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Abstract 

In some manufacturing or non-manufacturing systems, the process outcome is better 

characterized by a relationship between a main variable and some associated supporting 

variables. The monitoring of this functional relationship over time is termed as profile 

monitoring. This study aims to improve Phase II monitoring of simple linear profiles by using 

auxiliary information which is correlated with the main variable. To accomplish that, using a 

mean estimator, two auxiliary information-based (AIB) control charts namely AIB-MEWMA 

and AIB-DMEWMA charts are proposed for detecting different shifts in model parameters. 

Using two numerical examples based on simulation studies, the sensitivity of the proposed 

control charts is evaluated and compared with the existing MEWMA and DMEWMA charts in 

terms of the average run length (ARL) metric. The results of simulations reveal that the proposed 

charts perform better than the existing MEWMA and DMEWMA charts. The applicability of the 

proposed control charting methods is demonstrated using a real-life data example from the 

cylinder production process. 

Keywords: Statistical process monitoring, Mean estimator, Simple linear profile, Auxiliary 

information, Phase II. 

1. Introduction 

In many statistical process monitoring (SPM) applications, control charts are established to 

monitor the quality of a single or multiple quality characteristics. In some manufacturing or non-

manufacturing systems, however, the main (study) variable is associated with one or several 
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supporting (explanatory) variables. Monitoring this relationship among the study and 

explanatory variables over time in SPM context is referred as profile monitoring. Depending on 

the nature of the process, different profile models can be categorized into simple linear, multiple 

linear, polynomial, nonlinear, and complicated profiles. Among them, the simple linear profile is 

the most common type because of its easier implementation as well as its coverage in real-world 

applications. In a simple linear profile, the value of study variable is dependent on one 

explanatory variable by a linear regression model. For example, in a photo-voltaic (PV) system, 

the output voltage is the main variable which is linearly associated with the capacitance level of 

capacitors, used in the Z-source inverter (Mahmood et al [1]). Different profile monitoring 

methods can be classified into Phase I and Phase II ones. The purpose of Phase I analysis is to 

evaluate the process stability and estimate the regression parameters while Phase II analysis aims 

to detect the process disturbances as quickly as possible. Monitoring simple linear profiles has 

gained increasing attention in recent years. For example, Haq [2] employed adaptive features for 

enhancing the detectability of MEWMA control chart in Phase II monitoring of simple linear 

profiles in both univariate and multivariate cases. Furthered examples include Kazemzadeh et al. 

[3], Riaz et al. [4], Mahmoodet al. [5], Riaz et al. [6], Chang and Chen [7], Haq et al. [8], Khalafi 

et al. [9], Yeganeh et al. [10] and the references cited therein. Further information concerning the 

simple linear profile monitoring approaches can be found in Maleki et al. [11]. 

Sometimes, the auxiliary variables are available to quality engineering practitioners along with 

the original variable of interest. In such cases, direct measurements of the main variable can be 

performed alongside with another variable. According to Ahmad et al. [12], the industrial 

systems with auxiliary variables which are correlated with the main variable can be categorized 

into non-cascading and cascading processes. In a non-cascading process, the study variable can 

endure a shift in mean and/or variability parameters without affecting the auxiliary variables. For 

example in platinum refinery operation, the amount of platinum metal as the study variable is 

generally correlated with the magnitude of other metals as the auxiliary ones. In this process, as 

stated by Hawkins [13], the quantity of the other metals will not be affected by the shift in the 

concentration of platinum metal during the production cycle. In contrast, in cascading processes, 

the shift in the study variable directly affects the auxiliary variable(s). For example, in the 

production process of shaft, any change in inner diameter will directly deviate from its outer 

diameter. In other words, the outer diameter of the shaft increases as the inner diameter increases 
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and vice versa. In this condition, the distribution parameters of outer diameter are not fixed when 

the assignable cause affects the inner diameter of shaft. Hence, as mentioned by Saleh et al. [14], 

concurrent changes in both inner and outer diameters as the study and auxiliary variables should 

be taken into account.  

Utilizing auxiliary or supplementary variables which are correlated with the main variable can 

improve the efficiency of control charts by reducing the variance of parameter estimators. In 

recent years, considering the auxiliary variable(s) to establish different control charts have 

received much attention by the researchers. More specifically, considering the auxiliary variables 

enhances the sensitivity of different control charting methods to detect small and moderate shifts. 

As a pioneer work regarding the incorporation of auxiliary information and control charting 

structures, Riaz [15] used a single auxiliary variable X for better monitoring of variable Y and 

proposed a Shewhart control chart for detecting the process mean shifts. Then, Riaz [16] 

proposed an auxiliary information-based (AIB) control chart for monitoring the process 

variability. Abbas et al. [17] employed single and two auxiliary variables to enhance the 

sensitivity of progressive mean control chart in detecting small mean shifts. Based on auxiliary 

variables, Chiang et al. [18] proposed an improved Hotelling T
2
 control charting method in 

which the normality assumption of quality characterises is relaxed. Recently AIB control charts 

have been well documented in the literature. Some of the recently published ones include 

Adegoke et al. [19], Arshad et al. [20], Haq and Khoo [21], Sanusi et al. [22], Noor-ul-Amin et 

al. [23], Saha et al. [24], Saghir et al. [25], Noor-ul-Amin et al. [26], and Anwar et al. [27]. 

To the best of the authors’ knowledge, employing the auxiliary information for enhancing the 

detectability of profile monitoring control charts has been clearly neglected in the literature. In 

other words, despite the improved efficiency of AIB control charts, no research has adopted the 

use of auxiliary information to design control charting methods in profile monitoring context. 

Due to efficiency of AIB control charts in detecting process disturbances, in this paper we 

employ the auxiliary information and design two memory-type control charts including AIB-

MEWMA and AIB-DMEWMA charts for Phase II monitoring of simple linear profiles. To 

accomplish that we consider the non-cascading condition under the assumption of stable 

auxiliary characteristics and  develop mean estimators in place of ordinary least estimators to 

obtain the regression model parameters. Through Mont Carlo simulations, the run length 
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performance of the proposed control charts are evaluated and compared with two efficient 

control charts. The rest of this article is organized as follows: The background of linear profile 

model along with the mean estimator is discussed in Section 2. The proposed control charts 

based on auxiliary characteristics are presented in Section 3. Extensive simulation studies are 

presented in Section 4 to evaluate the performance of the proposed AIB control charts. The 

applicability of the proposed control charts is demonstrated using a real-life data example from 

the cylinder production process in Section 5. Finally, the conclusion remarks along with some 

recommendations for future studies are given in Section 6.  

2. Problem definition 

2.1. One auxiliary profile 

Consider a process where the process outcome is characterized by a bivariate linear profile 

model. The first variable is the main variable while the second one is considered as the auxiliary 

variable. For t
th

 random sample collected over time, we have n observations given as 

 1 2, , ; 1,2,...,  , 1,2,...i i t i tx y y i n t   where ix  denotes the value of explanatory variable at i
th

 

experimental setting. Moreover, for t
th

 random sample, 1i ty  and 2i ty  are the i
th

 value of the study 

and auxiliary response variables in t
th 

profile, respectively. When the process is statistically in-

control, the regression model that associates the bivariate response variables with the explanatory 

variable is given as: 

,t tY = XB + E  (1) 

where, 
01 02

11 12

β β

β β

 
  
 

B  while tY  is a 2n  matrix and contain the observations of bivariate 

response variables. Obviously, the first column in tY  indicates the observations of the study 

variable while the second column contains the observed values of the auxiliary variable. 

