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Abstract

Estimating the population mean is of prime concern in many studies, and calibrations are popular
choices. A robust calibration estimator estimates the mean using the minimum covariance determinant
(MCD) and the minimum volume ellipsoid (MVE) estimations under stratified random sampling.
Efficiency comparisons have been made between the robust calibration estimator and classical
calibration estimator. Simulations and empirical results show that the proposed robust calibration
estimator has a lower mean square error than the calibration estimators. When the relative efficiency
and computation times are considered together, it is seen that the proposed robust calibration

estimators based on MCD estimates are more efficient.

Keywords: Calibration estimator; Robust estimates; Mean square error; Efficiency; Stratified random

sampling
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1 Introduction

The topic of ratio estimators has lost its practical appeal since the emergence of calibration
techniques. In the sampling literature, the calibration technique is commonly used to improve the
population parameter estimates. Deville and Sarndal [1] introduced the calibration method of
estimation. Tracy et al. [2] provided the calibration estimator for the stratified random sampling
estimator. Kim and Park [3] introduced the asymptotic properties of the class of calibration estimators.
They found conditions for the design consistency of the calibration estimator. Koyuncu and Kadilar
[4] provided novel calibration estimators under stratified random sampling. Climate [5] proposed a
calibration estimator for estimating the population mean utilizing calibration weights under stratified

double sampling. Ozgul [6] provided a calibration approach alternative to existing calibration

estimators for estimating Y using an auxiliary variable in stratified sampling. Ozgul [7] proposed a

calibration estimator for the population mean using two auxiliary variables in stratified sampling. The
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calibration approach has three main advantages in sampling theory. Ozgul [8] presented a novel

calibration estimator for the Y with developing calibration weights based upon two auxiliary
variables in stratified two-phase sampling. Shahzad et al. [9] provided a class of calibration estimators
for the variance estimation in stratified random sampling. Shahzad et al. [10] presented some
calibration estimators using L-Moments for double-stratified random sampling to estimate the
population variance. First, the calibration approach leads to consistent estimates. Second, it ensures an
important technical family for the efficient combination of datasets. Third, the calibration approach
has the computing advantage to calculate estimates [11]. Garg and Pachori [12] introduced a new
calibration estimator for estimating the population mean using the known coefficient of variation of
the auxiliary variable in the stratified random sampling. However, the outlier problem, which is the
presence of extreme values in data, generally decreases the efficiency since traditional estimators are
sensitive to these extreme values. Keeping this fact in mind, many authors such as Kadilar et al. [13],
Ali et al. [14], Zaman and Bulut [15], Zaman [16], Shahzad et al. [17], Abid et al. [18], Naz et al. [19],
Zaman and Bulut [20], Zaman et al. [21] Grover and Kaur [22], and Zaman and Bulut [23] have used
the robust regression methods, for minimizing the impact of the extreme values in ratio estimators of
the mean. In sampling theory, information about the auxiliary variable used in rate estimators is used
to increase the efficiency of the population mean of the study variable. However, in the case of outliers
in the data structure, these estimators are negatively affected, and their efficiency decreases. To
eliminate this negative effect caused by outliers, robust methods that are resistant to outliers are used
[13]. Therefore, this article uses MCD and MVE estimates in calibration estimators to reduce the
negative effect caused by an outlier data set. In addition, this study is the first study of calibration
estimators using MCD and MVE robust estimates.

The main purpose of this study is to propose robust calibration estimators utilizing robust
MCD and MVE covariance estimates to improve the precision of estimation of population mean in
stratified sampling. In this study, we improve the robust calibration to decrease MSE in stratified
random sampling. We express the MSE up to the first-order approximation and compare the efficiency
of the robust calibration estimators with that of the existing estimator. Finally, we find a significantly
lower MSE.

The remaining part of the study is organized as follows. Section 2 ensures a description of the
classical calibration estimators. The structure of the robust calibration estimator based on MCD and
MVE estimates is given in Section 3. The efficiency comparisons of the robust calibration estimators

with the classical calibration estimators are presented in Section 4. Sections 5 and 6 consist of



empirical and simulation studies of proposed robust calibration estimators. Finally, Section 7

summarizes the findings of this study.

