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Abstract. This paper proposes a new linearized mathematical model to solve the
integrated cell formation and job scheduling problem. The model aims to minimize the
exceptional elements, voids, and the make-span of the jobs. The results of test problems
show that the proposed model is very e�ective to obtain the best solutions for small-sized
problems in reasonable computation times. However, due to the NP-hard nature of the
considered problem, the best solutions couldn't be obtained in acceptable times for large-
sized test problems, whereas the real-life applications of the problem addressed here are
often much larger in size. To meet the requirement of solving larger-sized problems, the
Genetic Algorithm (GA), which is today considered one of the arti�cial intelligence and
machine learning techniques, and the Marine Predators Algorithm (MPA) as a new and
nature-inspired metaheuristic, are proposed. The success of the algorithms was investigated
and compared. The test results reveal the fact that the MPA with optimized parameters
has a high potential to solve real life problems. At last, an attempt is made to re-
design an existing real-life production system with the proposed algorithms. Eventually,
a considerable improvement is obtained in performance compared to the current situation
of the system.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The Cellular Manufacturing System (CMS) is an ef-
fective production system that enables a group of
machines to be grouped into a machine cell to process
a group of products. CMS enables production control
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to be performed independently in each cell, with
the aim of creating units that deal with a limited
number of parts. CMS has many bene�ts, such as
minimizing setup time, throughput time, material ow
and transport times, work-in-process inventories, and
�nished product stocks [1].

CMS includes the following decisions: \Cell For-
mation (CF)", \Group Layout (GL)", \Cellular Part
Scheduling (CPS)," and \Resource Allocation (RA)".
The formation of cells is known as the principal activity
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in cell design. This phase includes the assignment of
parts families and machines to the cells to be formed [2].
However, some machines required for some operations
for the part families on certain cells may be unavailable.
Therefore, it may be necessary to process some parts
in machines in two or more cells. The requirement
arising from that intercellular movement of a part
between cells is called Exceptional Element (EE) [3].
CMS designers try to minimize the number of EEs to
avoid intercellular movements and, in turn, to obtain
shorter completion times and, consequently, lower
costs. Customarily, CMS designers were satis�ed with
part-machine grouping only by ignoring job scheduling.
However, it is more realistic to consider the CF problem
together with CPS.

Scheduling is a decision-making process encoun-
tered in many manufacturing and service industries. In
this process, allocating resources to jobs and sequenc-
ing them in certain periods is aimed to optimize one
or more objectives [4]. Li et al. [5] note that: \The
objective of CPS is to identify the sequence of parts in
cells that minimizes some e�ectiveness criteria".

In this study, Flexible Jop Shop Scheduling
(FJSS) is considered. Amongst the scheduling, make-
span is selected to utilize the advantage of idle time
reduction to improve machine utilization. Moreover,
minimizing make-span will directly minimize the pro-
duction costs [6]. In FJSS, each job operation can be
processed on any machine that is previously selected
among a set of machines [7].

Compared to FJSS literature, there are relatively
few publications dealing with CF and CPS together
in CMS. Wu et al. [8] considered CF, machine layout,
and scheduling decisions in CMS with the aim of
minimizing make-span and proposed a hierarchical
Genetic Algorithm (GA) to solve the integrated cell
design problem. The results show that the simultaneous
solution process is more successful than the sequential
one. Wang et al. [9] aimed to minimize the total delay
by using a penalty cost in an integrated decision process
of CPS. Ghezavati and Saidi-Mehrabad [10] considered
a stochastic environment where the processing times
of jobs in di�erent machines are random. CF and CPS
decisions are handled concurrently by a hybrid method.
Kesen et al. [11] developed a heuristic approach based
on GA for job scheduling problems in virtual cells
where duplicate machines and alternative sequences
and routes are assumed. Tang et al. [12] considered
the problem of scheduling parts in CMS sequentially
with the aim of minimizing intra-cell movements and
proposed a random search algorithm. Aryanezhad et
al. [13] considered assembly processes in CMS. Li
et al. [5] considered the issue of scheduling parts in
CMS. Ant Colony Optimization approach (ACO) is
used on exible routes. Tang et al. [14] presented an
integrated approach for CPS decisions, taking into

consideration CF and part scheduling by mathematical
optimization and random search approaches. Liu and
Wang [15] proposed a non-linear integer mathematical
model to solve the CF and scheduling problem in
a dual-resource-constrained setting. Ra�ei et al. [16]
considered the problem of CPS and proposed a non-
linear mixed-integer model and a hybrid approach.
Liu et al. [17] researched the problem of CF and job
scheduling in a multi-functional worker and machine
environment by proposing a Discrete Bacteria Foraging
Algorithm (DBFA). Iqbal et al. [18] addressed the
CF and CPS to ensure minimum energy consumption
and make-span. Costa et al. [19] studied a CMS and
investigated the ow-shop sequence-dependent group
scheduling problem with the objective of make-span
minimization. They propose a hybrid metaheuristic
method that integrates GA and random sampling
search methods. Buruk Sahin and Alpay [3] developed a
new mathematical model for the optimization of CPS
and CF problems. They aim to minimize the EEs in
cells and the make-span of the jobs, simultaneously.
Feng et al. [20] showed that the integration of CF and
CPS can remarkably reduce the ow time of CMS. Far
et al. [21] dealt with the CPS problem in deterministic
and fuzzy environments. Forghani and Ghomi [22]
presented classical and virtual cell con�gurations. They
integrated CF, GL, and CPS problems with the aim of
minimizing total handling costs and average cycle time.

Some of the design attributes of the models
considered in CF and CPS literature are inter-
cellular transportation times [14,15,23], cell size
restriction [15], operation sequence and processing
times [14,15,23,24], duplicate machines [20,25], setup
times [16,19,23], reentrant parts [20,26], energy
e�cient routings [18], non-permutation schedules [27],
variable cell number [20], maintenance [28], learning
and forgetting e�ects [29,30], fuzzy model [31], and
capacity measurement [32].