Moreover, tE  is a 2n  matrix of error terms which is expressed as: 
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11 12

21 22

1 2

ε ε

ε ε

ε ε

t t

t t

t

n t n t

 
 
 
 
 
 

E  (2) 

It is assumed that each row of matrix tE  follows a bivariate normal distribution with mean 

vector 0  and the following covariance matrix: 

2

1 12

2

12 2

 

 

 
  
 

Σ  (3) 

For t
th

 random sample, the vector of estimated regression parameters for the study profile 

through the mean estimator (MS) method can be obtained by retrieving from Riaz et al. [15] as: 

1 2 2

0201 021

ˆ ˆ ˆ1

12
11 12

β ββ
ˆ + -

β
β β

OLS OLS OLS

MS

 



 

    
                 
     

β β β
β ,  (4) 

where 
01

1

11

β
ˆ

β

OLS





 
 
  
 

β  and 
02

2

12

β
ˆ

β

OLS





 
 
  
 

β  are the estimated regression parameters for the study and 

auxiliary profiles, respectively obtained by ordinary least square (OLS) method. The expected 

value and covariance matrix of 
1

ˆ MS
β  when the process is statistically in-control can be obtained 

according to Equations (5) and (6), respectively: 

   
1 1 1 2 2 2 1

01 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1

11

β
ˆ ˆ,

β
MS OLS OLS OLS OLS OLS OLS

MS MSVar  
        

 
β β β β β β β

β Σ β -  (5) 

Moreover, according to Noorossana et al. [28] we have  01 11 02 12
ˆ ˆ ˆ ˆ ˆ, , ,

T
OLS    β =  and: 

1 1 2

1 2 2

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ
4 4

OLS OLS OLS

OLS

OLS OLS OLS



  
  
  
 

β β β

β

β β β

 (6), 
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where  
1

-1
2 T

ˆ 1=σOLS
β

X X  and  
2

-1
2 T

ˆ 2=σOLS
β

X X . Furthermore, the covariance between the 

estimated parameters (the elements of 
1 2

ˆ ˆOLS OLS
β β

) can be obtained as: 

2

1201 02

1
(β ,β ) σ ,

xx

X

n S

   
  
 
 

Cov  (7) 

12 1 2
11 12

ρ σ σ
(β ,β )

xxS

 

Cov  (8) 

uv u v0u 1v
(β ,β ) ρ σ σ ; , 1,2

xx

X
u v

S

 

  Cov  (9) 

2.2. Two auxiliary profiles 

The regression model considering two auxiliary profiles is given as: 

11 12 13 1 11 12 13

21 22 23 2 21 22 2301 02 03

11 11 11

1 2 3 1 2 3

1 x

1 x β β β

1 β β β

1 x

t t t t t t

t t t t t t

n t n t n t n n t n t n t

y y y

y y y

y y y

  

  

  

     
     

              
     
     

 (10) 

The mean estimator for t
th

 random sample is defined as follows: 

1 2 2 1 3 3

03 030201 021 1

ˆ ˆ ˆ ˆ ˆ ˆ1

1312
1311 12

βββ ββ
ˆ + - + - ,

ββ
ββ β

OLS OLS OLS OLS OLS OLS

MS

 

 

 

       
                                 

           

β β β β β β
β  (11) 

In the case of two auxiliary profiles, we have:  01 11 02 12 03 13
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

T
OLS      β =  and: 



7 
 

1 1 2 1 3

1 2 2 2 3

1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
6×6

= ,

OLS OLS OLS OLS OLS

OLS OLS OLS OLS OLS OLS

OLS OLS OLS OLS OLS

   
 
    
 
   
 

β β β β β

β β β β β β

β β β β β

 (12) 

The elements of ˆOLS
β

 are computed similar to the previous subsection. 

3. Proposed control charts based on auxiliary information 

In this section, two improved control charts based on auxiliary information for minoring simple 

linear profiles are presented. The proposed AIB-MEWMA and AIB-DMEWMA control charts 

are presented in Section 3.1 and 3.2, respectively.  

3.1. AIB-MEWMA control chart 

The MEWMA statistic has been first developed by Zou et al. [29] for monitoring general linear 

profiles. The MEWMA control chart is an efficient monitoring scheme to detect different shifts 

in slope, intercept and error variance parameters especially when the shift magnitude is small and 

moderate. Here, we introduce an auxiliary information based monitoring scheme termed as AIB-

MEWMA control chart to further enhance the detection capability of MEWMA procedure.  

Let tA  be the EWMA sequence for t
th

 sample which is computed based on the auxiliary 

variable(s) along with the estimated regression parameters (obtained by mean estimator): 

 01

1, 1

11

β
ˆ 1

β

MS

t t t  

  
     

  
A β A , (13) 

where 1,
ˆ MS

tβ  represents the estimated regression parameters of the study profile at tht  profile 

obtained by mean estimator method. Moreover,  0.1  denotes the smoothing parameter while 

the starting value of chart statistic is:  

01

0 1

11

β 0ˆ ,
β 0

MSE
    

      
   

A β  (14) 

To AIB-MEWMA plotting statistic can be obtained according to Equation (15): 
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-1 ,T
t t tAIB MEWMA  AA Σ A  (15) 

where: 

1
ˆ ,

2
MS




  


A β

 (16) 

The chart triggers an out-of-control signal for any value of tAIB MEWMA h   where h  is 

determined to obtain a pre-determined in-control average run length ( 0ARL ). 

3.2. AIB-DMEWMA control chart 

The double multivariate exponentially weighted moving average (DMEWMA) chart as an 

extension of MEWMA technique by performing the exponential smoothing twice. This chart has 

been shown to be more sensitive to react to small process disturbances. Here, the AIB-

DMEWMA monitoring scheme based on the combination of auxiliary characteristics and 

DMEWMA statistic is presented. To obtain the AIB-DMEWMA statistic for t
th

 sample, first we 

define: 

 01

1, 1

11

β
ˆ 1 ,

β

MS

t t t  

  
     

  
B β B  (17) 

  -11 ,t t t   C B C  (18) 

where (0,1]  and 
0 0

0

0

 
   

 
B C . The AIB-DMEWMA chart statistic at t

th
 sampling point will 

be given as: 

T 1 ,t t tAIB DMEWMA   CC Σ C  (19) 

where 

1

2

ˆ3

(2 2 )
,

(2 )
MS

  



 



C β

Σ  (20) 

The process is declared out-of-control if tAIB DMEWMA h   where h  is computed to have a 

pre-determined 0ARL  value. 

