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Abstract 

Estimating the population mean is of prime concern in many studies, and calibrations are popular 

choices. A robust calibration estimator estimates the mean using the minimum covariance determinant 

(MCD) and the minimum volume ellipsoid (MVE) estimations under stratified random sampling. 

Efficiency comparisons have been made between the robust calibration estimator and classical 

calibration estimator. Simulations and empirical results show that the proposed robust calibration 

estimator has a lower mean square error than the calibration estimators. When the relative efficiency 

and computation times are considered together, it is seen that the proposed robust calibration 

estimators based on MCD estimates are more efficient. 
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1 Introduction 

The topic of ratio estimators has lost its practical appeal since the emergence of calibration 

techniques. In the sampling literature, the calibration technique is commonly used to improve the 

population parameter estimates. Deville and Sarndal [1] introduced the calibration method of 

estimation. Tracy et al. [2] provided the calibration estimator for the stratified random sampling 

estimator. Kim and Park [3] introduced the asymptotic properties of the class of calibration estimators. 

They found conditions for the design consistency of the calibration estimator. Koyuncu and Kadilar 

[4] provided novel calibration estimators under stratified random sampling. Climate [5] proposed a 

calibration estimator for estimating the population mean utilizing calibration weights under stratified 

double sampling. Ozgul [6] provided a calibration approach alternative to existing calibration 

estimators for estimating Y  using an auxiliary variable in stratified sampling. Ozgul [7] proposed a 

calibration estimator for the population mean using two auxiliary variables in stratified sampling. The 
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calibration approach has three main advantages in sampling theory. Ozgul [8] presented a novel 

calibration estimator for the Y  with developing calibration weights based upon two auxiliary 

variables in stratified two-phase sampling. Shahzad et al. [9] provided a class of calibration estimators 

for the variance estimation in stratified random sampling. Shahzad et al. [10] presented some 

calibration estimators using L-Moments for double-stratified random sampling to estimate the 

population variance. First, the calibration approach leads to consistent estimates. Second, it ensures an 

important technical family for the efficient combination of datasets. Third, the calibration approach 

has the computing advantage to calculate estimates [11]. Garg and Pachori [12] introduced a new 

calibration estimator for estimating the population mean using the known coefficient of variation of 

the auxiliary variable in the stratified random sampling. However, the outlier problem, which is the 

presence of extreme values in data, generally decreases the efficiency since traditional estimators are 

sensitive to these extreme values. Keeping this fact in mind, many authors such as Kadilar et al. [13], 

Ali et al. [14], Zaman and Bulut [15], Zaman [16], Shahzad et al. [17], Abid et al. [18], Naz et al. [19], 

Zaman and Bulut [20], Zaman et al. [21] Grover and Kaur [22], and Zaman and Bulut [23] have used 

the robust regression methods, for minimizing the impact of the extreme values in ratio estimators of 

the mean. In sampling theory, information about the auxiliary variable used in rate estimators is used 

to increase the efficiency of the population mean of the study variable. However, in the case of outliers 

in the data structure, these estimators are negatively affected, and their efficiency decreases. To 

eliminate this negative effect caused by outliers, robust methods that are resistant to outliers are used 

[13]. Therefore, this article uses MCD and MVE estimates in calibration estimators to reduce the 

negative effect caused by an outlier data set. In addition, this study is the first study of calibration 

estimators using MCD and MVE robust estimates. 

The main purpose of this study is to propose robust calibration estimators utilizing robust 

MCD and MVE covariance estimates to improve the precision of estimation of population mean in 

stratified sampling. In this study, we improve the robust calibration to decrease MSE in stratified 

random sampling. We express the MSE up to the first-order approximation and compare the efficiency 

of the robust calibration estimators with that of the existing estimator. Finally, we find a significantly 

lower MSE.  

The remaining part of the study is organized as follows. Section 2 ensures a description of the 

classical calibration estimators. The structure of the robust calibration estimator based on MCD and 

MVE estimates is given in Section 3. The efficiency comparisons of the robust calibration estimators 

with the classical calibration estimators are presented in Section 4. Sections 5 and 6 consist of 
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empirical and simulation studies of proposed robust calibration estimators. Finally, Section 7 

summarizes the findings of this study. 