Some recent papers integrating CF and CPS deci-
sions in CMS, along with the objectives of the models,
the solution approaches, and the software used, are
summarized in Table 1. Due to the critical role in deter-
mining the performance of the algorithms, the parame-
ter tuning approaches in the studies are also examined.

Although there are studies in which CF and
CPS are taken independently of each other in the
relevant literature, many studies have shown that the
CF problem and the CPS problem are interrelated
and should not be considered separately [8,18,20,24,26].
Feng et al. [20] emphasize that integrated CF and
scheduling decisions are correlated, and the integrated
approach may provide time savings of up to 13.2% by
o�ering more successful solutions than the sequential
approach.

The main contributions of this study are ex-
plained as follows:
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Table 1. Literature review of part scheduling in Cellular Manufacturing System (CMS).

No. Reference Problem
Objective

(s)
Solution

method (s)
Software Parameter

tuning

1 Tang et al. [14] Jop shop Tardiness
penalty cost

Mathematical model
Lagrangian
relaxation
decomposition
with a heuristic

Gams Java {

2 Halat and
Bashirzadeh [23]

Jop shop Makespan
Mathematical model
heuristic-based
on GA

Lingo MATLAB Factorial
design

3 Liu and
Wang [15]

Jop shop Makespan
Mathematical model
hybrid SA
algorithm

C++ {

4 Ra�ei et al. [16] Jop shop
Intercell/intracell
transportation costs
makespan

Hybrid SA/GA Gams MATLAB {

5 Liu et al. [17] Jop shop
Material handling costs
�xed and operating costs
of machines/workers

Discrete
bacteria
foraging
algorithm

C++ {

6 Costa et al. [19] Flow shop Makespan Hybrid
metaheuristic

MATLAB ANOVA

7
Buruk Sahin
and
Alpay [3]

Jop shop Makespan EE Mathematical
model

Gams {

8 Feng et al. [20] Jop shop Flowtime Improved GA Lingo {

9 Neufeld et al. [27] Flowline Total makespan SA algorithms C Full factorial
design

10 This study Jop shop Makespan
EE void

Mathematical model
GA
MPA

Gams MATLAB Taguchi

� Di�erent from the others on CF and parts scheduling
problems, a new mathematical model has been
developed for the �rst time considering voids, EEs,
and make-span simultaneously;

� A GA and a Marine Predators Algorithm (MPA) are
proposed for large-sized instances of the addressed
problem to produce good/applicable solutions in
reasonable times;

� The proposed algorithms are applied to a real-

life problem, and considerable improvements are
observed compared to present practices.

2. Problem formulation and mathematical
model

In this study, a new mathematical model with the
following assumptions is developed. Parts can be
processed by di�erent types of machines. In each type,
there exists one machine. Each machine and each
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part can be allocated to only one cell. Some part
operations can be processed on an alternative machine
set. In this set, the processing times can be the same or
di�erent from each other. Each part has a sequence of
operations processed in a given order. The processing
time for the operations of each part type on a machine
is known and �xed. No preemption is allowed. Set-up
times for the parts are assumed sequence-independent
and considered to be included in the processing times.
The ith operation of each job can only be started
after the (i � 1)th operation of that part has been
completed and the time at which the required machine
has completed its operation of the current job. There
is a lower bound for the number of machines and parts
allocated to each cell.

Indices

i Index for the part types i = f1; : : : ; ng
j Index for the operations required by

parts j = f0; : : : ; nig
k Index for the machine types

k = f0; : : : ;mg
l Index for the position number of the

assigned operation in the machine
l = f0; : : : ; lig

c Index for the cells

Parameters

n Total number of parts
m Total number of machines
ji Total number of operations of job i
Oij ith operation of part j
pijk The standard time to process Oij
aijk 1 if operation Oij is required processing

on machine k, and 0 otherwise
M A large positive number
wp Weight of objective p

Decision variables

xi;j;k;l;c 1 if Oij is processed on machine k in
the lth position in cell c, and 0 other
wise

zk;c 1 if machine type k is assigned to cell
c, and 0 other wise

yi;c 1 if part type i is assigned to cell c,
and 0 other wise

vi;k;c 1 if part i is processed on machine k in
cell c, and 0 other wise

ti;j Starting time of Oij

Tmk;l Starting time of Oij (in machine k and
in the lth order)

EE Exceptional Element
Cmax Maximum completion time
Zobj Scalarized objective function

Objective functions and constraints

Min Zobj =
X
i

X
j

X
k

X
l

X
c

xi;j;k;l;c

� zk;c � (1� yi;c) +
X
i

X
k

X
c

yi;c

� zk;c � (1� vi;k;c) + Cmax; (1)X
k

X
l

X
c

xi;j;k;l;c = 1 8i; j; (2)

X
i

X
j

xi;j;k;l;c � 1 8k; l; c; (3)

X
l

X
c

xi;j;k;l;c � ai;j;k 8i; j; k; (4)

ti;j+1 � ti;j +
X
k

X
l

xi;j;k;l;c � pi;j;k

8i; j < nj ; c; (5)

Tmk;l+1 � Tmk;l +
X
i

X
j

xi;j;k;l;c � pi;j;k

8k; l < li; c; (6)

Tmk;l � ti;j +M � (1� xi;j;k;l;c) 8i; j; k; l; c; (7)

Tmk;l � ti;j �M � (1� xi;j;k;l;c) 8i; j; k; l; c; (8)

Cmax � ti;j +
X
k

X
l

xi;j;k;l;c � pi;j;k 8i; (9)

X
c

zk;c = 1 8k; (10)

X
k

zk;c � 1 8c; (11)

X
c

yi;c = 1 8i; (12)

X
i

yi;c � 1 8c; (13)

xi;j;k;l;c � ai;j;k � zk;c 8i; j; k; l; c; (14)
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zk;c; yi;c; xi;j;k;l;c 2 f0; 1g 8k; c 8i; c
8i; j; k; l; c; (15)