2 Calibration Estimators

Kim et al. [11] extended Sisodia and Dwivedi’s [24] estimator, Singh and Kakran’s [25] estimator, and
Upadhyaya and Singh’s [26] estimator to several calibration ratio estimators for improving variance

estimator with the aid of auxiliary information in stratified random sampling.
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The expression for MSE of the estimators Equations (1)-(4) computed utilizing a first-degree

approximation of the Taylor series expansion and is as follows:
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where (s, = ( Cy + B, (X )) .Forthe jthstratum, w; = N; /N denotes the stratum weight and

f; =n; /' N; denotes the sample fraction.

3 MCD AND MVE Robust Covariance Estimates

Rousseeuw [27] introduced two estimators, namely the Minimum Volume Ellipsoid (MVE)
and the Minimum Covariance Determinant (MCD) estimators. These estimators have a high breaking
point. MCD and MVE robust estimators perform better than classical covariance estimators when
there are outliers in the data. These estimators are based on iterative algorithms.
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The MCD algorithm searches for a subset consisting of h observations such that the
determinant of the covariance matrix is the minimum. Here, h =(1—a)*n, and « is the trimming

ratio. When this subset has the minimum determinant of the covariance matrix, the location and scatter
parameters are calculated robustly as the sample mean vector and sample covariance matrix of this
subset. Because of the definition, the algorithm's calculations may take a long time. So, Rousseeuw

and Van Driessen [28] constructed the computationally efficient FastMCD algorithm. Finally, the

breakdown point of MCD estimators is equal to the trimming ratio (a) [29, 30].

On the other hand, Rousseeuw [27] provided the MVE estimate to determine the unusual
values in multivariate datasets. The MVE estimator for the location parameter of multivariate data was

defined as the centre of an ellipsoid having a minimum volume spanned by the h points in X data,

where h= n/2 +1and . isa function that rounds the number to an integer [27]. The breakdown

point of the MVE estimator is equal to ((Ln/ZJ— p+1))/n. And, when n — oo, the breakdown

point of the MVE estimator is equal to 50% [27,31, 32].

There is a large body of literature on rate-type estimators for estimating the mean using MCD
and MVE estimates. For example, Bulut and Zaman [33] extended Zaman and Bulut [15] using MCD
estimates. Zaman and Bulut [32] provided ratio-type estimators for mean estimation using MCD and
MVE estimates to stratified random sampling. Shahzad et al. [34] provided ratio estimators to estimate
the mean using MCD and MVE estimates in case of missing data.

We use the CovMcd, and CovMve functions in the package rrcov in the R programming

language for calculations belonging to MCD and MVE estimations, respectively [35].

4 Robust Calibration of Ratio Estimators

For the estimation of the population mean, we suggest the following eight robust calibration estimators
using minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) estimators,

instead of ratio estimators presented in Equations (1)-(4), to data which have outliers. We have
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estimators in stratum j , respectively.

The MSE expression of the estimators given between Equations (9)-(12) are as follows:
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The expression for MSE of the robust calibration estimators is in the same form as the MSE

expression presented in Equations (5)-(8), but it is seen that, X, C,. ﬁz(x), X¢r S e,’ €;, b and q;
in Equations (5)-(8) should be replaced by X( 1 B, ( ), X 4(2): sezjt(z), €iicr) Bioy and Q)
, (t =SD, SK,USland USZ) whose values as computed by MCD and MVE estimates

(z =MCDand MVE). The expressions of MSE two different robust covariance estimates for each

value z will be calculated. Therefore, eight different the expressions for MSE will be obtained.

5 Efficiency Comparisons

In this section, we compare the expressions of MSE of the robust calibration estimators of Equations
(13)-(16) with the expressions of MSE of the calibration ratio estimators of Equations (5)-(8).

(i) From Equations (5) and (13),

MSE, (Vixo) ) < MSE, (V2o ), (17)



Let
X K w, (1-f. v
A, =2 and B, = 1 J)sjjSD(z); (z=MCDand MVE). A=2"% ang
Xst(z) j=1 nj st

K w (1-f
B:Z—’(n J)sjjSD.

j=L j
Thus, Equation (18) becomes

AYZZ)B(Z) ~ A’B<0. (19)

When Equation (19) is satisfied, the estimator V:SD(Z), z=MCDand MVE, performs better than the
estimator Y, .