 

2 Calibration Estimators 

Kim et al. [11] extended Sisodia and Dwivedi’s [24] estimator, Singh and Kakran’s [25] estimator, and 

Upadhyaya and Singh’s [26] estimator to several calibration ratio estimators for improving variance 

estimator with the aid of auxiliary information in stratified random sampling. 
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The expression for MSE of the estimators Equations (1)-(4) computed utilizing a first-degree 

approximation of the Taylor series expansion and is as follows: 
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  . For the j th stratum, /j jw N N  denotes the stratum weight and  

/j j jf n N  denotes the sample fraction. 

3 MCD AND MVE Robust Covariance Estimates 

Rousseeuw [27]  introduced two estimators, namely the Minimum Volume Ellipsoid (MVE) 

and the Minimum Covariance Determinant (MCD) estimators. These estimators have a high breaking 

point. MCD and MVE robust estimators perform better than classical covariance estimators when 

there are outliers in the data. These estimators are based on iterative algorithms.  
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The MCD algorithm searches for a subset consisting  of  h  observations such that the 

determinant of the covariance matrix is the minimum. Here,  1 *h n  , and   is the trimming 

ratio. When this subset has the minimum determinant of the covariance matrix, the location and scatter 

parameters are calculated robustly as the sample mean vector and sample covariance matrix of this 

subset. Because of the definition, the algorithm's calculations may take a long time. So, Rousseeuw 

and Van Driessen [28] constructed the computationally efficient FastMCD algorithm. Finally, the 

breakdown point of MCD estimators is equal to the trimming ratio    [29, 30]. 

On the other hand, Rousseeuw [27] provided the MVE estimate to determine the unusual 

values in multivariate datasets. The MVE estimator for the location parameter of multivariate data was 

defined as the centre of an ellipsoid having a minimum volume spanned by the h  points in X  data, 

where / 2 1h n   and .  is a function that rounds the number to an integer [27]. The breakdown 

point of the MVE estimator is equal to   / 2 1 /n p n    . And, when n , the breakdown 

point of the MVE estimator is equal to 50%  [27,31, 32].  

There is a large body of literature on rate-type estimators for estimating the mean using MCD 

and MVE estimates. For example,  Bulut and Zaman [33] extended Zaman and Bulut [15] using MCD 

estimates. Zaman and Bulut [32] provided ratio-type estimators for mean estimation using MCD and 

MVE estimates to stratified random sampling. Shahzad et al. [34] provided ratio estimators to estimate 

the mean using MCD and MVE estimates in case of missing data. 

We use the CovMcd, and CovMve functions in the package rrcov in the R programming 

language for calculations belonging to MCD and MVE estimations, respectively [35].  

4 Robust Calibration of Ratio Estimators 

For the estimation of the population mean, we suggest the following eight robust calibration estimators 

using minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) estimators, 

instead of ratio estimators presented in Equations (1)-(4), to data which have outliers. We have 



6 
 

considerable decline variance utilizing estimators 
 

*

rSD z
y  and 

 
*

rSK z
y , 

 
*

1rUS z
y , and 

 
*

2rUS z
y , 

z MCD  and MVE , compare to the estimators 
*

SDy  and 
*

SKy , 
*

1USy , and 
*

2USy . 

 
 

 

           1*

1
1

,                                                      9

K
K

j j zj

jrSD z j z xj zK
jj j z xj zj

w y
y w X C

w x C






 
  
 
 





 

 
 

 

               1*

2

1
21

,                                    10

K
K

j j zj

jrSK z j z j zK
jj j z j zj

w y
y w X x

w x x









 
  
 
 





 

 
 

 

                 1*

1 2

1
21

,                 11

K
K

j j zj

jrUS z j z j z xj zK
jj j j z xj zj

w y
y w X x C

w x x C









 
  
 
 





 

 
 

 

                   1*

2 2

1
21

,             12

K
K

j j zj

jrUS z j z xj z j zK
jj j z xj z j zj

w y
y w X C x

w x C x









 
  
 
 





 

where z MCD  and MVE . 
 j z

y ,
  

j z
x , 

 xj z
C , 

   2 j z
x  are obtained by utilizing MCD and MVE 

estimators in stratum j , respectively.  