Tmk;l; ti;j ; Cmax; Zobj � 0 8k; l 8i; j: (16)

In the model, Eq. (1) shows the scalarized objective
function. It includes three sub-objectives: minimiza-
tion of EE, minimization of number of voids, and min-
imization of make-span. Constraint (2) imposes that
each part process is assigned to one cell and only one
position of the existing machines. Constraint (3) states
that some capabilities of some machines cannot be
fully used depending on alternative machine sets. Con-
straint (4) guarantees that each operation is performed
on the respective predetermined machines. Constraint
(5) ensures the precedence relationships related to the
starting time of the operations. Constraint (6) ensures
that, in assignments for each position of a machine,
the occupancy of previous positions of that machine
is controlled. Constraints (7) and (8) provide that
an operation can be assigned to only one position of
a machine. Constraint (9) determines the maximum
completion time of operations on all available machines
by considering the last completed time for all opera-
tions. Constraint (10) ensures that each machine can
be assigned to one cell. Constraint (11) ensures a
lower bound for assigning machines to cells. Constraint
(12) determines that only one cell must be assigned
for each part. Constraint (13) ensures a lower bound
for assigning parts to cells. Constraint (14) guarantees
that each part operation can be done only in the cell to
which a relevant machine is assigned. Constraints (15)
and (16) illustrate the binary and continuous decision
variables, respectively.

The proposed model is non-linear, and auxiliary
binary variables (Fi;j;k;l;c, Si;j;k;l;c, Ui;k;c, Hi;k;c) were
used to reformulate the model by introducing new sets
of variables. The variables, Fi;j;k;l;c= xi;j;k;l;c� zk;c,
Si;j;k;l;c = xi;j;k;l;c �zk;c� yi;c; Ui;k;c = yi;c* zk;c, and
Hi;k;c= yi;c� zk;c� vi;k;c were used to linearize terms
in the objective function. Additionally, vi;k;c is deter-
mined to calculate the number of voids. Constraints
(17){(28) were used to linearize the model. Eq. (29)
shows the scalarized weighted objective function in the
linear structure.
xi;j;k;l;c + zk;c � 2 � Fi;j;k;l;c 8i; j; k; l; c; (17)

xi;j;k;l;c + zk;c � 1 + Fi;j;k;l;c 8i; j; k; l; c; (18)

xi;j;k;l;c + zk;c + yi;c � 3 � Si;j;k;l;c
8i; j; k; l; c; (19)

xi;j;k;l;c + zk;c + yi;c � 2 + Si;j;k;l;c

8i; j; k; l; c; (20)

yi;c + zk;c � 2 � Ui;k;c 8i; k; c; (21)

yi;c + zk;c � 1 + Ui;k;c 8i; k; c; (22)

yi;c + zk;c + vi;k;c � 3 �Hi;k;c 8i; k; c; (23)

yi;c + zk;c + vi;k;c � 2 +Hi;k;c 8i; k; c; (24)

vi;k;c �X
j

X
l

xi;j;k;l;c 8i; k; c; (25)

Fi;j;k;l;c; Si;j;k;l;c; Ui;k;c;Hi;k;c; vi;k;c 2 f0; 1g
8i; j; k; l; c; (26)

EE =
X
i

X
j

X
k

X
l

X
c

(Fi;j;k;l;c � Si;j;k;l;c); (27)

void =
X
i

X
k

X
c

(Ui;k;c �Hi;k;c) ; (28)

MinZobj = w1EE + w2void+ w3Cmax; (29)

EE; void; Zobj � 0 8k; l8i; j: (30)

Optimal results could not be reached for medium and
large-sized test problems within reasonable times be-
cause of their combinatorial structures. As Chaudhry
and Khan [7] note: \In terms of computational com-
plexity, JSS problem is NP-hard. So, for even small
instances, an optimal solution cannot be guaranteed.
Additionally, FJSS problem is more complex than
JSSP as it considers the determination of machine
assignment for each operation". On the other hand,
most real-life CF and job scheduling problems are both
larger in size and more complex in structure. As the
problem size grows, the time required to reach the best
solutions is far from being acceptable. Whereas time is
quite valuable in competitive conditions of the practical
business environment.

3. Solution methodology

To reach acceptable solutions in shorter/acceptable
times in real-life problems, a GA and MPA are pre-
sented in the following section.

3.1. Genetic Algorithm (GA)
GA was �rst introduced by Holland [33], and today, it is
considered one of the arti�cial intelligence and machine
learning algorithms [34]. The structure of potential
solutions to a problem is designed at the initial step
of GA to constitute chromosomes. Each component of
this chromosome is referred to as a gene, and a set of
chromosomes is referred to as a population. An initial
population consisting of feasible solutions is created
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randomly. GA includes \selection", \reproduction
(crossover)," and \mutation" mechanisms. In the
selection step, the chromosomes are elected by using
a kind of biased random process from the population.
Crossover enables the production of new feasible solu-
tions, and mutation is used to increase the variety of
the population. A new generation is formed by some of
the parents. After several generations, GA converges
to hopefully an optimal or suboptimal solution to the
problem represented by the best chromosome of the
last population. Fitness function is the measure of
a chromosome's performance. A �tness function is
proposed by this study as in Eq. (31):

Fitnessfunction = total no: of exceptional elements

+ total no:of voids + make

� span + total penalty : (31)

The total number of EEs is calculated by considering
the total number of jobs that could not be performed in
the assigned cell. A void refers to a part operation that
does not require processing on a machine inside its own
cell. Make-span has been calculated with the help of
machine part operation matrices and by selecting the
largest one among the completion times of the last jobs
considering machine and part suitability times.