(ii) From Equations (6) and (14),
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When Equation (22) is satisfied, the estimator V:SK(Z), z=MCDand MVE, performs better than the

estimator Yy, .

(iii) From Equations (7) and (15),
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When Equation (25) is satisfied, the estimator V:USl(z)’ z=MCDand MVE, performs better than the
estimator Y, .
(iv) From Equations (8) and (16),
MSEC (y:usz(z)) < MSEC (ytjsz)’ (26)
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Thus, Equation (27) becomes
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When the Equation (28) is satisfied, the estimator V:USZ(Z), z=MCDand MVE, performs better than

the estimator ¥, . The robust calibration estimators will perform better than the existing estimators if

Conditions (i)- (iv) are satisfied.
6 Application

We use the data in Murthy [36] to compare the efficiencies between the robust calibration estimators
and the classical calibration estimators under stratified random sampling. We have contaminated these

datasets by multiplying with ten the Y value of the last five observations in each stratified. The

contamination rates (fi) have been given in Table 1 for population-1 and Table 2 for population-2.

Therefore, datasets are contaminated in the direction of Yy . These datasets are presented as followings.

Population 1. Yy is factories in the region; x is the number of workers. The data from 80

factories have been classified arbitrarily into four strata based on x values Murthy [36]. The strata are

x<100, 100<x<200, 200<x<500, and x>500, respectively. We have randomly selected
. : . N, . .
samples from each stratum by taking the proportional allocation, n, = nW, using a total sample size

of n=45

[Table 1]

Population 2. y is factories in the region; x is fixed capital. The data from 80 factories have

been classified arbitrarily into four strata based on x values Murthy [36]. The strata are x<500,
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500<x<1000, 1000<x<2000, and x>2000, respectively. Again, we use the same procedure of
selecting the samples from each stratum as in Example 1. We use a total sample size of n=45. Both
data sets were used by Shabbir and Gupta [37].

[Table 2]

We compute the MSE values of the classical calibration and the robust calibration estimators
as defined in Sections 2 and 3, respectively. And using these values obtain the relative efficiency (RE)
for each robust calibration estimator in Equations (9)—(12) concerning the classical calibration
estimators in Equations (1)—(4) by using Equation (29) as below:

MSE (; )

=————,t=SD,SK,USland US2. (29)
MSE<yrt(z))

In Table 3, 24 relative efficiency values are computed. From Table 3, it is seen that the
performances belonging to all of the robust calibration estimators concerning classical calibration

estimators are greater than 1. The robust calibration estimators perform better than the calibration
estimators. In addition, for both datasets, the most efficient estimator is the estimator V:USZ(MVE) based
on the MVE covariance estimate. This result is expected because the conditions (i)- (iv) are satisfied

for all estimators in these datasets.

[Table 3]
7 Simulation

3 different simulation designs have been used to compare the performance of the robust calibration
estimators and the classical calibration estimators. These designs are as follows;

Simulation Design-1

Here, the number of strata is taken as four, and each stratum contained N,=N,=N,=N,=20
observations, respectively. The observations in each stratum are generated as follows:

(1Y, =1+2X, +¢, (30)

(2)Y, =5+ X, +¢, (31)
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(3)Y, =10+3X, +¢, (32)
(4)Y, =20+7X, +&, (33)

Here, X variables are generated from X, ~N(0,1), X,~N(51), X,~N (0,9),
X, ~ N (5,9)distributions. Error terms & ~ N (0,1),& ~ Exp(1),& ~U (0,1) are generated from 3

different distributions. Sample sizes are 20, 32 and outliers rates are 5%, 10% , and 25%.

Simulation Design-11

Here, the number of strata is taken as four, and each stratum contained N,=N,=N,=N,=20

observations, respectively. The observations in each stratum are generated as follows:

()Y, =1+2%, +4, (34)
(2%, =5+ X, +5, (3)
(37, =10+3%, +2, (36)
(4)Y, =20+7X, 5, (37)

Here, X variables are generated from X, ~N(0,1), X,~N(51), X;~N(0,9),
X, ~ N (5,9)distributions. Error terms are generated from & ~ N (0,1) distributions. Sample sizes
are 20, 32 and 40 and outliers rates are 5%, 10%, and 25%.
Simulation Design-111
Here, the observations for all strata are generated from the distribution of Y, =3X,; + ¢, (k =1,2,3,4)

, and each stratum contained N,=N,=N,=N,=20 observations, respectively. The X and error
values are obtained as follows, respectively.