The MSE expression of the estimators given between Equations (9)-(12) are as follows: 
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The expression for MSE of the robust calibration estimators is in the same form as the MSE 

expression presented in Equations (5)-(8), but it is seen that,  X , xC ,  2 x , stx , 
2

ejs ,  ̂ jie , b  and jq  

in Equations (5)-(8) should be replaced by 
 z
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,  , , 1    2t SD SK US andUS  whose values as computed by MCD and MVE estimates 

    z MCDand MVE . The expressions of MSE two different robust covariance estimates for each 

value z  will be calculated. Therefore, eight different the expressions for MSE will be obtained. 

5 Efficiency Comparisons 

In this section, we compare the expressions of MSE of the robust calibration estimators of Equations 

(13)-(16) with the expressions of MSE of the calibration ratio estimators of Equations (5)-(8).  

(i) From Equations (5) and (13),  
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When Equation (19) is satisfied, the estimator 
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When Equation (22) is satisfied, the estimator 
 

*

rSK z
y ,     ,z MCDand MVE  performs better than the 

estimator 
*

SKy . 

 (iii) From Equations (7) and (15),  
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When Equation (25) is satisfied, the estimator 
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 (iv) From Equations (8) and (16),  
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Thus, Equation (27) becomes 
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When the Equation (28) is satisfied, the estimator 
 

*

2rUS z
y ,     ,z MCDand MVE  performs better than 

the estimator 
*

2USy . The robust calibration estimators will perform better than the existing estimators if 

Conditions (i)- (iv) are satisfied.  

6 Application 

We use the data in Murthy [36] to compare the efficiencies between the robust calibration estimators 

and the classical calibration estimators under stratified random sampling.  We have contaminated these 

datasets by multiplying with ten the Y  value of the last five observations in each stratified. The 

contamination rates  i  have been given in Table 1 for population-1 and Table 2 for population-2. 

Therefore, datasets are contaminated in the direction of y . These datasets are presented as followings. 

Population 1.  y is factories in the region; x  is the number of workers. The data from 80  

factories have been classified arbitrarily into four strata based on  x values Murthy [36]. The strata are 

  1  00x , 100       200x  , 200       500x  , and    500x , respectively. We have randomly selected 

samples from each stratum by taking the proportional allocation, h
h

N
n n

N
 , using a total sample size 

of    45n  

[Table 1] 

Population 2. y  is factories in the region; x  is fixed capital. The data from 80  factories have 

been classified arbitrarily into four strata based on x  values Murthy [36]. The strata are    500x , 
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500      1  000x  , 1000       2000x  , and    2000x , respectively. Again, we use the same procedure of 

selecting the samples from each stratum as in Example 1. We use a total sample size of    45n . Both 

data sets were used by Shabbir and Gupta [37]. 

[Table 2] 

We compute the MSE values of the classical calibration and the robust calibration estimators 

as defined in Sections 2 and 3, respectively. And using these values obtain the relative efficiency (RE) 

for each robust calibration estimator in Equations (9)–(12) concerning the classical calibration 

estimators in Equations (1)–(4) by using Equation (29) as below: 
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In Table 3, 24 relative efficiency values are computed. From Table 3, it is seen that the 

performances belonging to all of the robust calibration estimators concerning classical calibration 

estimators are greater than 1. The robust calibration estimators perform better than the calibration 

estimators. In addition, for both datasets, the most efficient estimator is the estimator 
 

*

2rUS MVE
y   based 

on the MVE covariance estimate. This result is expected because the conditions (i)- (iv) are satisfied 

for all estimators in these datasets.  