A penalty function is added to the �tness value
for each chromosome in the population that violates
any constraint in the mathematical model to eliminate
unfeasible solutions [2,6]. The Total Penalty (TP)
proposed by this study to eliminate the chromosomes
that do not comply with Constraints (11) and (13) in
the mathematical model and the infeasibility of the
schedule are given in Eq. (32):

TP ="1 � total (part related penalties)

+ "2 � total (machine related penalties)

+ "3 � total(time related penalties): (32)

In case of not assigning at least one piece, the penalty
for the part is applied. A machine penalty is applied
for each case in which at least one machine is not
assigned to each cell. Non-feasible solutions regarding
the calculation of the completion time are also reected

Figure 1. Pseudocode for Genetic Algorithm (GA).

in the penalty function as time-related penalties, and
the acceptance of these solutions is prevented. Other
constraints in the model used in de�ning the problem
are provided by the developed chromosome structure.
The coe�cients "1, "2, and "3 of the penalty function
are adopted in accordance with the problem size and
the magnitude of the objective function value.

GA parameters are generally thought to be de-
termined by the experimental analysis [35]. A concise
pseudocode of the proposed GA for the studied inte-
grated problem is seen in Figure 1 [36]. Here, P(t) and
C(t) are parents and o�spring in the current generation
t. Recombination involves crossover and mutation to
yield o�spring.

3.1.1. Chromosome structure
Developing a chromosome structure is the �rst step in
obtaining high-quality results for the problem. There
are various chromosome structures for FJSS and CF
problems [16]. Figure 2 shows an example repre-
sentation of the designed chromosome structure for
the considered problem in this study. It consists of
three sections for assignments to cells, assignments to
machines, and job-operation sequences.

The �rst section of the chromosome includes as
many genes as the total number of machines and
parts. The assignment of machines and parts to
cells is represented in this section. The size of the
second section is equal to the total number of part-
operations assigned to the machines. Each value in this
structure represents the chosen machine alternative for
the related part-operation. The chromosome represents
operations sequentially from left to right. The third

Figure 2. Chromosome representation.
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section that represents the operation sequence includes
as many genes as the total number of part-operations
and represents the operations sequentially from left to
right. This section also represents the replacements of
operations on the Gantt chart. Finally, chromosome
size is represented by the following equation: number
of parts + number of machines + 2*total number of
operations.

3.1.2. Deciding on genetic operators
A number of methods, such as genetic operator alterna-
tives, are found in the literature to construct a proper
GA. Three types of \selection" methods, namely,
\Tournament selection", \Roulette wheel selection,"
and \Stochastic uniform selection" [37], three types of
\crossover" operators, namely, \One-point crossover",
\Two-point crossover" and \Scattered crossover," and
\adaptive feasible mutation" as the \mutation" opera-
tor [38] are considered in this study. It should also be
noted that the chromosome structure proposed in the
study prevents obtaining unfavorable solutions after
crossover and mutation processes. An experimental
design based on the Taguchi technique is used to decide
on the mentioned operators and calculate the optimum
values of the parameters [35].

3.2. Marine Predators Algorithm (MPA)
Faramarzi et al. [39] developed MPA inspired by
the L�evy and Brownian motions in ocean predators.
MPA is a meta-heuristic optimization algorithm that
simulates the hunting process based on the relationship
between prey and predators in the sea. While marine
predators exhibit Brownian motion in half of this
hunting period, they spend the remaining half in L�evy
motion. Predators aim to maximize the possibility
of catching their prey with such di�erent movement
patterns.

In the MPA, the best course of action for catching
prey is of great importance, and the MPA tries to
maintain a balance in the L�evy and Brownian mo-
tions. In this way, MPA provides an opportunity to
evaluate di�erent strategies for optimizing the hunting
process [40].

For generation of the initial population, below
Eq. (33) is used:

Xij = bLj +R� (bUj � bLj) i = 1; 2; � � � ; n
j = 1; 2; � � � ; d (33)

where n denotes the population size and d denotes the
dimension of the search agent. R is the uniform random
number vector, and bUj and bLj denote the upper and
lower bounds, respectively, of the search agent in the
jth dimensional search space.

Using Eq. (33), the Prey matrix is constructed,
and the �tness values for all individuals are calculated.
Then, the Elite matrix is formed from the ones called

top predators with optimal �tness values of the same
size as the Prey matrix. Elite matrix and top predators
are updated with each iteration. For this reason, an
individual who was a predator before may become the
prey of other top predators later on. Also, the Prey
matrix is updated depending on the di�erent velocity
ratios. Thus, a prey will be able to be in a di�erent
position in each iteration and get displaced. Below,
Prey and Elite matrixes are expressed:

Elite =

26666666664

XI
1;1 XI

1;2 � � � XI
1;d

XI
2;1 XI

2;2 � � � XI
2;d

...
...

...
...

...
...

...
...

...
...

...
...

XI
n;1 XI

n;2 � � � XI
n;d

37777777775
n�d

(34)

Prey =

2666666664
X1;1 X1;2 � � � X1;d
X2;1 X2;2 � � � X2;d
X3;1 X3;2 � � � X3;d

...
...

...
...

...
...

...
...

Xn;1 Xn;2 � � � Xn;d

3777777775
n�d

(35)

Depending on the di�erent movement rates of Predator
and Prey, there are 3 movement phases in the MPA
optimization process:

(a) High movement rate: At this phase, the prey has a
higher movement rate than the predator. This phase
is called the Exploration phase and is applied while
the current iteration (Iter) < 1

3 IterMax (maximum
number of iterations). Required calculations are
made with the following expressions:
Si = RB 
 (Ei �RB 
Xi)
Xi = Xi + P �R
 Si i = 1; 2; :::; n (36)

where R denotes the uniform random number vector
between 0 and 1, RB denotes Brownian motion,

 represents entry-wise multiplications, and P is a
constant value of 0.5.
(b) Unit movement rate: At this phase, the moving
speeds for both prey and predator are uniform. The
population is divided into two parts: the �rst part
(prey) ful�lls exploitation by employing L�evy motion,
and the second part (predator) ful�lls exploration
by employing Brownian motion during 1