4. Performance evaluation and comparison 
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This section presents two numerical examples to evaluate the capability of proposed AIB-

MEWMA and AIB-DMEWMA control charts in Phase II monitoring of simple linear profiles in 

terms of out-of-control average run length ( 1ARL ) metric. For this purpose, the detection 

capability of the proposed control charts is compared with classical MEWMA and DMEWMA 

charts through 10000 simulation replicates in MATLAB software. Note that, the average run 

length is defined as the average number of successive samples taken until the chart issues an out-

of-control signal. This metric should be as large as possible when the process is in-control to 

ensure optimal chart efficiency. In contrast, under out-of-control scenarios, the ARL should be 

large enough to ascertain the detection capability of the control chart. In order to have fair 

comparisons among the proposed and existing methods, all control charts are designed to obtain 

0 200ARL  .  

To conduct simulation studies, we select different values for parameter   to analyze the 

sensitivity of proposed control charts on smoothing parameter. Moreover, in order to assess the 

effect of correlation between the main and auxiliary response variables, different values for 

parameter   is considered in simulation experiments. Note that, all simulations are conducted 

for especial cases of 2p   and 3p  .  

4.1 Numerical example 1 

In this subsection, the capability of the proposed control charts in detecting different step shifts 

in regression model parameters is evaluated for especial case of 2p  . Without loss of 

generality, we assume a bivariate linear profile as 1 13 2Y x     and 2 22Y x     where 1Y  

and 2Y  are the study and auxiliary response variables, respectively. Accordingly, the vector of 

random errors 1 2( , )   follows a bivariate normal distribution with mean vector 0 and covariance 

matrix 

2
1 1 2

2
2 1 2

σ ρσ σ

ρσ σ σ

 
  
  

Σ . Besides, according to SPM literature, we fix the values of 

explanatory variable at 
1 1 1 1

2 4 6 8

 
  
 

X . To generate random profiles and establish chart 

statistics, we consider 2 2

1 2 1    and  0.05,0.1,0.2 . Moreover, we choose the correlation 
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coefficient as  0.1,0.5,0.9 . The sARL  under  0.1,0.5,0.9  and 0.2   when the 

intercept parameter of the study profile changes from 01  to 
01 0 1   for 

 0 0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2    are reported in Table 1. Note that, in the first two rows 

of Table 1, the performance of the MEWMA and DMEWMA control charts for monitoring the 

stability of the study profile without using auxiliary profile(s) is evaluated. Therefore, for these 

control charts, the sign "-" is used in the column   due to existence of only one profile. 

However, in the other rows of Table 1, the ARL values of the proposed AIB-MEWMA and AIB-

DMEWMA charts in the presence of one auxiliary profile are reported under different values of 

 . 

It can be seen from Table 1 that for all out-of-control scenarios (small, moderate and large 

shifts), the proposed auxiliary information based control charts outperform the existing 

MEWMA and DMEWMA charts. In other words, using auxiliary information to construct the 

chart statistics, improves the capability of both MEWMA and DMEWMA monitoring schemes 

to detect different step shifts in intercept parameter of the study profile. The results of Table 1 

also indicate that for any values of  , the AIB-MEWMA chart performs better than AIB-

DMEWMA chart except when 0 0.2  . Moreover, for both AIB-MEWMA and AIB-

DMEWMA control charts, the ARL values decrease rapidly when   increases. 

[Please insert Table 1 about here] 

Table 2 gives the ARLs of the proposed AIB-MEWMA and AIB-DMEWMA charts at fix value 

of 0.5   when  0.05,0.1,0.2 . Similar to Table 1, The resulting ARL values reported in 

Table 2 show that using auxiliary variable along with the study response variable enhances the 

capability of both MEWMA and DMEWMA charts in detecting different shifts in intercept 

parameter. Besides, as the smoothing parameter increases, the capability of the proposed control 

charts to detect intercept shifts improves. 

[Please insert Table 2 about here] 

The ARL curves of the proposed AIB-MEWMA and AIB-DMEWMA charts under different 

values of correlation coefficient  0.1,0.5,0.9  are illustrated in Figures 1-a and 1-b when 
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0.2  . Figures 1-a and 1-b confirms that the ARL performance of both proposed AIB charts is 

better than the existing MEWMA and DMEWMA charts. As the value of   increases, the 

detection capability of the proposed charts specially for small intercept shifts enhances. 

[Please insert Figure 1 about here] 

The ARL comparisons when the slope parameter of the study profile changes from 11  to 

11 1 1    for  1 0.025,0.050,0.075,0.100,0.125,0.150,0.175,0.200,0.225,0.250   are given in 

Table 3. As seen, similar to Tables 1-2, utilizing one auxiliary profile which is correlated with 

the main profile, causes an increase in the efficiency of both MEWMA and DMEWMA control 

charts to react to different slope shifts. The results of Table 3 reveal that the AIB-DMEWMA 

chart has the lowest ARL values as compared to the other control charts when 0.1  . However, 

for 0.5   and 0.9  , the AIB-MEWMA chart outperforms the AIB-DMEWMA chart under 

all shift magnitudes except 1 0.025  . In addition, at the small amount of slope shifts (ranges 

from 0.025 to 0.125), the DMEWMA chart has a better detection capability than the MEWMA 

chart. 

[Please insert Table 3 about here] 

Table 4 contains the ARLs when  0.05,0.1,0.2  and correlation coefficient is fixed at 0.5  . 

As it can be observed, with some exceptions, as   increases, the efficiency of the control charts 

to detect slope shifts improves. In other words, an increase in parameter   causes a reduction in 

the ARL of all control charts. Moreover, for any value of smoothing parameter, using auxiliary 

response variable along with the main variable, improves the performance of both MEWMA and 

DMEWMA charts to detect different slope shifts. 

[Please insert Table 4 about here] 

Next, we compare the performance of the proposed AIB control charts with existing MEWMA 

and DMEWMA charts to detect the error variance shifts. Table 5 reports the resulting ARL 

values when 1  goes to its out-of-control value denoted by 

 1; 1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3 .    It can be remarkable from Table 5 that the 
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obtained ARLs of both control charts are highly dependent on the value of  . In fact, the larger 

the value of correlation coefficient  , the better the efficiency of proposed AIB control charts 

over the classical MEWMA and DMEWMA charts. The results also indicate the better 

performance of MEWMA chart over DMEWMA chart under each shift magnitude. 

[Please insert Table 5 about here] 

The ARL values of the proposed AIB control charts along with the existing charts under different 

values of smoothing parameter  0.05,0.1,0.2  when 0.5   are summarized in Table 6. As 

seen, the sensitivity of all control charts to react to error variance shifts depends on the value of 

smoothing parameter. It is remarkable from Table 6 that, for all shifts, the AIB-MEWMA chart 

has its best performance when 0.2  . For small and moderate shifts in parameter 1  (ranging 

from 1,2 to 1.8). the proposed AIB-DMEWMA chart has its best detecting capability at 0.2   

while under large shifts (  2,2.2,2.4,2.6,2.8,3  , this chart has its best performance when   is 

selected equal to 0.1. 