[Table 3] 

7 Simulation  

3 different simulation designs have been used to compare the performance of the robust calibration 

estimators and the classical calibration estimators. These designs are as follows; 

Simulation Design-I 

Here, the number of strata is taken as four, and each stratum contained 1 2 3 4           20N N N N     

observations, respectively. The observations in each stratum are generated as follows: 

    11   1 2 ,                                                         30i iY X     

    22   5 ,                                                           31i iY X     
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    33   10 3 ,                                                      32i iY X     

    44   20 7 .                                                      33i iY X     

Here, X variables are generated from  1 ~ 0,1X N ,  2 ~ 5,1X N ,  3 ~ 0,9X N , 

 4 ~ 5,9X N distributions. Error terms      ~ 0,1 ,  ~ 1 ,  ~  0,1i i iN Exp U    are generated from 3 

different distributions. Sample sizes are 20, 32 and outliers rates are 5%, 10% , and 25%.  

Simulation Design-II 

Here, the number of strata is taken as four, and each stratum contained 1 2 3 4           20N N N N     

observations, respectively. The observations in each stratum are generated as follows: 

    11   1 2 ,                                                     34i iY X     

    22   5 ,                                                       35i iY X     

    33   10 3 ,                                                 36i iY X     

    44   20 7 .                                                 37i iY X     

Here, X variables are generated from  1 ~ 0,1X N ,  2 ~ 5,1X N ,  3 ~ 0,9X N , 

 4 ~ 5,9X N distributions. Error terms are generated from  ~ 0,1i N  distributions. Sample sizes 

are 20, 32 and 40 and outliers rates are 5%, 10%, and 25%.  

Simulation Design-III 

Here, the observations for all strata are generated from the distribution of  3   1,2,3,4i ki iY X k  

, and each stratum contained 1 2 3 4           20N N N N      observations, respectively. The  X and error 

values are obtained as follows, respectively. 

        11   ~ 0,1 ,            ~ 3 ,                                         38iX N Exp  

       22   ~ 5,1 ,   ~ 0,1 ,                                            39iX N N  
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        33   ~ 5,9 ,       ~ 0,1 ,                                         40iX N Unif  

      4 104   ~ 0,9 ,   ~ .                                                    41iX N t  

The sample sizes are 20, 32, and 40, and outliers rates were 5%, 10%, and 25%. The 

simulation steps are as follows; 

Firstly, existing calibration estimators given in Section 2 are obtained for each sample size 

using SRSWOR (simple random sampling without replacement). 

Then, for each sample taken, the existing calibration estimators, say iY , such as 
*

rty , given in 

Section 2 and the robust calibration estimators, 
 

*

rt z
y , given in Section 3 are obtained.  

The values of MSE for all cases are obtained with the help of Equation (42) as below: 

    
1000 2

i

1

1
    ,                                                      42

1000 i

MSE Y Y


   

where Y  is the population mean. In all cases, 1000 iterations are performed. 

[Table 4] 

[Table 5] 

[Table 6] 

The simulation study was performed with R programming language on an Intel(R) Core(TM) 

i3-4160 CPU with 3.60 GHz. The results obtained for the first, second, and third simulation designs 

are given in Tables 4, 5, and 6. We compute the computational times (CT)  and the relative efficiency 

values of the robust and existing calibration estimators as given in Sections 2 and 3, respectively, 

using outliers data. In different simulation designs, the computational times and the relative efficiency 

values of the robust and existing calibration estimators are given in Tables 4, 5, and 6. These RE 

values are bigger than 1. It is seen that the robust calibration estimators are more efficient than the 

existing estimators, which indicates that the robust calibration estimators are more efficient in the 

presence of outliers. The relative efficiency of the robust calibration estimators concerning the existing 

estimators in Tables 4, 5, and 6 would increase dramatically, which shows that the performances of the 
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robust calibration estimators would increase if there were more outliers in the dataset. Also, when the 

computation time and relative efficiency values are considered together, it is seen that estimators based 

on MCD are more efficient. 