3 IterMax
< Iter < 2

3 IterMax. For L�evy motion of prey, the
below expressions are used for calculation:
Si = RL 
 (Ei �RL 
Xi) i = 1; 2; � � � ; n=2
Xi = Xi + P �R
 Si; (37)

where RL denotes L�evy motion.
For the Brownian motion of the predator, the
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following expressions are used for calculation:

Si = RB 
 (RB 
 Ei �Xi) i = n=2; � � � ; n
Xi = Ei + P � CF 
 Si

CF =
�

1� Iter
Itermax

�(2 Iter
Itermax )

(38)

where CF denotes the step size control parameter for
the predator movement.
(c) Low movement rate: The predator has a higher
movement rate than the prey. This phase is called
the Exploitation phase and is applied while the
current iteration (Iter) > 2

3 IterMax. The necessary
calculations are made with the following expressions:

Si = RL 
 (RL 
 Ei �Xi) i = 1; 2; :::; n
Xi = Ei + P � CF 
 Si (39)

In the MPA process, it is also thought that environmen-
tal factors such as eddy formation or Fish Aggregating
Devices (FADs) may have an impact on the behavior
of marine predators, and this e�ect can be calculated
with the help of the following expressions:

Xi =

8>>><>>>:
Xi + CF [bL+R
 (bU � bL)]
 U

if r � FADs
Xi + [FADs (1� r) + r] (Xr1 �Xr2)

if r > FADs
(40)

where U is a binary vector in which each array contains
only 0 and 1, r denotes the uniform random number
between 0 and 1, and subscripts r1 and r2 denote two
randomly selected index values of the prey matrix.

Figure 3 shows the pseudocode associated with
the working structure of MPA [41].

Figure 3. The Pseudo code belonging to the Marine
Predators Algorithm (MPA).

In addition to the algorithm given in Figure 3, it
should be noted that for solving the problem addressed
in this study, the chromosome structure of MPA is also
the same as for GA above.

4. Computational analysis

Since an original problem is considered, no test problem
that matches all terms of the model is found in the
literature. Nevertheless, the test problems given by
Fattahi et al. [42] for FJSS are modi�ed in this study to
test the scheduling performance of the proposed model
by adding some randomly produced parameter values.
The data sets include 20 test problems. Three sets of
test problems, small size (SFJSCF 1-10), and medium
and large size (MFJSCF 1-20) are derived by means of
(n; h;m; c) schema where n denotes the number of jobs,
h denotes the number of operations, m denotes the
number of machines, and c denotes the number of cells.
Those test problems include the number of jobs vary 2
to 12, number of machines vary 2 to 8, and number of
operations vary 4 to 48. All generated test problems
structured for the proposed mathematical model are
solved by GAMS 24.2.1 software CPLEX solver. The
proposed GA and MPA are coded in MATLAB R2017b
on a PC with an Intel CORE (Tm) i5-3330 CPU,
3.2 GHz processor, and 8 GB RAM to solve the test
problems.

To improve the performance of GA, di�erent ex-
perimental design techniques are used in the literature.
Taguchi experimental design is one of the most e�ective
techniques for convenient parameter settings in terms
of more performance of GA [43{47]. Therefore, in
this study, Taguchi's experimental design has been
used to determine the proper types of operators and
optimum levels of parameters of the proposed GA
[48,49]. Table 2 shows the determined parameter levels
of GA. When the parameters are evaluated in view
of MPA, and the parameter value of P for MPA is
0.5. The population size and the maximum number of
iterations Itermax are set to 50 and 500, respectively.

Optimal solutions are obtained for small-sized
test problems in acceptable computation times using
the mathematical model as well as GA and MPA.
Mathematical model performance on the small-sized
test data is very e�ective, and the global optimal
solutions could be obtained for problems of that size.
Table 3 shows the computational results for both GA
and MPA for small-sized test problems. In the table,
ZGA and ZMPA denote the objective function (�tness)
values of the GA and MPA, respectively. On the
other hand, for medium- and large-sized problems, the
computational results in terms of the best values that
could be reached in 3600 seconds (1 hour) by GAMS
are presented in Table 4. In the table, ZMM denotes
the corresponding bound value for related problems.
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Table 2. Genetic Algorithm (GA) parameters and levels.

Levels

Factors 1 2 3

A Population size 30 (small) 2000 (large) 50 (small) 3000 (large) {

B Crossover operator One-point Two-point Scattered

C Mutation rate 0.05 0.10 0.15

D Crossover rate 0.7 0.8 0.9

E Selection operator Roulette Stochastic Tournament

Table 3. Small-sized test problems and parameters.

GA MPA Mathematical model

Problems

Size
(part,

operation,
machine,

cell)

CPU (Cmax; EE,
void)

ZGA CPU (Cmax; EE,
void)

ZMPA CPU (Cmax; EE,
void)

ZMM

�GA(%)
and

�MPA(%)