[Please insert Table 6 about here] 

Table 7 gives the ARLs for joint intercept and slope shifts in the study profile. In this case, 01  

and 11  change to 01 1   and 11 1  , respectively where ; 5x x     for 

 0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18,0.20  which is equivalent to 

 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1           . As shown in Table 7, using auxiliary one 

profile to construct the chart statistic causes both the MEWMA and DMEWMA control charts 

more sensitive to detect the concurrent shifts in intercept and slope parameters. 

[Please insert Table 7 about here] 

Table 8 displays the ARLs at different values of  using 0.5   when both intercept and slope 

parameters deviate from their corresponding target values. It is remarkable that for all values of 

intercept parameter, using the auxiliary information has enhanced the performance of both 

MEWMA and DMEWMA charts in detection of concurrent shifts in intercept and slope 
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parameters. Furthermore, under all scenarios, the AIB-MEWMA chart is performing better than 

the other charts. 

[Please insert Table 8 about here] 

4.2 Numerical example 2 

In this subsection, the sensitivity of the proposed control charts in detecting different shifts in 

profile parameters is evaluated using two auxiliary profiles. To do that, we consider a 

multivariate linear profile as 1 13 2Y x    , 2 22Y x    , and 3 31Y x     where 1Y  denotes 

the main response variables while 2Y  and 3Y  are the auxiliary response variables. Similar to 

numerical example 1, we use sample size of 4n   and the fixed values of explanatory variable as 

1 1 1 1

2 4 6 8

 
  
 

X . Furthermore, it is assumed that the vector of random errors, 1 2 3( , , )   , 

follows a multivariate Normal distribution with mean vector 0 and covariance matrix 

2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

σ ρσ σ ρσ σ

ρσ σ σ ρσ σ

ρσ σ ρσ σ σ

 
 

  
 
  

Σ . Then, the random profiles are generated by considering 

2 2 2

1 2 3 1      and  0.05,0.1,0.2 . In order to evaluate the impact of correlation 

coefficient, we select two values of  0.1,0.5 . The results for different intercept shifts, when 

0.2   are summarized in Table 9. As it can be seen from Table 9, employing two auxiliary 

profiles enhances the sensitivity of both MEWMA and DMEWMA control charts to react to 

intercept shifts, especially for larger value of parameter  . For both values of parameter  , the 

detection performance of the AIB-DMEWMA chart is better than the AIB-MEWMA under 

small intercept shifts (  0 0.2,0.4  ). Conversely, under moderate and large intercept 

disturbances   0 0.6,0.8,1,1.2,1.4,1.6,1.8,2  , the AIB-MEWMA control chart outperforms the 

AIB-DMEWMA chart. 

[Please insert Table 9 about here] 
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The ARL values for the proposed AIB-MEWMA and AIB-DMEWMA control charts at fixed 

0.5   when  0.1,0.2  are provided in Table 10. We can see from the resulting ARLs that 

for small intercept shifts (  0 0.2,0.4  ), the ARL properties of the AIB-MEWMA chart is better 

when 0.1  , while for moderate and large shifts i.e.,  0 0.6,0.8,1,1.2,1.4,1.6,1.8,2  , the chart 

performs better when 0.2  . It is also remarkable from Table 10 that under all out-of-control 

scenarios except 0 0.2  , the AIB-DMEWMA chart is more capable to detect intercept shifts 

when 0.2  . 

[Please insert Table 10 about here] 

The ARL values of the proposed AIB charts for different slope shifts when 0.2   and 3p   are 

summarized in Table 11. It is obvious from Table 11 that using two auxiliary profiles improves 

the capability of both MEWMA and DMEWMA charts to detect different step changes in slope 

parameter. For weak positive correlation ( 0.1  ), the AIB-DMEWMA chart outperform other 

charts when  1 0.025,0.050,0.075  . In this scenario, the AIB-MEWMA performs better than 

the other charts when  1 0.100,0.125,0.150,0.175,0.200,0.225,0.250  . A similar trend can be 

observed when 0.5   expect that the AIB-MEWMA chart gives the smallest ARL when 

1 0.075  . 

[Please insert Table 11 about here] 

The comparisons of all the charts using  0.05,0.1,0.2  when 0.5   and 3p   are provided 

in Table 12 and Figures 2-a, 2-b, 2-c and 3-a, 3-b, 3-c. From the findings of Table 12 and Figures 

2-a, 2-b, and 2-c, it is concluded that for most values of 1 , the proposed AIB-MEWMA chart 

has its best performance in detecting slope shifts when 0.2  . It can be clearly seen from 

Figures 3-a, 3-b, and 3-c that when 0.05   and 0.5  , the AIB-DMEWMA and DMEWMA 

charts produce almost the same ARL values. Moreover, it is remarkable from Table 12 that, for 

any values of smoothing parameter, the AIB-MEWMA is outperforming the classical MEWMA 

chart. 

[Please insert Table 12 about here] 
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[Please insert Figure 2 about here] 

[Please insert Figure 3 about here] 

The resulting ARLs of proposed AIB charts are compared with existing MEWMA and 

DMEWMA charts under different error variance shifts in Table 13 at fixed value of 0.2  . The 

results of Table 13 show that for both values of correlation coefficient, the proposed AIB charts 

are more efficient in detecting error variance shifts than the existing MEWMA and DMEWMA 

charts. In general, the proposed AIB-MEWMA control chart is the best method among the other 

charts to detect error variance shifts. 

[Please insert Table 13 about here] 

The ARL values for AIB-MEWMA and AIB-DMEWMA charts with different values of   when 

0.5   and 3p   are presented in Table 14. It can be seen from Table 14 that for all shifts 

except 1.2  , the AIB-MEWMA scheme gives its best ARLs when the smoothing parameter is 

selected as 0.2  . Moreover, it can be observed that for small and moderate shifts (

 1.2,1.4,1.6  ), the AIB-DMEWMA chart has its best performance at 0.05   while this chart 

is more efficient to detect large shifts (  1.8,2,2.2,2.4,2.6,2.8,3  ) when 0.2  . 

[Please insert Table 14 about here] 

The simulated ARL values under concurrent shifts in intercept and slope parameters when 

0.2   and 3p   are presented in Table 15. The resulting ARLs show that the use of two 

auxiliary profiles considerably improves the efficiency of the proposed MEWMA and 

DMEWMA charts to detect concurrent shifts. Moreover, Table 15 indicates that the proposed 

AIB-MEWMA scheme is superior to other control charts when the out-of-control condition 

affects both intercept and slope parameters, concurrently.  

[Please insert Table 15 about here] 

The ARLs for concurrent shifts are given in Table 16 where the correlation coefficient is fixed at 

0.5  . It is remarkable from Table 16 that except 0.2   , the AIB-MEWMA chart has its best 
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performance at 0.2  . For AIB-DMEWMA chart, the best performance for  0.2, 0.3    is 

obtained when smoothing parameter is selected as 0.1   while for other out-of-control 

scenarios, this chart performs better when 0.2  . 

