1165,11,15) 1191 +0.3 432 (1150,15,8) 1173 +1,8 3600 (1158,22,15) 1195 

 (11,4,8,3) 225 (1272,14,4) 1290 +6.0 318 (1163,23,11) 1197 +12,8 3600 (1346,20,7) 1373 

MFJSCF_10 (12,4,8,2) 407 (1284,13,18) 1315 +5.8 497 (1294,10,12) 1316 +5,4 3600 (1361,18,12) 1391 

 (12,4,8,3) 359 (1372,21,9) 1402 - 382 (1327,25,13) 1365 - 3600 - - 
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Table 5. Results for Real-life Application 

Real Case 

 

Company’s 

Current 

Heuristic 

Method 

GA MPA 

  İ
,   ,  HDE CenbH B

w w w  

 

Objective 

function 

value 

Best GA 

Levels 

Objectives 

(EE, void, 

maxC ) 

Avg. GA Best GA 

(% improvement 

rate) 

CPU 

Time (s) 

Objectives 

(EE, void, 

maxC ) 

Avg. 

MPA 

Best MPA 

(% 

improvement 

rate) 

CPU 

Time 

(s) 

(1, 1, 1) 403 A2B3C1D1E2 (43,20,165) 235.3 228 (43.4) 652 (24,46,144) 217,4 214 (46.90) 402 

(1, 1, 1/2) 308.50 A2B3C3D2E2 (35,19,172) 142.5 140 (54.62 ) 1094 (21,37,162) 140.2 139 (54.94 ) 643 

(1, 1, 1/4) 261.25 A2B3C1D1E1 (35,20,168) 100.7 97 (62.87) 1151 (22,38,160) 110.6 100 (61.72) 689 

(1, 1, 1/8) 237.63 A2B3C1D1E2 (27,19,227) 76.16 74.375 (68.70) 1182 (28,40,153) 90,48 87,125 (63.34) 724 
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Table 6. GA - Real-life Application Case 4 - (a) Cell Design and Grouping (b) Cell Scheduling 

 
  Machine No. 

Cell 

No. 

Part 

No. 1 6 7 13 14 21 2 3 4 5 9 10 12 15 16 18 19 22 23 24 8 11 17 20 

1 1 1 4 2   3 6        5    7        

 4 6     1 7 2           4   5    3 

 11 1,7 4 2 5 3,8 6                    

 12 1 4 2   3 5                    

2 6               4 2     1   6 3 5        

3 2       3             2 4   1   

 3        5  2 1          3,6 4     

 5       3     4 1     5   7 6   2 

 7           3          5 1   2,4 

 8       4        1 6   5  8 2 7 3 

 9            3 9     4,6   7 1,5 8 2 

 10 4                   2   3   6           7 1   5 

(a) 

 
  Sequence (Part.Operation)   Sequence (Part.Operation) 

M1 (1.1)→(12.1)→(11.1)→(10.4)→(4.6)→(11.7) M13 (4.1)→(11.5) 

M2 (5.3)→(8.4)→(2.3) M14 (11.3)→(1.3)→(12.3)→(4.7)→(11.8) 

M3 (3.5) M15 (1.5) 

M4 - M16 (6.1)→(8.1)→(10.6) 

M5 (3.2) M17 (2.1)→(9.8)→(8.7) 

M6 (1.4)→(12.4)→(11.4) M18 (8.6) 

M7 (1.2)→(11.2)→(12.2) M19 (6.6)→(4.4) 

M8 (3.3)→(5.7)→(9.7)→(3.6)→(2.4)→(7.5)→(8.8)→(10.7) M20 (4.3)→(5.2)→(7.2)→(9.2)→(7.4)→(8.3)→(10.5) 

M9 (3.1)→(7.3)→(6.4)→(10.2) M21 (4.2)→(1.6)→(11.6)→(12.5) 

M10 (6.2)→(5.4)→(9.3) M22 (5.5)→(6.3)→(9.4)→(9.6)→(1.7) 

M11 (7.1)→(9.1)→(10.1)→(9.5)→(8.2)→(5.6)→(3.4) M23 (6.5)→(8.5) 

M12 (5.1)→(10.3)→(9.9) M24 (4.5)→(2.2) 

(b) 
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Table 7. MPA - Real-life Application Case 4 - (a) Cell Design and Grouping (b) Cell Scheduling 

 
  Machine No. 

Cell 

No. 

Part 

No. 1 4 8 10 12 22 6 7 9 13 17 18 19 20 21 23 2 3 5 11 14 15 16 24 

1 2 3   4           1     2         

 3 1 2 3 4                5   6    

 5       1,6 4 2,5   3            7    

 6 4       2 3       6  1         5 

 7 3   5     2,4              1     

 9       5 1,3,9 4,6     8   2       7    

 10 2   7 1,3            5 6  4        

 11 1,7 2 3,8       4   5  6             

 12   2 3               5  1 4       

2 4           6 1 4     3 2 5     7    

 8    2       4     6 7 3   5     8  1  

3 1         1     7     4 2   3 5 6   

(a) 

 

  Sequence (Part.Operation)   Sequence (Part.Operation) 

M1 (11.1)→(10.2)→(3.1)→(7.3)→(2.3)→(6.4)→(11.7) M13 (4.1)→(11.5) 

M2 (12.1)→(10.4) M14 (1.3)→(9.7)→(4.7)→(3.6)→(5.7)→(8.8) 

M3 (1.4)→(12.4)→(3.5) M15 (1.5) 

M4 (11.2)→(12.2)→(3.2) M16 (8.1)→(1.6) 

M5 (1.2) M17 (2.1)→(4.4)→(9.8) 

M6 (11.4) M18 (8.6)→(11.6) 

M7 - M19 (6.6)→(8.7) 

M8 (12.3)→(11.3)→(3.3)→(2.4)→(11.8)→(7.5)→(10.7) M20 (9.2)→(4.3)→(8.3)→(10.5)→(1.7) 

M9 (1.1)→(8.4)→(5.3)→(4.6) M21 (6.1)→(4.2)→(12.5)→(10.6) 

M10 (10.1)→(8.2)→(10.3)→(5.1)→(9.5)→(3.4)→(5.6) M22 (9.4)→(7.2)→(5.2)→(9.6)→(6.3)→(7.4)→(5.5) 

M11 (7.1) M23 (2.2)→(8.5)→(4.5) 

M12 (9.1)→(9.3)→(6.2)→(5.4)→(9.9) M24 (6.5) 

 (b) 
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