SFJSCF 1 (2,2,2,2) 2.5 (66,0,0) 66 0.063 (66,0,0) 66 0.25 (66,0,0) 66 0.0

SFJSCF 2 (2,2,2,2) 2.1 (107,0,0) 107 0.175 (107,0,0) 107 0.09 (107,0,0) 107 0.0

SFJSCF 3 (3,2,2,2) 2.9 (221,1,0) 222 0.200 (221,1,0) 222 4.4 (221,1,0) 222 0.0

SFJSCF 4 (3,2,2,2) 2.3 (355,1,0) 356 0.100 (355,1,0) 356 3.4 (355,1,0) 356 0.0

SFJSCF 5 (3,2,2,2) 2.8 (119, 3,0) 122 0.103 (119, 3,0) 122 16.0 (119,3,0) 122 0.0

SFJSCF 6 (3,3,3,2) 2.5 (320,0,0) 320 0.343 (320,0,0) 320 56.0 (320,0,0) 320 0.0

SFJSCF 7 (3,3,5,2) 3.6 (397,1,0) 398 1.125 (397,1,0) 398 5.0 (397,1,0) 398 0.0

SFJSCF 8 (3,3,4,2) 3.4 (253,1,0) 254 0.375 (253,1,0) 254 505 (253,1,0) 254 0.0

SFJSCF 9 (3,3,3,2) 4.9 (210,2,0) 212 0.360 (210,2,0) 212 45.2 (210,2,0) 212 0.0

SFJSCF 10 (4,3,5,2) 4.0 (516,0,0) 516 0.750 (516,0,0) 516 195 (516,0,0) 516 0.0

Table 4 also shows the best integer values obtained
by GA and MPA in terms of �tness values and CPU
times. Please note that considering the numbers of
parts, machines, and cells in the relevant literature,
the number of cells is assumed to be \2" in small
size problems, \2" and \3" in medium and large
sizes. �GA (%) and �MPA (%) express the variations
between the results of the developed mathematical
model and the proposed algorithms GA and MPA,
respectively, and are calculated as follows:

�GA (%) = 100x
ZMM � ZGA

ZMM
; (41)

�MPA (%) = 100x
ZMM � ZMPA

ZMM
: (42)

From Table 4, one can see that the proposed GA and

MPA are very e�ective in obtaining acceptable and
reasonable solutions for medium- and large-sized prob-
lems in much shorter computational times compared
to results obtained by the developed model. MPA can
also achieve much better �tness values as size increases.
When considering the NP nature of the problem and
the dimensions and complexity of real-life problems
are much higher than the test problems, it is certain
that the potential of the MPA algorithm to produce
workable good solutions will gain more importance.

5. A real-life application

The proposed GA and MPA algorithms have been
applied to a large-scale real-life problem at the gear-
cutting shop of a world-class truck manufacturer to test
their performances by comparing them with present
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Table 4. Medium/large sized test problems and parameters.

GA Marine Predators Algorithm Mathematical model

Problems

Size
(part,

operation,
machine,

cell)

CPU
(s)

(Cmax,EE,
void)

ZGA
�GA

(%)
CPU
(s)

(Cmax,EE,
void)

ZMPA
�MPA

(%)
CPU
(s)

(Cmax,EE,
void)

ZMM

MFJSCF 1 (5,3,6,2) 41 (469,2,2) 473 0 1.78 (469,2,2) 473 0.0 3600 (469,2,2) 473

(5,3,6,3) 94 (468,3,0) 471 0 2.40 (468,3,0) 471 0.0 3600 (468,3,0) 471

MFJSCF 2 (5,3,7,2) 73 (446,2,6) 454 0 1.90 (446,2,6) 454 0.0 3600 (446,2,6) 454

(5,3,7,3) 97 (446,4,0) 450 +1 2.38 (446,4,0) 450 +1.1 3600 (448,5,2) 455

MFJSCF 3 (6,3,7,2) 247 (466,3,8) 477 0 4.07 (466,3,8) 477 0.0 3600 (466,3,8) 477

(6,3,7,3) 143 (468,6,2) 476 +0.4 5.01 (468,6,2) 476 +0.4 3600 (468,7,3) 478

MFJSCF 4 (7,3,7,2) 178 (564,2,9) 574 0 11.5 (564,2,9) 574 0.0 3600 (565,1,8) 574

(7,3,7,3) 184 (564,5,3) 572 +0.5 10.7 (564,5,3) 572 +0.5 3600 (565,5,5) 575

MFJSCF 5 (7,3,7,2) 192 (514,3,9) 526 0 12.3 (514,3,9) 526 0.0 3600 (514,3,9) 526

(7,3,7,3) 135 (519,5,3) 527 +0.4 9.37 (514,8,5) 527 +0.4 3600 (514,9,6) 529

MFJSCF 6 (8,3,7,2) 162 (649,4,8) 661 +0.9 23.9 (641,9,6) 656 +1.6 3600 (648,15,4) 667

(8,3,7,3) 202 (634,6,4) 644 +0.3 21.9 (634,6,4) 644 +0.3 3600 (634,10,2) 646

MFJSCF 7 (8,4,7,2) 214 (894,8,7) 909 0 91.6 (881,18,7) 906 +0.3 3600 (881,23,5) 909

(8,4,7,3) 204 (910,13,5) 928 +1.3 83.7 (897,19,5) 921 +2.0 3600 (920,17,3) 940

MFJSCF 8 (9,4,8,2) 311 (944,6,11) 961 +2.5 262 (921,22,9) 952 +3.4 3600 (958,16,11) 985

(9,4,8,3) 216 (925,13,4) 942 +5.1 171 (911,17,8) 936 +5.5 3600 (959,26,5) 990

MFJSCF 9 (11,4,8,2) 308 (1165,11,15) 1191 +0.3 432 (1150,15,8) 1173 +1.8 3600 (1158,22,15) 1195

(11,4,8,3) 225 (1272,14,4) 1290 +6.0 318 (1163,23,11) 1197 +12.8 3600 (1346,20,7) 1373

MFJSCF 10 (12,4,8,2) 407 (1284,13,18) 1315 +5.8 497 (1294,10,12) 1316 +5.4 3600 (1361,18,12) 1391

(12,4,8,3) 359 (1372,21,9) 1402 { 382 (1327,25,13) 1365 { 3600 { {

practices. To produce di�erent diameters and pitches
of gears, there are 24 machines positioned by their
functions. A total of 79 operations on 12 parts
are processed in that system (see Appendix A). An
integrated feasible solution to the cell forming and part
scheduling problem could not be obtained even after
running the mathematical model for 10 hours.

To provide more convenience and exibility to
decision makers, di�erent weights in the objective

function were used. Considering that large make-
span values have more e�ect on the objective function,
weight values for wEE and wvoid were taken as \1" and
\4" di�erent weights were investigated for wcmax as 1,
1=2, 1=4, and 1=8. The number of cells to be created
for the problem had been selected as 3. The parameters
and levels for the proposed GA and MPA were designed
to be the same as in the previous section.