8 Conclusion 

The study has proposed a set of calibration estimators for a finite population mean utilizing the 

information on some robust measures. The robust calibration estimator is very attractive and should be 

preferred in practice. It ensures consistent and more precise parameter estimates than the existing 

estimators under stratified random sampling, especially in the presence of unusual observations in the 

data. According to the computation times in the study, it is seen that the computational speeds of the 

classical estimators are faster than the proposed estimators. However, the MSE values of these 

estimators are large. That is, their efficiencies are small relative to the proposed estimators. 

Considering only the relative efficiency values, estimators based on MCD and MVE give more 

efficient results than classical estimators. However, there are no significant differences between the 

results of the proposed estimators based on MCD and MVE. Therefore, when the computation times 

and relative efficiency values are considered together, it is seen that the proposed estimators based on 

MCD are more efficient. 
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Table 1: Data statistics for Population I 

 

 

 

 

 

Classical 

 
xC  1.98  

xC  1.471 1.442 1.246 1.249 

  2 x  9.20   2 x  3.154 2.842 1.576 1.654 

 X  1243.41  x  192.857 513.615 1806.000 3658.000 

 Y  18926.55  y  7927.000 15926.380 27094.560 33807.890 

  

 2

ejSDs  2.38E+08 3.02E+08 6.41E+07 2.35E+09 

  

 2

ejSKs  2.38E+08 3.02E+08 6.38E+07 2.34E+09 

  

 2

1ejUSs  2.14E+08 3.01E+08 4.68E+07 1.52E+09 

     2

2ejUSs  2.30E+08 3.01E+08 5.58E+07 2.07E+09 

MCD 

 
xC  0.94  

xC  0.231 0.209 0.325 0.236 

  2 x  10.47   2 x  4.828 4.480 3.020 3.089 

 X  114.70  x  73.625 127.222 329.000 627.000 

 Y  3999.42  y  3477.500 4523.333 6276.833 7368.500 

  

 2

ejSDs  1.13E+08 8.55E+07 4.87E+08 8.49E+09 

  

 2

ejSKs  1.14E+08 8.89E+07 4.59E+08 8.22E+09 

  

 2

1ejUSs  1.26E+08 1.18E+08 2.71E+08 6.30E+09 

     2

2ejUSs  1.16E+08 9.29E+07 4.28E+08 7.92E+09 

MVE 

 xC  1.26  xC  0.225 0.203 0.307 0.224 

  2 x  10.61   2 x  4.828 4.480 3.020 3.089 

 X  191.84  x  71.778 127.222 1806.000 2746.500 

 Y  4751.16  y  3414.556 4523.333 27094.556 26471.375 

  

 2

ejSDs  2.14E+08 3.02E+08 2.18E+07 1.50E+09 

  

 2

ejSKs  2.14E+08 3.03E+08 2.24E+07 1.47E+09 

  

 2

1ejUSs  2.11E+08 3.09E+08 2.78E+07 1.23E+09 

     2

2ejUSs  2.12E+08 3.07E+08 2.62E+07 1.29E+09 

 

 N  80  iN  25 23 16 16 

 

      n  45  in  14 13 9 9 

    i  0.2 0.21 0.31 0.31 

   

 if  0.56 0.5652 0.5625 0.5625 

    

 

jw  0.31 0.29 0.2 0.2 
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Methods Population Stratum 1 2 3 4 

Classical 

 
xC  1.75  

xC  1.348 1.520 1.123 1.166 

  2 x  7.60   2 x  2.055 4.616 1.300 1.523 

 X  4544.66  x  1847.545 1067.5 7737.375 16264.38 

 Y  19026.79  y  14506.46 7411.056 30038.38 46693.13 

  

 2

ejSDs  1.81E+08 2.09E+08 50281479 1.01E+09 

  

 2

ejSKs  1.8E+08 2.09E+08 50199765 1.01E+09 

  

 2

1ejUSs  1.63E+08 2.07E+08 32240548 6.86E+08 

     2

2ejUSs  1.73E+08 2.08E+08 41198684 8.73E+08 

MCD 

 
xC  0.72  

xC  0.353 0.174 0.306 0.150 

  2 x  8.87   2 x  3.602 6.359 2.634 2.907 

 X  608.22  x  279 707.7692 1409.8 8873 

 Y  4082.87  y  2550.143 4602.308 6333.4 24369 

  