)X, ~N(01),  &~Exp(3), (38)

(2)X,~N(51), & ~N(0,1), (39)

12



(3)X,~N(59), & ~Unif (0,), (40)

(4)X,~N(0.9), & ~ 1, (41)

The sample sizes are 20, 32, and 40, and outliers rates were 5%, 10%, and 25%. The
simulation steps are as follows;
Firstly, existing calibration estimators given in Section 2 are obtained for each sample size

using SRSWOR (simple random sampling without replacement).
Then, for each sample taken, the existing calibration estimators, say Y_i, such as Y:t , given in
Section 2 and the robust calibration estimators, 7;(2) , given in Section 3 are obtained.

The values of MSE for all cases are obtained with the help of Equation (42) as below:

1000

z(v‘ ), (42)

MSE = 1
1000 ‘=

where Y is the population mean. In all cases, 1000 iterations are performed.

[Table 4]
[Table 5]
[Table 6]

The simulation study was performed with R programming language on an Intel(R) Core(TM)
i3-4160 CPU with 3.60 GHz. The results obtained for the first, second, and third simulation designs
are given in Tables 4, 5, and 6. We compute the computational times (CT) and the relative efficiency
values of the robust and existing calibration estimators as given in Sections 2 and 3, respectively,
using outliers data. In different simulation designs, the computational times and the relative efficiency
values of the robust and existing calibration estimators are given in Tables 4, 5, and 6. These RE
values are bigger than 1. It is seen that the robust calibration estimators are more efficient than the
existing estimators, which indicates that the robust calibration estimators are more efficient in the
presence of outliers. The relative efficiency of the robust calibration estimators concerning the existing

estimators in Tables 4, 5, and 6 would increase dramatically, which shows that the performances of the
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robust calibration estimators would increase if there were more outliers in the dataset. Also, when the
computation time and relative efficiency values are considered together, it is seen that estimators based

on MCD are more efficient.
8 Conclusion

The study has proposed a set of calibration estimators for a finite population mean utilizing the
information on some robust measures. The robust calibration estimator is very attractive and should be
preferred in practice. It ensures consistent and more precise parameter estimates than the existing
estimators under stratified random sampling, especially in the presence of unusual observations in the
data. According to the computation times in the study, it is seen that the computational speeds of the
classical estimators are faster than the proposed estimators. However, the MSE values of these
estimators are large. That is, their efficiencies are small relative to the proposed estimators.
Considering only the relative efficiency values, estimators based on MCD and MVE give more
efficient results than classical estimators. However, there are no significant differences between the
results of the proposed estimators based on MCD and MVE. Therefore, when the computation times
and relative efficiency values are considered together, it is seen that the proposed estimators based on

MCD are more efficient.
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C, 198 C, 1.471 1.442 1.246 1.249
B, (X) 920 B (X)  3.154 2.842 1.576 1.654
X 1243.41 X 192.857 513.615  1806.000 3658.000
Y  18926.55 y 7927.000 15926.380 27094.560 33807.890
Classical 52
€jSD 2.38E+08 3.02E+08 6.41E+07 2.35E+09
2
Sejsk 2.38E+08 3.02E+08 6.38E+07 2.34E+09
2
Squst  2.14E+08 3.01E+08 4.68E+07 1.52E+09
2
Sjus2  2.30E+08 3.01E+08 5.58E+07 2.07E+09
C, 0094 C, 0.231 0.209 0.325 0.236
B (X) 10.47 p,(x) 4828  4.480 3.020 3.089
X 114.70 X 73625  127.222  329.000  627.000
Y  3999.42 y 3477.500 4523.333 6276.833  7368.500
MCD 2
Sejsp 1.13E+08 8.55E+07 4.87E+08 8.49E+09
2
Sejsk 1.14E+08 8.89E+07 4.59E+08 8.22E+09
2
Seust  1.26E+08 1.18E+08 2.71E+08 6.30E+09
2
Sus2  1.16E+08 9.29E+07 4.28E+08  7.92E+09
C, 12 C, 0.225 0.203 0.307 0.224
B (X) 1061 p,(x) 4828  4.480 3.020 3.089
X  191.84 X 71.778  127.222  1806.000 2746.500
Y  4751.16 y 3414556 4523.333 27094.556 26471.375
MVE 2
Sejsp 2.14E+08 3.02E+08 2.18E+07 1.50E+09
2
Sejsk 2.14E+08 3.03E+08 2.24E+07 1.47E+09
2
Seust  2.11E+08 3.09E+08 2.78E+07 1.23E+09
2
Seus2  2.12E+08 3.07E+08 2.62E+07 1.29E+09
N 80 N, 25 23 16 16
n 45 n, 14 13 9 9
& 0.2 0.21 0.31 0.31
f 0.56 0.5652 0.5625 0.5625
w 0.31 0.29 0.2 0.2