[Please insert Table 16 about here] 

5. Real-life example 

In this section, the applicability of the proposed control charting method is investigated using a 

real-life example from calibration application in cylinder production process. In this 

manufacturing process which is also investigated by Noorossana et al. [28], the relationships 

between the nominal force ( )x  and the real forces 1y  and 2y  in two cylinders as study and 

auxiliary response variables are characterized by two simple linear profile models. According to 

Phase I analysis, theses regression models are: 

1 1

2 2

8.5 0.87

5.8 0.95

y x

y x





   


   
, (21) 

where  1 2,   follows a bivariate normal vector of error terms with mean vector of zero and the 

following covariance matrix: 

80.0 89.6

89.6 122.1

 
  
 

Σ . (22) 

The matrix of explanatory variable is 

1 1 1 1 1 1 1 1 1 1 1

50 80 110 140 170 200 230 260 290 320 350

 
  
 

X  and remains unchanged over 

time. In order to represent the detectability of the proposed auxiliary based monitoring scheme, 

out-of-control profiles under 0.2   are generated in a way that the intercept parameter 01  of 

the study profile deviates from -8.5 to -7.5. The estimated regression parameters for study profile 

under OLS and MS methods along with the AIB-MEWMA chart are reported in Table 17. 

Moreover, the values of AIB-MEWMA charting scheme are illustrated in Figure 4. As it can be 

seen from Table 17, using auxiliary information leads to more accurate estimations of the 

regression parameters for the study profile. That is to say, the estimated regression parameters 

obtained by the mean estimator ( 1
ˆ MS
β ) are more precise than the obtained estimations by the 
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ordinary least square method ( 1
ˆ OLS
β ). Moreover, it is remarkable from Figure 4 that the proposed 

AIB-MEWMA control charting method detects the occurrence of assignable cause at 13
th

 

sample.  

[Please insert Table 17 about here] 

[Please insert Figure 4 about here] 

6. Conclusion Remarks 

There are many strategies in the literature of SPM to improve the capability of control charts to 

detect different process disturbances. Examples include the use of double sampling strategies, 

use of adaptive sampling approaches, utilizing run rules mechanism, as well as the application of 

auxiliary information. Among them, using auxiliary information to formulate different chart 

statistics can considerably enhance the performance of control chart to react to out-of-control 

conditions. In this paper we proposed two auxiliary information based schemes termed as AIB-

MEWMA and AIB-DMEWMA charts for Phase II monitoring of a simple linear profile. In 

terms of ARL metric, we compared the capability of the proposed charts to detect different out-

of-control scenarios with existing MEWMA and DMEWMA charts. The resulting ARLs showed 

that the proposed AIB-MEWMA and AIB-DMEWMA monitoring schemes are more efficient 

than their comparative counterparts in detection of all regression parameters. Finally, the 

applicability of the proposed auxiliary based monitoring scheme was highlighted using a real-life 

example from calibration application. This paper developed two AIB control charts for 

monitoring simple linear profiles in non-cascading processes. Hence, the extension of the 

proposed control charts for cascading processes in which the assignable cause deviates both 

auxiliary and study profiles from their nominal values can be fruitful as a future direction. 

Moreover, the use of auxiliary information for Phase II monitoring of nonlinear profiles is 

recommended for future studies.  
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Figures 

  

Figure 1-a. Comparison of AIB-MEWMA chart with 

MEWMA chart under different 𝝆 when 𝝀 = 𝟎. 𝟐 

Figure 1-b. Comparison of AIB-DMEWMA chart with 

DMEWMA chart under different 𝝆 when 𝝀 = 𝟎. 𝟐 

 

  

 

  

  Figure 2-a. Comparison between AIB-MEWMA and 

MEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟐 
  

  

Figure 2-b. Comparison between AIB-MEWMA and 

MEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟏 
Figure 2-c. Comparison between AIB-MEWMA and 

MEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟎𝟓 
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  Figure 3-a. Comparison between AIB-DMEWMA and 

DMEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟐 
  

  

Figure 3-b. Comparison between AIB-DMEWMA and  

DMEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟏 
Figure 3-c. Comparison between AIB-DMEWMA and 

DMEWMA charts when 𝝆 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟎𝟓 
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Figure 4. The values of chart statistic over time 

 

Tables 

Table 1. The ARLs under intercept shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟐 

Chart   0  

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
MEWMA 

- 
51.8611 15.0036 7.5868 5.0196 3.7722 3.0705 5.5933 2.2797 2.0743 1.9139 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3150 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-MEWMA 
0.1 

50.2950 13.9295 6.6305 4.0958 3.3610 2.8354 2.1830 2.0687 1.9541 1.6008 

AIB-DMEWMA 38.4350 12.8760 8.3904 5.7642 4.2880 3.6039 3.1332 2.7922 2.4779 2.2237 

AIB-MEWMA 
0.5 

40.4482 11.5933 6.1281 4.1920 3.1787 2.6177 2.2567 2.0189 1.8505 1.6811 

AIB-DMEWMA 32.7401 11.4524 7.2623 5.6533 4.7665 4.1922 3.7775 3.4174 3.1582 3.0242 

AIB-MEWMA 
0.9 

11.8259 4.1902 2.6410 2.0352 1.7132 1.3490 1.0898 1.0130 1.0012 1.0000 

AIB-DMEWMA 11.6584 5.6756 4.2116 3.4376 3.0330 2.8491 2.4010 2.0735 2.0024 2.0000 

 

Table 2. The ARLs under intercept shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟐 

Chart   0  

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
MEWMA 

0.2 

51.8611 15.0036 7.5868 5.0196 3.7722 3.0705 5.5933 2.2797 2.0743 1.9139 

AIB-MEWMA 40.4482 11.5933 6.1281 4.1920 3.1787 2.6177 2.2567 2.0189 1.8505 1.6811 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3150 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-DMEWMA 32.7401 11.4524 7.2623 5.6533 4.7665 4.1922 3.7775 3.4174 3.1582 3.0242 

MEWMA 

0.1 

39.4317 13.8773 7.9441 5.6635 4.4020 3.6545 3.1227 2.7555 2.4577 2.2360 
AIB-MEWMA 31.7907 11.2523 6.6777 4.8067 3.8111 3.1582 2.7196 2.4004 2.1670 2.0274 

DMEWMA 37.6118 16.1345 11.2632 9.0938 7.8012 6.9305 6.2859 5.7791 5.3632 5.0601 

AIB-DMEWMA 30.5907 14.1701 10.1069 8.2550 7.1018 6.3337 5.7276 5.2791 4.9626 4.6622 
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MEWMA 

0.05 

36.2468 14.7987 9.1552 6.6655 5.2983 4.4196 3.8007 3.3570 3.0309 2.7657 

AIB-MEWMA 29.6745 12.3119 7.8195 5.7330 4.5785 3.8293 3.3242 2.9573 2.6644 2.3934 

DMEWMA 38.9977 21.0267 15.7422 13.7422 11.3704 10.1880 9.2849 8.5870 8.0271 7.5435 

AIB-DMEWMA 33.6974 18.8983 14.3203 11.9525 10.4199 9.3613 8.5471 7.9091 7.3798 6.9889 

 

Table 3. The ARLs under slope shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟐 