 2

ejSDs  1.63E+08 2.13E+08 11269514 5.98E+08 

  

 2

ejSKs  1.63E+08 2.13E+08 11380985 5.92E+08 

  

 2

1ejUSs  1.68E+08 2.28E+08 25118909 3.53E+08 

     2

2ejUSs  1.68E+08 2.28E+08 25219536 3.52E+08 

MVE 

 xC  0.79  xC  0.454 0.182 0.283 0.140 

  2 x  8.89   2 x  3.603 6.359 2.634 2.907 

 X  646.06  x  1847.546 707.7692 7737.375 14737.86 

 Y  4187.36  y  14506.46 4602.308 30038.38 41677.86 

  

 2

ejSDs  1.74E+08 2.09E+08 38185742 8.91E+08 

  

 2

ejSKs  1.74E+08 2.09E+08 38055419 8.89E+08 

  

 2

1ejUSs  1.65E+08 2.09E+08 30207489 6.97E+08 

     2

2ejUSs  1.54E+08 2.1E+08 29008646 4.48E+08 

 

 N  80  iN  19 32 14 15 

 

      n  45  in  11 18 8 8 

    i  0.26 0.15 0.35 0.33 

   

 if  0.58 0.56 0.57 0.53 

    

 

jw  0.24 0.40 0.18 0.19 

Table 2: Data statistics for Population II 
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  Population-I   Population-II 

Estimators Classical MCD MVE   Classical MCD MVE 

 
*

rSDy  1 1.4968 32.4457 

 

1 14.2037 45.5237 

 
*

rSKy  1 1.2924 29.8624 

 

1 13.8667 44.5189 

 
*

1rUSy  1 1.1686 24.6078 

 

1 10.4495 33.3511 

 
*

2rUSy  1 5.6305 74.4301 

 

1 81.4782 218.905 

 

Table 3: Theoretical results for the relative efficiencies of proposed robust calibration estimators with 

respect to existing estimator
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   n Estimators 
5% 