—

Table 1: Data statistics for Population |
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Methods Population Stratum 1 2 3 4
C, 175 C,  1.348 1.520 1.123 1.166
B (X) 760 B(x) 2055 4616  1.300 1.523
X 4544.66 X 1847.545 1067.5  7737.375 16264.38
Y  19026.79 y 14506.46 7411.056 30038.38 46693.13
Classical g2
gso  1.81E+08 2.09E+08 50281479 1.01E+09
2
Sesk ~ 1.8E+08 2.09E+08 50199765 1.01E+09
2
Siust  1.63E+08 2.07E+08 32240548 6.86E+08
2
Seus2  1.73E+08 2.08E+08 41198684 8.73E+08
C, 072 C, 0.353 0.174 0.306 0.150
B (X) gg7 B,(x) 3602 6359 2634 2907
X 60822 X 279 707.7692 1409.8 8873
Y  4082.87 y 2550.143 4602.308 6333.4 24369
MCD 2
Sesp 1.63E+08 2.13E+08 11269514 5.98E+08
2
Sesk  1.63E+08 2.13E+08 11380985 5.92E+08
2
Seust  1.68E+08 2.28E+08 25118909 3.53E+08
2
Seus2  1.68E+08 2.28E+08 25219536 3.52E+08
C, 079 C, 0454 0.182 0.283 0.140
B, (X) gagg B(X) 3603 6359  2.634 2.907
X  646.06 X 1847546 707.7692 7737.375 14737.86
Y  4187.36 y 14506.46 4602.308 30038.38 41677.86
MVE 2
Seso 1.74E+08 2.09E+08 38185742 8.91E+08
2
Sesk  1.74E+08 2.09E+08 38055419 8.89E+08
2
Siust  1.65E+08 2.09E+08 30207489 6.97E+08
2
Seus2  1.54E+08 2.1E+08 29008646 4.48E+08
N 80 N, 19 32 14 15
45 n, 11 18 8 8
& 0.26 0.15 0.35 0.33
f 0.58 0.56 0.57 0.53
W 0.24 0.40 0.18 0.19

—

Table 2: Data statistics for Population Il
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Population-I Population-I1
Estimators Classical MCD MVE Classical MCD MVE
y:so 1 1.4968  32.4457 1 14.2037 45.5237
Vesk 1 1.2924  29.8624 1 13.8667 44.5189
7:u51 1 1.1686  24.6078 1 10.4495 33.3511
y:usz 1 5.6305 74.4301 1 81.4782  218.905

Table 3: Theoretical results for the relative efficiencies of proposed robust calibration estimators with

respect

to

21

existing

estimator



: 5% 10% 25%
& 0 Eslimalors —epsic . MCD_ MVE Classic _MCD ___MVE Classic _MCD ___MVE
Ve 100 480337 5271 1.00  21919.43 3011.74 1.00 3.48 19.18

Ve 100 19678  196.21 1.00 10071 100.49 1.00 12.42 12.48

20 Yug 100 1258  160.09 1.00 132769 51652 1.00 5.73 3.59
Vi, 100 23688  458.74 1.00 836 3250 1.00  5147.77 28329.72

N(01) CT: 0.35 7.33 7.83 0.38 7.45 8.7 0.41 7.67 8.64
Ve 100 538  51.25 1.00 14717  5.04 1.00 18751 1057