Chart   1  

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 
MEWMA 

- 
88.1952 30.2681 14.1843 8.2841 6.9371 4.1952 3.9416 3.5620 2.9954 2.6860 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3156 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-MEWMA 
0.1 

87.2924 28.7986 13.3095 7.6701 6.0391 3.8420 3.7556 3.0648 2.6717 2.1437 

AIB-DMEWMA 38.4354 12.8769 8.3904 5.7642 4.2880 3.6039 3.1332 2.7922 2.4779 2.2237 

AIB-MEWMA 
0.5 

51.7830 18.5411 9.8134 6.3408 4.7355 3.7967 3.2127 2.7859 2.4710 2.2477 

AIB-DMEWMA 38.3939 19.8463 11.0933 7.9775 6.4411 5.5552 4.9163 4.4706 4.1112 3.8243 

AIB-MEWMA 
0.9 

23.4328 7.0869 4.1082 2.8993 2.3129 1.9909 1.7638 1.5171 1.2733 1.1146 

AIB-DMEWMA 19.8824 8.0174 5.5755 4.4994 3.8569 3.3672 3.0772 2.9544 2.7965 2.4812 

 

Table 4. The ARLs under slope shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟐 

Chart   1  

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 
MEWMA 

0.2 

88.1952 30.2681 14.1843 8.2841 6.9371 4.1952 3.9416 3.5620 2.9954 2.6860 

AIB-MEWMA 51.7830 18.5411 9.8134 6.3408 4.7355 3.7967 3.2127 2.7859 2.4710 2.2477 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3156 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-DMEWMA 38.3939 19.8463 11.0933 7.9775 6.4411 5.5552 4.9163 4.4706 4.1112 3.8243 

MEWMA 

0.1 

68.0359 24.5624 13.3661 9.0515 6.8182 5.4921 4.6306 4.0206 3.5475 3.1944 

AIB-MEWMA 56.6286 19.5035 10.8020 7.4785 5.7464 4.7065 3.9420 3.4507 3.0791 2.7803 

DMEWMA 62.3517 24.8762 15.7732 12.1473 10.2065 8.9650 8.0397 7.3681 6.8116 6.3778 

AIB-DMEWMA 50.6476 21.0620 13.7553 10.8558 9.1840 8.1143 7.3110 6.7064 6.2175 5.8156 

MEWMA 

0.05 

59.2877 23.8185 14.2177 10.0931 7.9013 6.4926 5.5245 4.8138 4.3067 3.8937 

AIB-MEWMA 49.3989 19.8830 12.0447 8.6159 6.7534 5.5997 4.7955 4.1764 3.7277 3.3889 

DMEWMA 58.6103 28.5375 20.5820 16.7697 14.4606 12.8500 11.6652 10.7640 10.0165 9.4185 

AIB-DMEWMA 50.0982 25.4254 18.5449 15.2501 13.1700 11.7245 10.7044 9.8577 9.2049 8.6467 

 

Table 5. The ARLs under error variance shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟐 

Chart   
  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
MEWMA 

- 
55.6428 26.5276 8.2618 3.2607 2.4955 2.6114 1.5530 1.2590 1.0953 1.0006 

DMEWMA 78.2846 29.5940 15.0587 10.8951 8.6248 6.2517 5.2154 4.0215 3.8621 3.2519 

AIB-MEWMA 
0.1 

55.4479 13.1039 3.9026 1.7047 1.1490 1.0288 1.0051 1.0001 1.0000 1.0000 

AIB-DMEWMA 73.9130 27.4157 13.2862 8.0955 5.5660 4.1206 3.2754 2.6935 2.2576 1.9119 
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AIB-MEWMA 
0.5 

54.3852 11.9063 3.5395 1.5707 1.1154 1.0247 1.0045 1.0006 1.0002 1.0000 

AIB-DMEWMA 72.7354 25.0300 12.1063 7.3362 4.9729 3.7952 2.9754 2.4478 2.0368 1.7467 

AIB-MEWMA 
0.9 

40.5800 6.1379 1.8815 1.1708 1.0369 1.0082 1.0003 1.0002 1.0001 1.0000 

AIB-DMEWMA 58.1834 15.2844 7.0254 4.2109 2.9879 2.2814 1.7788 1.4936 1.3153 1.2165 

 

Table 6. The ARLs under error variance shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟐 

Chart   
  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
MEWMA 

0.2 

55.6428 26.5276 8.2618 3.2607 2.4955 2.6114 1.5530 1.2590 1.0953 1.0006 

AIB-MEWMA 54.3852 11.9063 3.5395 1.5707 1.1154 1.0247 1.0045 1.0006 1.0002 1.0000 

DMEWMA 78.2846 29.5940 15.0587 10.8951 8.6248 6.2517 5.2154 4.0215 3.8621 3.2519 

AIB-DMEWMA 72.7354 25.0300 12.1063 7.3362 4.9729 3.7952 2.9754 2.4478 2.0368 1.7467 

MEWMA 

0.1 

67.2527 21.4597 9.0337 4.8442 2.9790 2.0811 1.6408 1.3919 1.2686 1.1744 

AIB-MEWMA 66.0123 16.7042 5.2745 1.9991 1.2062 1.0425 1.0079 1.0009 1.0000 1.0000 

DMEWMA 93.8932 37.1114 16.6010 8.2932 4.4366 2.3899 1.3168 1.0426 1.0068 1.0005 

AIB-DMEWMA 93.2361 35.3347 14.8163 8.0371 4.2771 2.0482 1.2694 1.0073 1.0006 1.0000 

MEWMA 

0.05 

81.3496 30.1615 13.3189 7.1206 4.2466 2.8344 2.0842 1.6824 1.4297 1.2985 

AIB-MEWMA 80.0814 23.7323 7.7249 2.7748 1.3628 1.0653 1.0117 1.0015 1.0002 1.0000 

DMEWMA 113.0677 54.1134 27.0204 14.4849 7.8450 4.2883 2.2986 1.2605 1.0310 1.0028 

AIB-DMEWMA 99.2389 48.7780 20.5469 10.2801 6.2970 3.5139 2.0546 1.2473 1.0060 1.0000 

 

Table 7. The ARLs under concurrent intercept and slope shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟐 

Chart     
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

MEWMA 
- 

12.2850 6.3461 4.3191 3.2945 2.7046 2.3168 2.0732 1.8931 1.7428 

DMEWMA 23.9336 14.4961 10.8202 9.8782 8.2883 7.8619 6.4973 5.7160 5.0638 

AIB-MEWMA 
0.1 

11.9013 3.9655 1.7090 1.1491 1.0288 1.0065 1.0002 1.0001 1.0000 

AIB-DMEWMA 11.1899 7.2721 5.1772 4.1650 3.9740 3.1477 2.9908 2.6137 2.0575 

AIB-MEWMA 
0.5 

6.3028 2.9111 1.5123 1.1160 1.0190 1.0045 1.0003 1.0000 1.0000 

AIB-DMEWMA 27.1399 10.0008 6.5598 5.1926 4.4004 3.8797 3.4793 3.1772 3.0228 

AIB-MEWMA 
0.9 

3.1373 1.6350 1.1500 1.0330 1.0066 1.0010 1.0002 1.0000 1.0000 

AIB-DMEWMA 5.2065 3.9081 3.1855 2.9400 2.5490 2.1000 2.0038 2.0000 2.0000 

 