 
10% 

 
25% 

Classic MCD MVE 
 

Classic MCD MVE 
 

Classic MCD MVE 

  0,1N  

20 

 
*

rSDy  1.00 4803.37 52.71 
 

1.00 21919.43 3011.74 
 

1.00 3.48 19.18 

 
*

rSKy  1.00 196.78 196.21 
 

1.00 100.71 100.49 
 

1.00 12.42 12.48 

 
*

rUS1y  1.00 12.58 160.09 
 

1.00 1327.69 516.52 
 

1.00 5.73 3.59 

 
*

rUS2y  1.00 236.88 458.74 
 

1.00 8.36 32.50 
 

1.00 5147.77 28329.72 

CT: 0.35 7.33 7.83  0.38 7.45 8.7  0.41 7.67 8.64 

32 

 
*

rSDy  1.00 5.38 51.25 
 

1.00 147.17 5.04 
 

1.00 187.51 10.57 

 
*

rSKy  1.00 236.76 236.67 
 

1.00 82.90 83.09 
 

1.00 9.16 9.20 

 
*

rUS1y  1.00 360.66 58.15 
 

1.00 4.14 26.68 
 

1.00 171.30 142.01 

 
*

rUS2y  1.00 16510.22 21345.92 
 

1.00 39.11 209.65 
 

1.00 2.25 448.84 

CT: 0.39 7.81 8.30  0.39 7.42 9.09  0.37 8.05 8.60 

  1Exp  

20 

 
*

rSDy  1.00 3697.07 284.54 
 

1 2.06 8.54 
 

1.00 448.20 490.65 

 
*

rSKy  1.00 272.53 272.96 
 

1.00 122.59 122.54 
 

1.00 13.30 13.35 

 
*

rUS1y  1.00 3035.88 862.00 
 

1.00 7848.84 8736.25 
 

1.00 121.93 161.00 

 
*

rUS2y  1.00 495.61 283.54 
 

1.00 258.43 71.89 
 

1.00 1839.04 1880.54 

CT: 0.38 8.04 8.68  0.44 7.29 8.94  0.44 7.75 8.22 

32 

 
*

rSDy  1.00 15.00 15.23 
 

1.00 159.58 40.11 
 

1.00 627.98 1135.06 

 
*

rSKy  1.00 278.28 277.79 
 

1.00 89.01 88.96 
 

1.00 9.62 9.65 

 
*

rUS1y  1.00 27294.92 34053.35 
 

1.00 26081.36 67235.98 
 

1.00 225.18 18.34 

 
*

rUS2y  1.00 3225.21 5823.17 
 

1.00 715.16 697.11 
 

1.00 1087.82 565.48 

CT: 0.44 7.70 8.86  0.41 7.96 8.40  0.44 7.34 8.65 

 0,1Unif  20 
 

*

rSDy  1.00 43.49 34.94 
 

1.00 59.72 55.41 
 

1.00 355.97 16.33 

 
*

rSKy  1.00 250.05 249.46 
 

1.00 108.80 108.70 
 

1.00 12.86 12.86 
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*

rUS1y  1.00 230.96 7.59 
 

1.00 160.90 19.97 
 

1.00 2410.50 950.86 

 
*

rUS2y  1.00 381.02 404.19 
 

1.00 399.74 52.88 
 

1.00 17101.73 21455.50 

CT: 0.36 7.19 9.02  0.34 7.47 8.29  0.47 7.65 8.93 

32 

 
*

rSDy  1.00 79.53 4288.86 
 

1.00 7153.35 461.10 
 

1.00 2.86 14.14 

 
*

rSKy  1.00 256.13 255.28 
 

1.00 95.07 94.99 
 

1.00 9.34 9.34 

 
*

rUS1y  1.00 5723.62 4719.90 
 

1.00 42800.65 6105.50 
 

1.00 51.59 113.11 

 
*

rUS2y  1.00 48.93 95.03 
 

1.00 456.23 897.75 
 

1.00 954341.05 957612.30 

CT: 0.50 7.39 8.54  0.45 7.47 8.03  0.36 7.71 8.31 

Tablo 4: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation Design-I 

 

n Estimators 
5% 

 
10% 

 
25% 

Classic MCD MVE 
 

Classic MCD MVE 
 

Classic MCD MVE 

20 

 
*

rSDy  1.00E+00 1.91E+02 2.72E+00 
 

1.00E+00 7.50E+01 3.22E+02 
 

1.00E+00 1.19E+02 1.03E+03 

 
*

rSKy  1.00E+00 6.78E+02 6.78E+02 
 

1.00E+00 2.43E+02 2.43E+02 
 

1.00E+00 8.95E+01 8.95E+01 

 
*

1rUSy  1.00E+00 1.06E+05 1.38E+05 
 

1.00E+00 1.14E+02 3.46E+03 
 

1.00E+00 6.92E+01 1.48E+03 

 
*

2rUSy  1.00E+00 1.99E+05 2.01E+05 
 

1.00E+00 1.78E+02 2.56E+02 
 

1.00E+00 1.98E+04 2.29E+04 

CT: 0.47 7.73 8.35  0.37 7.32 8.10  0.36 7.64 8.14 

32 

 
*

rSDy  1.00E+00 1.01E+04 2.72E+04 
 

1.00E+00 1.71E+05 1.09E+06 
 

1.00E+00 3.47E+03 3.36E+03 

 
*

rSKy  1.00E+00 6.76E+02 6.74E+02 
 

1.00E+00 3.14E+02 3.13E+02 
 

1.00E+00 6.00E+01 6.00E+01 

 
*

1rUSy  1.00E+00 7.97E+01 1.79E+02 
 

1.00E+00 2.07E+03 2.68E+03 
 

1.00E+00 3.92E+03 4.82E+03 

 
*

2rUSy  1.00E+00 3.60E+05 4.53E+05 
 

1.00E+00 2.52E+02 1.26E+02 
 

1.00E+00 4.57E+01 2.57E+00 

CT: 0.39 7.46 8.91  0.34 7.52 8.92  0.28 7.72 8.58 

40 
 

*

rSDy  1.00E+00 1.72E+02 3.56E+02 
 

1.00E+00 8.16E+02 9.67E+01 
 

1.00E+00 7.95E+01 8.68E+01 

 
*

rSKy  1.00E+00 6.53E+02 6.53E+02 
 

1.00E+00 2.93E+02 2.92E+02 
 

1.00E+00 4.48E+01 4.48E+01 
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*

