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Abstract- Power system stabilizers have been widely used to create sufficient damping against low-frequency 

oscillations in power systems. Due to appearing uncertainties in operational conditions of power systems, robust 

design of power system stabilizers is a crucial requirement for small signal stability. In this paper, a robust local 

damping controller is developed considering the possible uncertainties in operational conditions. The developed 

damping controller is optimized based on the H-infinity method in presence of uncertainties in electrical 

variables of the synchronous machine. In the proposed robust damping controller, only the practically available 

control signals such as the deviation of the rotor speed of the synchronous generators are used. To fulfill the 

robust and internal stabilities of the damping controller under a given horizon of operational uncertainties, a 

novel design based on the combination of the developed robust damping controller and the conventional power 

system stabilizer is introduced. Simultaneous damping of local oscillatory modes and the internal stability of the 

proposed robust controller is achieved via a multi-objective function. The efficacy of the proposed local damping 

controller is compared with the conventional power system stabilizer and a damping controller that is designed 

using the pole placement approach. 
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Nomenclature 

 

   Rotor angle of generator 

 H  Inertia constant of Generator 

 1v  Output of terminal voltage transducer  

 
2v  Output signal of stabilizer’s washout  

 
sv  Output signal of damping controller 

 fd  Magnetic flux of field circuit 

 tE  Terminal voltage of the generator 

   Rotor speed of generator 

 1, 2   Weighting factors in the objective function 

 1 6K toK  Parameters of Heffron-Phillips Model  

 cpK  Gain of conventional PSS  

 DK  Damping torque coefficient 

 1 2,T T  Time constants of conventional power system stabilizer  

 3T  Time constant of excitation windings 

 mT  Input mechanical torque  

 1 2,r rT T  Time constants of robust controller  

 RT  Time constant of voltage transducer  

 wT  Time constant of Washout block  

 wW  Weighting function of rotor speed uncertainty  

 W  Weighting function of rotor-angle uncertainty 

 EW  Weighting function of voltage uncertainty 
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1- Introduction 

The stability of synchronous generators at all times is a prerequisite for the stable operation of 

power systems. Small signal rotor angle stability refers to the ability of a power system to maintain 

synchronism under small disturbances such as load perturbations.  Small signal rotor angle 

instability problem is usually associated with insufficient damping of low-frequency oscillations. 

Traditionally power system stabilizers have been utilized to provide sufficient damping against 

local low-frequency oscillations at predetermined operating conditions [1]. Due to increasing the 

penetration level of renewable energy resources in nowadays power systems, as well as the rapid 

and unpredictable changes in operating conditions, the performance of the conventional damping 

controllers such as power system stabilizers is expected to be deteriorated. Therefore, the robust 

design of the damping controller has recently become the focus of literature on small signal stability 

of power systems.  In [1, 2], a robust power system stabilizer has been developed for multi-machine 

power systems based on the optimization of stabilizer’s parameters to reach a predefined value of 

damping based on the real parts of dominant eigenvalues of the linearized state-space matrix. In [3, 

4], a power system stabilizer has been designed to achieve the maximum possible damping for low-

frequency oscillations.  Similar designs of power system stabilizers using different optimization 

algorithms have been proposed in [5]. The coordinated design of power system stabilizers and 

flexible AC transmission systems (FACTS) may be used to enhance the performance of 

conventional stabilizers [6-13]. The multi-band power system stabilizers have been addressed in 

literature as power oscillation damping tools. Multi-band power system stabilizers have their 

benefits and drawbacks and have not been used in practice due to the complexity in tuning. For 

example, each band of IEEE PSS4B has 18 setting parameters and this is a major challenge for such 

power system stabilizers. In [14, 15], the optimal tuning of multi-band power system stabilizers has 

been addressed for multi-machine power systems. Detailed tuning of the Multi-Band power system 

stabilizer (MB-PSS) is presented in [16]. 