Table 8. The ARLs under concurrent intercept and slope shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟐 

Chart   
  

-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 
MEWMA 

0.2 

12.2850 6.3461 4.3191 3.2945 2.7046 2.3168 2.0732 1.8931 1.7428 

AIB-MEWMA 6.3028 2.9111 1.5123 1.1160 1.0190 1.0045 1.0003 1.0000 1.0000 

DMEWMA 23.9336 14.4961 10.8202 9.8782 8.2883 7.8619 6.4973 5.7160 5.0638 

AIB-DMEWMA 27.1399 10.0008 6.5598 5.1926 4.4004 3.8797 3.4793 3.1772 3.0228 

MEWMA 
0.1 

11..9068 6.9299 4.9997 3.9357 3.2513 2.8044 2.4759 2.2187 2.0662 

AIB-MEWMA 7.8180 3.9702 1.9095 1.2070 1.0402 1.0067 1.0008 1.0000 1.0000 
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DMEWMA 31.7659 14.5502 10.3672 8.4283 7.2588 6.4452 5.8656 5.3953 5.0442 

AIB-DMEWMA 26.5557 12.7655 9.3040 7.6383 6.6077 5.8892 5.3501 4.9745 4.6492 

MEWMA 

0.05 

12.8453 8.0657 5.9393 4.7333 3.9551 3.4379 3.0541 2.7418 2.4692 

AIB-MEWMA 9.5676 5.2839 2.5459 1.3507 1.0625 1.0112 1.0012 1.0001 1.0001 

DMEWMA 19.2661 14.6134 12.1811 10.6226 9.5313 8.7100 8.0647 7.5309 7.0961 

AIB-DMEWMA 17.4873 13.3319 11.1427 9.7450 8.7544 8.0140 7.4149 6.9630 6.5557 

 

Table 9. The ARLs under intercept shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟑 

Chart   0  

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
MEWMA 

- 
51.8611 15.0036 7.5868 5.0196 3.7722 3.0705 2.5933 2.2797 2.0743 1.9139 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3156 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-MEWMA 
0.1 

50.4609 14.6952 6.5194 4.9527 3.2444 3.0289 2.1584 2.0514 1.9526 1.8943 

AIB-DMEWMA 39.4576 12.6451 7.9214 5.8464 5.1735 4.0877 3.9291 3.5758 3.1791 2.8189 

AIB-MEWMA 
0.5 

40.3003 11.6925 6.1937 4.1760 3.1827 2.6166 2.2517 2.0180 1.8489 1.6757 

AIB-DMEWMA 32.5562 11.5178 7.2903 5.6579 4.7629 4.1906 3.7832 3.4200 3.1624 3.0282 

 

Table 10. The ARLs under intercept shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟑 

Chart   0  

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
MEWMA 

0.2 

51.8611 15.0036 7.5868 5.0196 3.7722 3.0705 5.5933 2.2797 2.0743 1.9139 

AIB-MEWMA 40.4482 11.5933 6.1281 4.1920 3.1787 2.6177 2.2567 2.0189 1.8505 1.6811 

DMEWMA 40.5407 13.8470 8.4651 6.3859 5.3150 4.6364 4.1660 3.7998 3.4878 3.2348 

AIB-DMEWMA 32.7401 11.4524 7.2623 5.6533 4.7665 4.1922 3.7775 3.4174 3.1582 3.0242 

MEWMA 

0.1 

39.4317 13.8773 7.9441 5.6635 4.4020 3.6545 3.1227 2.7555 2.4577 2.2360 

AIB-MEWMA 31.8987 11.2063 6.6637 4.7730 3.7800 3.1389 2.7198 2.3989 2.1614 2.0321 

DMEWMA 36.5818 16.1331 11.2977 9.0796 7.7785 6.9070 6.2603 5.7565 5.3523 5.0488 

AIB-DMEWMA 30.1377 13.8106 10.0100 8.1312 7.0148 6.2514 5.6715 5.2305 4.9204 4.5993 

 

Table 11. The ARLs under slope shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟑 

Chart   1  

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

MEWMA 
- 

88.1952 30.2681 14.1843 8.2841 6.9371 4.1952 3.9416 3.5620 2.9954 2.6860 

DMEWMA 71.4636 24.6512 13.5171 9.3227 7.3471 6.2382 5.4749 4.9457 4.5271 4.2221 

AIB-MEWMA 
0.1 

87.1491 29.6465 13.1956 8.0814 6.1567 3.7690 3.5148 3.0580 2.7391 2.3213 

AIB-DMEWMA 70.6009 23.5837 12.2151 9.1785 6.8990 6.1630 4.4679 3.9118 3.5155 3.1859 

AIB-MEWMA 
0.5 

72.2077 23.0599 10.9909 7.0133 5.0830 4.0351 3.3492 2.8854 2.5385 2.3119 

AIB-DMEWMA 70.0136 19.6987 11.0463 7.9692 6.4490 5.5268 4.9136 4.4695 4.1261 3.8287 
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Table 12. The ARLs under slope shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟑 

Chart   1  

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 
MEWMA 

0.2 

88.1952 30.2681 14.1843 8.2841 6.9371 4.1952 3.9416 3.5620 2.9954 2.6860 

AIB-MEWMA 72.2077 23.0599 10.9909 7.0133 5.0830 4.0351 3.3492 2.8854 2.5385 2.3119 

DMEWMA 71.4636 24.6512 13.5171 9.3227 7.3471 6.2382 5.4749 4.9457 4.5271 4.2221 

AIB-DMEWMA 70.0136 19.6987 11.0463 7.9692 6.4490 5.5268 4.9136 4.4695 4.1261 3.8287 

MEWMA 

0.1 

68.0359 24.5624 13.3661 9.0515 6.8182 5.4921 4.6306 4.0206 3.5475 3.1944 

AIB-MEWMA 55.7646 19.4204 10.7769 7.4372 5.6846 4.6368 3.9399 3.4392 3.0671 2.7727 

DMEWMA 71.4636 24.6512 13.5171 9.3227 7.3471 6.2382 5.4749 4.9457 4.5271 4.2221 

AIB-DMEWMA 70.6009 23.5837 12.2151 9.1785 6.8990 6.1630 4.4679 3.9118 3.5155 3.1859 

MEWMA 

0.05 

59.2870 23.8185 14.2177 10.0931 7.9013 6.4926 5.5245 4.8138 4.3067 3.8937 

AIB-MEWMA 48.1330 19.6420 11.9010 8.5094 6.7163 5.5675 4.7462 4.1654 3.7284 3.3770 

DMEWMA 58.0698 28.7048 20.5890 16.7910 14.4200 12.8641 11.6846 10.7626 10.0155 9.4191 

AIB-DMEWMA 57.1110 28.2997 20.5144 16.6370 14.3781 12.7739 11.0223 9.0309 7.6694 6.5304 

 