1rUSy  1.00E+00 1.15E+02 1.87E+01 
 

1.00E+00 1.61E+05 1.47E+05 
 

1.00E+00 1.92E+04 1.85E+04 

 
*

2rUSy  1.00E+00 1.09E+03 7.38E+02 
 

1.00E+00 1.91E+03 2.51E+03 
 

1.00E+00 3.12E+02 3.88E+02 

CT: 0.41 7.81 8.73  0.39 7.91 8.49  0.42 7.36 8.41 

Tablo 5: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation Design-II 

 

n Estimators 
5% 

 
10% 

 
25% 

Classic MCD MVE 
 

Classic MCD MVE 
 

Classic MCD MVE 

20 

 
*

rSDy  1.00E+00 3.78E+01 1.14E+02 
 

1.00E+00 3.07E+00 5.52E+01 
 

1.00E+00 5.60E+03 5.01E+03 

 
*

rSKy  1.00E+00 4.33E+01 4.33E+01 
 

1.00E+00 1.54E+01 1.54E+01 
 

1.00E+00 1.78E+00 1.78E+00 

 
*

1rUSy  1.00E+00 9.21E+00 9.03E+00 
 

1.00E+00 5.88E+02 3.25E+00 
 

1.00E+00 1.60E+01 1.71E+00 

 
*

2rUSy  1.00E+00 6.58E+02 4.70E+02 
 

1.00E+00 5.62E+02 4.71E+02 
 

1.00E+00 1.03E+02 2.13E+02 

CT: 0.39 7.75 8.32  0.42 8.00 8.00  0.41 7.45 8.37 

32 

 
*

rSDy  1.00E+00 1.18E+02 2.87E+00 
 

1.00E+00 1.69E+02 1.45E+01 
 

1.00E+00 1.40E+05 6.88E+04 

 
*

rSKy  1.00E+00 5.26E+01 5.26E+01 
 

1.00E+00 1.65E+01 1.64E+01 
 

1.00E+00 1.84E+00 1.84E+00 

 
*

1rUSy  1.00E+00 1.41E+02 2.82E+02 
 

1.00E+00 2.83E+02 1.81E+01 
 

1.00E+00 1.15E+02 1.96E+02 

 
*

2rUSy  1.00E+00 2.71E+01 1.32E+01 
 

1.00E+00 2.00E+03 5.04E+03 
 

1.00E+00 6.95E+00 1.23E+01 

CT: 0.39 8.20 9.09  0.39 7.99 8.57  0.36 8.09 8.17 

40 

 
*

rSDy  1.00E+00 2.28E+02 1.64E+03 
 

1.00E+00 3.19E+01 3.10E+01 
 

1.00E+00 1.14E+03 2.74E+04 

 
*

rSKy  1.00E+00 5.08E+01 5.07E+01 
 

1.00E+00 1.55E+01 1.55E+01 
 

1.00E+00 1.64E+00 1.64E+00 

 
*

1rUSy  1.00E+00 5.02E+00 2.16E+01 
 

1.00E+00 2.19E+00 4.88E+01 
 

1.00E+00 1.33E+01 4.46E+01 

 
*

2rUSy  1.00E+00 1.01E+02 9.70E+01 
 

1.00E+00 3.79E+02 1.36E+01 
 

1.00E+00 8.86E+01 1.08E+01 

CT: 0.41 8.02 8.63  0.45 7.88 8.56  0.36 7.84 8.75 

Tablo 6: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation Design-III
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