To preserve the performance of controllers under volatile operating conditions, the robust design of 

damping controllers has been recently investigated in the literature. A robust PID controller based 

on the linear quadratic Gaussian approach for improving the frequency stability of power systems is 

proposed in [12]. In [17], a damping control method based on a robust self-triggered model 

predictive control is proposed using linearization of the power system model and determining the 

controller installation location through geometric measurements. In [18, 19], using the H-infinity 

method, a robust damping controller has been developed considering the load demand uncertainty. 

Some of the state variables utilized in [18] cannot be physically measured. In [20], based on the 
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Routh-Hurwitz criterion and Kharitonov theorem a robust power system stabilizer has been 

introduced for a single-machine infinite-bus (SMIB) system without considering uncertainties. 

Different techniques are mixed with robust technique to provide sufficient damping for small signal 

oscillation in power system such as periodic output feedback, pole placement method [21-23], 

variable structure method, quantitative feedback theory [24, 25] and sliding mode control [26-29]. 

Tuning of power system stabilizer using fuzzy logic has been investigated in [30-33]. In [34-36] the 

optimal control, adaptive control, and polynomial control are utilized for damping improvement and 

the parameters are tuned using optimization techniques. 

There are different sources of uncertainty that can affect the damping control design. Uncertainties 

in system parameters, operational conditions, and time delay of the damping control are among the 

most important sources of uncertainties. In [37, 38], the uncertainties in the time delay of the 

damping control system especially in the measurement layer have been addressed.  In [39], a robust 

damping controller is developed to suppress the low-frequency oscillations under load uncertainties. 

In [40], the uncertainty models based on both a set of operating conditions of the system and the 

lower and upper limits of the time delay are considered. 

In multi-machine systems, inter-area and local oscillations affect the power system stability. The 

power system stabilizer is designed in a multi-machine power system using grey wolf optimization 

in [41]. The coordinated switching power system stabilizer is designed in[42] to enhance the 

stability of multi-machine power systems by switching between a bang-bang power system 

stabilizer and a conventional power system stabilizer based on fast and slow oscillations. Optimal 

placement and tuning of the power system stabilizer in multi-machine systems are presented in [43]. 

In literature, fewer efforts have been made to design a damping controller in the presence of 

operational uncertainties that appeared in the system state variables, such as speed and rotor angles, 

due to changes in the system’s operational conditions. Also, in previously proposed approaches, the 

availability of utilized control signals of synchronous generators is not considered.  

In this paper, a robust damping controller is developed based on the H-infinity method with 

considering operational uncertainties using the practical control signal.  The main conurbation of 

this paper is as follows: 

1- Unlike the previously proposed damping controllers, in this paper, the uncertainties in voltage 

magnitude at the generator terminal, uncertainty in rotor speed, and uncertainty in rotor angle 

are considered. All these three variables are changing based on the system conditions.  

2- In the proposed robust damping controller, only the practically-available control signals 

(e.g.∆𝜔 ) have been used. Additionally, to remove the risk of internal instability of the 
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proposed controller, a supplementary controller has been used.  

3- Simultaneous damping of local oscillatory modes and the internal stability of the proposed 

robust controller is achieved via a multi-objective function. 

The rest of this paper is organized as follows. In section 2, the linearized state-space model of 

the SMIB system is presented. The procedure of tuning conventional PSS is introduced in section 3. 

In section 4, the uncertainties of operational conditions are introduced. The details of the proposed 

robust damping controller are presented in section 5. The simulation results are discussed in section 

6. Finally, the paper is concluded in section 7.  

2- Mathematical modeling  

2-1- Linear state-space model of SMIB system 

The proposed damping controller can be designed for damping local or inter-area oscillation modes. 

The focus of this paper is to develop a local controller for damping local oscillatory modes. The 

design of a controller for damping inter-area oscillation modes (such as a wide-area damping 

controller using multi-band PSSs) can be addressed in separate research works. While the focus of 

the controller design is to damp local oscillatory modes, the single-machine infinite bus is 

sufficient. However, for damping inter-area oscillatory modes, a multi-machine power system 

should be considered.    The state-space model of the SMIB is linearized as given in (1) -(5). The 

details of the nonlinear dynamic model of the SMIB system could be found in [44, 45]. 