Table 13. The ARLs under error variance shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟑 

Chart   
  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
MEWMA 

- 
56.6934 15.0643 6.1197 3.2700 2.1237 1.5886 1.3573 1.2175 1.1389 1.0968 

DMEWMA 78.2846 29.5940 15.0587 10.8951 8.6248 6.2517 5.2154 4.0215 3.8621 3.2519 

AIB-MEWMA 
0.1 

42.1731 12.0000 6.1048 3.1037 2.0822 1.6811 1.3037 1.0625 1.0006 1.0000 

AIB-DMEWMA 77.8553 31.2851 14.0211 7.9909 5.3160 3.9141 3.1024 2.4915 2.0867 1.7873 

AIB-MEWMA 
0.5 

52.3642 15.5103 4.0742 1.6455 1.1388 1.0244 1.0045 1.0006 1.0000 1.0000 

AIB-DMEWMA 73.1670 26.2766 13.0251 7.9426 5.4772 4.1301 3.2963 2.6947 2.2404 1.9289 

 

Table 14. The ARLs under error variance shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟑 

Chart   
  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
MEWMA 

0.2 

56.6934 15.0643 6.1197 3.2700 2.1237 1.5886 1.3573 1.2175 1.1389 1.0968 

AIB-MEWMA 52.3642 15.5103 4.0742 1.6455 1.1388 1.0244 1.0045 1.0006 1.0000 1.0000 

DMEWMA 78.2846 29.5940 15.0587 10.8951 8.6248 6.2517 5.2154 4.0215 3.8621 3.2519 

AIB-DMEWMA 73.1670 26.2766 13.0251 7.9426 5.4772 4.1301 3.2963 2.6947 2.2404 1.9289 

MEWMA 

0.1 

67.2527 21.4597 9.0337 4.8442 2.9790 2.0811 1.6408 1.3919 1.2686 1.1744 

AIB-MEWMA 42.7494 21.4684 6.0351 2.1412 1.2162 1.0384 1.0062 1.0011 1.0001 1.0000 

DMEWMA 112.0510 48.5924 25.9485 16.5249 10.2617 8.4168 6.8521 5.3658 4.8594 4.2648 

AIB-DMEWMA 104.9965 45.8931 23.1323 14.1126 9.6987 7.2001 5.7276 4.6980 3.9459 3.3774 

MEWMA 

0.05 

81.3496 30.1615 13.3189 7.1206 4.2466 2.8344 2.0842 1.6824 1.4297 1.2985 

AIB-MEWMA 48.6811 24.8090 8.9045 2.9305 1.3851 1.0664 1.0116 1.0013 1.0003 1.0001 

DMEWMA 38.6207 24.2951 18.2681 12.3118 10.1827 7.9426 7.0018 6.7429 4.8420 4.2486 

AIB-DMEWMA 18.7219 13.7604 10.4628 8.5206 7.1176 6.2066 5.5398 5.0377 4.6290 4.2183 
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Table 15. The ARLs under concurrent intercept and slope shifts when 𝝀 = 𝟎. 𝟐 and 𝒑 = 𝟑 

Chart     
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

MEWMA 
- 

12.2850 6.3461 4.3191 3.2945 2.7046 2.3168 2.0732 1.8931 1.7428 

DMEWMA 23.9336 14.4961 10.8202 9.8782 8.2883 7.8619 6.4973 5.7160 5.0638 

AIB-MEWMA 
0.1 

12.0916 3.9912 1.7188 1.1500 1.0300 1.0049 1.0006 1.0000 1.0000 

AIB-DMEWMA 23.8239 10.6696 6.9934 5.3145 4.2468 3.4988 2.9245 2.5037 2.1353 

AIB-MEWMA 
0.5 

9.6727 5.2101 3.6438 2.8216 2.3522 2.0568 1.8529 1.6815 1.4714 

AIB-DMEWMA 23.4158 9.9373 6.5872 5.1709 4.4016 3.8853 3.4795 3.1707 3.0218 

 

Table 16. The ARLs under concurrent intercept and slope shifts when 𝝆 = 𝟎. 𝟓 and 𝒑 = 𝟑 

Chart   
  

-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 
MEWMA 

0.2 

12.2850 6.3461 4.3191 3.2945 2.7046 2.3168 2.0732 1.8931 1.7428 

AIB-MEWMA 9.6727 5.2101 3.6438 2.8216 2.3522 2.0568 1.8529 1.6815 1.4714 

DMEWMA 23.9336 14.4961 10.8202 9.8782 8.2883 7.8619 6.4973 5.7160 5.0638 

AIB-DMEWMA 23.4158 9.9373 6.5872 5.1709 4.4016 3.8853 3.4795 3.1707 3.0218 

MEWMA 

0.1 

11.9068 6.9299 4.9997 3.9357 3.2513 2.8044 2.4759 2.2187 2.0662 

AIB-MEWMA 9.6552 5.8615 4.2513 3.3740 2.8309 2.4295 2.1763 2.0260 1.9361 

DMEWMA 12.5071 9.1420 7.4993 6.4868 5.7819 5.2763 4.8904 4.5225 4.2114 

AIB-DMEWMA 11.9827 8.8360 7.2474 6.2787 5.6050 5.1157 4.7510 4.3647 4.0888 

MEWMA 

0.05 

12.8453 8.0657 5.9393 4.7333 3.9551 3.4379 3.0541 2.7418 2.4692 

AIB-MEWMA 10.7364 6.8702 5.0941 4.0925 3.4339 3.0080 2.6725 2.3575 2.1431 

DMEWMA 19.3848 14.6285 12.1726 10.6240 9.5217 8.7004 8.0631 7.5172 7.0897 

AIB-DMEWMA 18.6184 14.1532 11.8106 10.3140 9.2461 8.4650 7.8386 7.2880 6.9398 

 

Table 17. Estimated regression parameters of study profile and the values of AIB-MEWMA chart statistic 

Profile 
1

ˆ OLS
β  1

ˆ MS
β  AIB MEWMA  

1  6.544,0.856
T

   7.368,0.870
T

  0.4004 

2  16.474,0.898
T

   12.856,0.895
T

  2.2215 

3  14.466,0.921
T

   7.409,0.880
T

  7.7433 

4  0.848,0.823
T

   3.553,0.846
T

  3.9207 

5  10.680,0.863
T

   8.640,0.864
T

  0.8767 

6  0.028,0.829
T

   6.615,0.851
T

  1.4126 

7  6.877,0.878
T

   6.831,0.862
T

  1.7451 

8  2.846,0.844
T

   6.473,0.863
T

  1.9872 

9  3.742,0.794
T

  10.575,0.871
T

  1.6458 
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10  16.858,0.887
T

   6.617,0.862
T

  1.7281 

11  0.207,0.855
T

   4.130,0.873
T

  5.6607 

12  12.108,0.893
T

   9.587,0.880
T

  5.3182 

13  13.034,0.895
T

   3.1080,0.857
T

  11.8487 

 

 