In the current situation, the cellular production
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Table 5. Results for real-life application.

Real case

Company's
current

heuristic
method

GA MPA

(wHDE ,
wHB ,
wCenb)

Objective
function

value

Best GA
levels

Objectives
(EE, void,
Cmax)

Avg.
GA

Best GA
(%

improvement
rate)

CPU
time
(s)

Objectives
(EE, void,
Cmax)

Avg.
MPA

Best
MPA
(%

improvement
rate)

CPU
time
(s)

(1, 1, 1) 403 A2B3C1D1E2 (43,20,165) 235.3 228 (43.4) 652 (24,46,144) 217,4 214 (46.90) 402

(1, 1, 1/2) 308.50 A2B3C3D2E2 (35,19,172) 142.5 140 (54.62) 1094 (21,37,162) 140.2 139 (54.94) 643

(1, 1, 1/4) 261.25 A2B3C1D1E1 (35,20,168) 100.7 97 (62.87) 1151 (22,38,160) 110.6 100 (61.72) 689

(1, 1, 1/8) 237.63 A2B3C1D1E2 (27,19,227) 76.16 74.375 (68.70) 1182 (28,40,153) 90,48 87,125 (63.34) 724

system has not been implemented yet. So, it is assumed
to be a single cell, which means EE is not applicable.
The current state scheduling is done intuitively, with
the number of voids and Cmax values of 214 and
189, respectively. The performance of the proposed
methods was evaluated on the average and best values
obtained by repeatedly running the algorithms 3 times.
The computational results are presented in Table 5.
The value corresponding to the current company
heuristic in the application (ZCurrent) and the best
values obtained with GA (ZGA) and MPA (ZMPA) were
compared, and the deviation values (% improvement
rates) were calculated as (ZCurrent�ZGA)*100/ZCurrent
and as (ZCurrent � ZMPA)*100/ZCurrent , respectively.

When the values in Table 5 are examined, the
average (%) performance improvement values for both
GA and MPA are quite close to each other compared
to the current situation (57.40% and 56.73%, respec-
tively). The greatest improvements were achieved in
the fourth case (1,1,1=8 weight set), with values of
68.7% by the GA and 63.34% by MPA. Tables 6 and
7 show the results of scheduling and cell assignment
related to the fourth case obtained by the GA and
MPA.

As seen in Tables 6 and 7, three cells were created
by both the GA and MPA. In both test problems
and real-life applications, the proposed GA and MPA
results show a very superior performance, especially
in terms of CPU times, compared to the developed
mathematical model.

6. Conclusion

In this paper, simultaneous consideration of Cell For-
mation (CF) and Cellular Part Scheduling (CPS) in the
CMS environment is investigated. A new mathematical
model has been developed by considering the assump-

tions and properties of the problem. The developed
mathematical model o�ers a useful representation of
the problem, and in terms of considered objective
function components, it is the �rst study in the CF and
CPS literature. The developed mathematical model
has been tested on small-, medium-, and large-sized
test problems derived from the literature.

The results have con�rmed that the small sized
problems can easily be solved with GAMS software.
These optimum values are obtained in very short
computational times. However, the time needed to
reach the optimal solutions is rapidly growing as the
size of the studied problem grows due to its NP-hard
structure. On the other hand, most real-life CMS-
CPS problems are generally larger in size than the
instances handled here. So, to extend the applicability
of the proposed model on much larger-sized and more
complex problems, a Genetic Algorithm (GA) and an
Marine Predators Algorithm (MPA) have also been
developed and presented in the study. The GA param-
eters have been tuned using the Taguchi method. The
results obtained on the generated medium- and large-
sized problem sets show that both proposed GA and
MPA have very e�ective performances, and reasonable
and applicable solutions can be reached in acceptable
shorter times. And �nally, the proposed GA and MPA
have been applied to a real-life case. The improvements
obtained are fairly high, as expected.
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Table 6. Genetic Algorithm (GA), real life application case 4, (a) Cell design and grouping and (b) Cell scheduling.

Machine no.

Cell
no.

Part
no.

1 6 7 13 14 21 2 3 4 5 9 10 12 15 16 18 19 22 23 24 8 11 17 20

1 1 1 4 2 3 6 5 7

4 6 1 7 2 4 5 3

11 1,7 4 2 5 3,8 6

12 1 4 2 3 5

2 6 4 2 1 6 3 5

3 2 3 2 4 1

3 5 2 1 3,6 4

5 3 4 1 5 7 6 2

7 3 5 1 2,4

8 4 1 6 5 8 2 7 3

9 3 9 4,6 7 1,5 8 2

10 4 2 3 6 7 1 5

(a)

Sequence
(Part. operation)

Sequence
(Part. operation)

M1 (1.1) !(12.1) !(11.1) !(10.4) !(4.6) !(11.7) M13 (4.1)!(11.5)

M2 (5.3)!(8.4)!(2.3) M14 (11.3)!(1.3)!(12.3) !(4.7)!(11.8)

M3 (3.5) M15 (1.5)

M4 - M16 (6.1)!(8.1) !(10.6)

M5 (3.2) M17 (2.1)!(9.8) !(8.7)

M6 (1.4)!(12.4)!(11.4) M18 (8.6)

M7 (1.2)!(11.2) !(12.2) M19 (6.6)!(4.4)

M8 (3.3)!(5.7)!(9.7) !(3.6)!(2.4)! (7.5)!(8.8)!(10.7) M20 (4.3)!(5.2)!(7.2) !(9.2) !(7.4)!(8.3)!(10.5)

M9 (3.1)!(7.3)!(6.4) !(10.2) M21 (4.2) !(1.6) !(11.6)!(12.5)

M10 (6.2)!(5.4)!(9.3) M22 (5.5)!(6.3)! (9.4)!(9.6)!(1.7)

M11 (7.1)!(9.1) !(10.1)!(9.5)!(8.2) !(5.6)!(3.4) M23 (6.5)!(8.5)

M12 (5.1)!(10.3)!(9.9) M24 (4.5)!(2.2)

(b)
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Table 7. Marine Predators Algorithm (MPA) real-life application case 4 (a) Cell design and grouping and (b) Cell
scheduling.