Ve 100 23676  236.67 1.00 8290  83.09 1.00 9.16 9.20

32 Vs 100 36066 5815 1.00 414 2668 1.00 17130 14201

Vs, 100 1651022 21345.92 1.00 3911  209.65 1.00 2.25 448.84

CT: 0.39 7.81 8.30 0.39 7.42 9.09 0.37 8.05 8.60

Ve 100  3697.07 28454 1 2.06 8.54 1.00 44820  490.65

Ve 100 27253 27296 1.00 12259 12254 1.00 13.30 13.35

20 Ve 100 303588 862.00 100 784884 8736.25 100 121.93  161.00

Vs, 100 49561 28354 1.00 25843  71.89 1.00  1839.04  1880.54

Exp(2) CT: 0.38 8.04 8.68 0.44 7.29 8.94 0.44 7.75 8.22
Ve 100 1500 1523 1.00  159.58  40.11 1.00  627.98  1135.06

Ve 100 27828  277.79 1.00 8901  88.96 1.00 9.62 9.65

32 Vs 100 2729492 34053.35 1.00  26081.36 67235.98 1.00 22518  18.34

Vs, 100 322521 5823.17 1.00 71516  697.11 1.00  1087.82  565.48

CT: 0.44 7.70 8.86 0.41 7.96 8.40 0.44 7.34 8.65

Unif (01) 20 YLSD 1.00 4349 3494 100 5972 5541 1.00 35597  16.33
Ve 100 25005  249.46 1.00 10880  108.70 1.00 12.86 12.86
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V:U51 1.00 230.96 7.59 1.00 160.90 19.97 1.00 2410.50 950.86
y:usz 1.00 381.02  404.19 1.00 399.74 52.88 1.00 17101.73 21455.50
CT: 0.36 7.19 9.02 0.34 7.47 8.29 0.47 7.65 8.93
)_/:SD 1.00 79.53  4288.86 1.00 7153.35  461.10 1.00 2.86 14.14
)_/:SK 1.00 256.13  255.28 1.00 95.07 94.99 1.00 9.34 9.34
32 Yuq 100  5723.62 4719.90 1.00  42800.65 6105.50 1.00 5159  113.11
)_/:USZ 1.00 48.93 95.03 1.00 456.23  897.75 1.00 954341.05 957612.30
CT: 0.50 7.39 8.54 0.45 7.47 8.03 0.36 7.71 8.31
Tablo 4: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation Design-I
n Estimators - >% - 10% - 2%
Classic MCD MVE Classic MCD MVE Classic MCD MVE
V:SD 1.00E+00 1.91E+02 2.72E+00 1.00E+00 7.50E+01 3.22E+02 1.00E+00 1.19E+02 1.03E+03
V:SK 1.00E+00 6.78E+02 6.78E+02 1.00E+00 2.43E+02 2.43E+02 1.00E+00 8.95E+01 8.95E+01
20 Vus: L1.00E+00 1.06E+05 1.38E+05  1.00E+00 1.14E+02 3.46E+03  1.00E+00 6.92E+01 1.48E+03
Vus, 100E+00 1.99E+05 2.01E+05  1.00E+00 1.78E+02 2.56E+02  1.00E+00 1.98E+04 2.29E+04
CT: 0.47 7.73 8.35 0.37 7.32 8.10 0.36 7.64 8.14
Ve, 1O00E+00 1.01E+04 2.72E+04  1.00E+00 1.71E+05 1.09E+06  1.00E+00 3.47E+03 3.36E+03
V:SK 1.00E+00 6.76E+02 6.74E+02 1.00E+00 3.14E+02 3.13E+02 1.00E+00 6.00E+01 6.00E+01
32 Vs L1O00E+00 7.97E+01 1.79E+02  1.00E+00 2.07E+03 2.68E+03  1.00E+00 3.92E+03 4.82E+03
Vs, L1.00E+00 3.60E+05 4.53E+05  1.00E+00 2.52E+02 1.26E+02  1.00E+00 4.57E+01 2.57E+00
CT: 0.39 7.46 8.91 0.34 7.52 8.92 0.28 7.72 8.58
V:SD 1.00E+00 1.72E+02 3.56E+02 1.00E+00 8.16E+02 9.67E+01 1.00E+00 7.95E+01 8.68E+01
0 V. 1O00E+00 6.53E+02 6.53E+02  1.00E+00 2.93E+02 2.92E+02  1.00E+00 4.48E+01 4.48E+01
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Viis; L100E+00 1.15E+02 1.87E+01  1.00E+00 1.61E+05 1.47E+05
Vos, L100E+00 1.09E+03 7.38E+02  1.00E+00 1.91E+03 2.51E+03