Machine no.

Cell
no.

Part
no.

1 4 8 10 12 22 6 7 9 13 17 18 19 20 21 23 2 3 5 11 14 15 16 24

1 2 3 4 1 2

3 1 2 3 4 5 6

5 1,6 4 2,5 3 7

6 4 2 3 6 1 5

7 3 5 2,4 1

9 5 1,3,9 4,6 8 2 7

10 2 7 1,3 5 6 4

11 1,7 2 3,8 4 5 6

12 2 3 5 1 4

2 4 6 1 4 3 2 5 7

8 2 4 6 7 3 5 8 1

3 1 1 7 4 2 3 5 6

(a)

Sequence (Part. operation) Sequence (Part. operation)

M1 (11.1)!(10.2)!(3.1) !(7.3)! (2.3)!(6.4)!(11.7) M13 (4.1)!(11.5)

M2 (12.1)!(10.4) M14 (1.3) !(9.7)!(4. 7)!(3.6)!(5.7)!(8.8)

M3 (1.4)!(12.4)!(3.5) M15 (1.5)

M4 (11.2)!(12.2)!(3.2) M16 (8.1)!(1.6)

M5 (1.2) M17 (2.1)!(4.4)!(9.8)

M6 (11.4) M18 (8.6)!(11.6)

M7 { M19 (6.6)!(8.7)

M8 (12.3)!(11.3)!(3.3) !(2.4)!( 11.8)!(7.5)!(10.7) M20 (9.2)!(4.3)!(8.3) !(10.5)!(1.7)

M9 (1.1)!(8.4)!(5.3) !(4.6) M21 (6.1) !(4.2)!(12.5)!(10.6)

M10 (10.1)!(8.2)!(10.3) !(5.1) !(9.5)!(3.4)!(5.6) M22 (9.4)!(7.2) !(5.2)!(9.6)!(6.3) !(7.4)!(5.5)

M11 (7.1) M23 (2.2)!(8.5)!(4.5)

M12 (9.1)!(9.3)!(6.2) !(5.4)!(9.9) M24 (6.5)

(b)
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Table A.1. Data for real-life problem.

Part no. Operation no. Operation type Alternative
Machines

Operation time
(minutes)

1 1 Turning 1,2,9 35,46,38
2 Hobbing 4,5,7 42,35,50
3 Washing 8,14 7,9
4 Trimming 3,6 8,10
5 Carburising 13,15 15,18
6 Grinding 16,18,21 34,36,42
7 Marking 20,22 10,12

2 1 Hobbing 17,19 38,45
2 Fitting the bush 23,24 10,15
3 Turning the bush 1,2 6,9
4 Washing 8,14 23,25

3 1 Turning 1,9 10,15
2 Hobbing 4,5,7 34,36,43
3 Washing 8,14 12,14
4 Milling 10,11,12 12,16,18
5 Trimming 3,6 4,6
6 Washing 8,14 10,13

4 1 Carburising 13,15 15,17
2 Grinding 16,18,21 5,8,9
3 Marking 20,22 4,7
4 Honing 17,19 11,16
5 Fitting the bush 23,24 5,8
6 Turning the bush 1,9 14,16
7 Washing 8,14 10,11

5 1 Milling 10,11,12 6,8,11
2 Drilling 20,22 3,5
3 Turning 1,2,9 7,9,10
4 Milling 10,12 14,17
5 Drilling 20,22 3,4
6 Hobbing 10,11 8,9
7 Washing 8,14 10,12

6 1 Grinding 16,18,21 24,32,29
2 Surface Milling 10,11,12 16,21,23
3 Drilling 20,22 5,7
4 Notching 1,9 3,2
5 Fitting the bush 23,24 4,6
6 Honing 17,19 11,14
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ing, McGraw-Hill Book Company, New York (1988).

Appendix A.1

Table A.1 is represented in this appendix.



904 Y. Buruk Sahin and S. Alpay/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 888{905

Table A.1. Data for Real-life Problem (continued).

Part no. Operation no. Operation type Alternative
Machines

Operation time
(minutes)

7 1 Milling 10,11 60,52
2 Drilling 20,22 10,12
3 Turning 1,9 24,35
4 Drilling 20,22 5,6
5 Washing 8,14 11,12

8 1 Surface grinding 16,18,21 4,8,6
2 Surface milling 10,11 25,18
3 Chamfering 20,22 5,8
4 Turning 2,9 17,22
5 Fitting the bush 23,24 6,8
6 Finish grinding 16,18 11,13
7 Honing 17,19 10,14
8 Washing 8,14 14,12

9 1 Rough milling 10,11,12 22,18,26
2 Drilling 20,22 9,10
3 Final milling 10,12 16,17
4 Chamfering 20,22 5,3
5 Hobbing 10,11 6,7
6 Drilling 20,22 11,9
7 Washing 8,14 12,14
8 Honing 17,19 10,15
9 Plug �tting 10,12 5,8

10 1 Grading 10,11 17,15
2 Turning 1,2,9 27,35,36
3 Milling 10,11,12 22,18,24
4 Boring 1,2 24,30
5 Deep drilling 20,22 10,15
6 Grinding 16,18,21 8,12,15
7 Washing 8,14 11,13

11 1 Turning 1,2,9 17,22,25
2 Hobbing 4,5,7 10,15,13
3 Washing 8,14 13,11
4 Trimming 3,6 8,13
5 Carburising 13,15 11,14
6 Grinding 16,18,21 6,8,9
7 Turning the bush 1,9 21,26
8 Washing 8,14 5,9

12 1 Turning 1,2,9 6,7,11
2 Hobbing 4,5,7 16,18,14
3 Washing 8,14 4,7
4 Trimming 3,6 5,9
5 Grinding 16,18,21 26,24,28
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