1.00E+00 1.92E+04 1.85E+04
1.00E+00 3.12E+02 3.88E+02

CT: 0.41 7.81 8.73 0.39 7.91 8.49 0.42 7.36 8.41
Tablo 5: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation Design-II
n Estimators o% 10% 25%
Classic MCD MVE Classic MCD MVE Classic MCD MVE
V:SD 1.00E+00 3.78E+01 1.14E+02 1.00E+00 3.07E+00 5.52E+01 1.00E+00 5.60E+03 5.01E+03
V:SK 1.00E+00 4.33E+01 4.33E+01 1.00E+00 1.54E+01 1.54E+01 1.00E+00 1.78E+00 1.78E+00
20 Vs 1.00E+00 9.21E+00 9.03E+00  1.00E+00 5.88E+02 3.25E+00 1.00E+00 1.60E+01 1.71E+00
V:USZ 1.00E+00 6.58E+02 4.70E+02 1.00E+00 5.62E+02 4.71E+02 1.00E+00 1.03E+02 2.13E+02
CT: 0.39 7.75 8.32 0.42 8.00 8.00 0.41 7.45 8.37
V:SD 1.00E+00 1.18E+02 2.87E+00 1.00E+00 1.69E+02 1.45E+01 1.00E+00 1.40E+05 6.88E+04
V:SK 1.00E+00 5.26E+01 5.26E+01 1.00E+00 1.65E+01 1.64E+01 1.00E+00 1.84E+00 1.84E+00
32 Vus 1.00E+00 1.41E+02 2.82E+02  1.00E+00 2.83E+02 1.81E+01 1.00E+00 1.15E+02 1.96E+02
Vs, 1.00E+00 2.71E+01 1.32E+01  1.00E+00 2.00E+03 5.04E+03 1.00E+00 6.95E+00 1.23E+01
CT: 0.39 8.20 9.09 0.39 7.99 8.57 0.36 8.09 8.17
V:SD 1.00E+00 2.28E+02 1.64E+03 1.00E+00 3.19E+01 3.10E+01 1.00E+00 1.14E+03 2.74E+04
Y:SK 1.00E+00 5.08E+01 5.07E+01 1.00E+00 1.55E+01 1.55E+01 1.00E+00 1.64E+00 1.64E+00
40 Vus; L1O00E+00 5.02E+00 2.16E+01  1.00E+00 2.19E+00 4.88E+01 1.00E+00 1.33E+01 4.46E+01
Vs, 1.00E+00 1.01E+02 9.70E+01  1.00E+00 3.79E+02 1.36E+01 1.00E+00 8.86E+01 1.08E+01
CT: 0.41 8.02 8.63 0.45 7.88 8.56 0.36 7.84 8.75
Tablo 6: The Relative Efficiencies (RE) and Computational Time (CT) results of Simulation

24

Design-11I



Author’s Biography

Tolga Zaman is an Associate Professor at the Department of Statistics in Cankiri Karatekin
University, Cankiri, Turkey. He received his MS and PhD degrees in Statistics from Ondokuz Mayis
University Samsun, Turkey in 2013 and 2017, respectively. His research interests are sampling theory,
resampling methods, robust statistics, and statistical inference. He has published more than 60 research
papers in international/national journals and conferences. He has papers published in journals like
Applied Mathematics and Computations, Communication in Statistics: Simulation and Computation,
Communication in Statistics: Theory and Methods, Mathematical Population Studies, RevStat-
Statistical Jounal, Scientia Irenica, Currency and Computation Practice and Experience.

Hasan Bulut is working as Associate Professor in Department of Statistics at Ondokuz Mayis
University, where he received his Doctor degree in 2017 based on robust clustering and robust
multivariate analyses. His main research interests have been the fields of socio- economic
development, robust principal component analysis, robust clustering analysis, multivariate statistical
methods, and applied statistics. He has papers published in journals like Socioeconomic Planning
Sciences, the Journal of Applied Statistics, Communication in Statistics: Theory and Methods, and
Communication in Statistics: Simulation and Computation, Scientia Irenica. Moreover, he has a book

about multivariate statistical methods with R applications.

25