  

(1)       
 

(2)1 1(2 )D m fdHs K T K K           

(3)3 3 1 3 4( )fd fd exT K v G K K           

(4)1 1 6 5R fdv T v K K         
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 

The linearized model of the dynamic system given in (1)-(5) is represented via the Heffron-

Phillips model based on 1 6K toK coefficients as shown in Fig. 1. The 1 6K toK  coefficients depend on 
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both the operating point and the design parameters of the synchronous machine [44]. Here the 

dynamic of governors (i.e. load frequency control) is ignored. 

2-2- PSS Design 

Conventional PSS (CPSS) are widely used to provide sufficient damping under small 

disturbances. PSS damps the low-frequency oscillations (LFO) by creating an additional component 

of damping torque in phase with the speed deviations. The CPSS must be designed to give the 

maximum damping under credible operating conditions. Different approaches have been proposed 

for tuning conventional PSS [18, 44]. Indeed the real part of all eigenvalues of the linearized state-

space matrix must be negative and the lead-lag module must compensate for the phase lag between 

the exciter input and the electrical torque. The PSS contributes to the damping of oscillations over a 

range of frequencies. 

As shown in Fig. 2, in this paper the conventional PSS is tuned using the speed deviation as the 

control signal. According to Fig. 2, the transfer function of the conventional PSS is expressed as 

follows: 

1

2

1
( )( )

1 1

w
pss p

w

T s T s
G K

T s T s




 
 

       (6) 

where parameter pK is the gain of PSS to suppress the low-frequency oscillations over a given 

range of frequencies (e.g. 0.1 Hz to 2 Hz).  The linear dynamic model of the SMIB system in 

presence of PSS is expressed as follows: 

 

3 3 1 3 3 4( ) ( )fd fd ex s exT K v G K v G K K              (7) 

5 6
1
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fd
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K K
v
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Finally, the linear state-space model of the SMIB system including the PSS is introduced as 

follows: 
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(11) 

2-3- Uncertainties in operational conditions 

The parameters of the well-known linearized model of the SMIB system or Heffron–Phillips 

model depend highly on the system conditions. In other words, by changing the operating point of 

the system, the system model is changed too. These changes are well reflected in changes in rotor 

speed, rotor angle, and voltage magnitude. Therefore, to minimize the deterioration of damping 

control under varying operational conditions, the robust controller is utilized. Different structural or 

operational uncertainties may be considered in the robust design of a damping controller. Here the 

uncertainties in operational conditions including uncertainties in rotor speed, rotor angle, and 

terminal voltage are considered. Three different weighting functions including ,W W   and 
EW  are 

introduced for modeling uncertainties in rotor angle, speed, and terminal voltage respectively. The 

H-infinity norm of the weighting functions must be greater than the maximum possible uncertainty 

at different frequencies. To achieve a proper weighting function for rotor angle uncertainty, the 

frequency response of the transfer function of the linearized system (i.e. ( )H s  as given in (12) 

according to Fig. 3) is depicted under different loading conditions. It is noted that the methods 

utilized to obtain the proper weighting function are different based on the nature of the controller 

design. In this problem, the change of system loading conditions causes a perturbation in the model 

as an mT . The frequency response of ( )H s must be evaluated for each random loading condition 

(Value of loading conditions is assumed to be 0.6 𝑡𝑜 1.5 𝑝𝑢). The obtained weighting function must 

be greater than the maximum frequency response (as shown in Fig. 1)  

1

( )
( )

( )

s
H s

p s



      

(12) 

The weak and stiff systems represent extreme operating conditions. To achieve the maximum 

robustness against possible uncertainties, the frequency response of (12) for different values of 

perturbations (i.e. change of input mechanical torque ( )mT s ) is shown in Fig. 3-a. The details of 
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assigning a proper weighting function based on the frequency response could be found in [46].  

Based on the obtained frequency responses, the weighting function is selected as follows: 

1
( ) 1.38

3

s
W s

s






      

(13) 

where the constraint given in (14) is satisfied over a wide range of the  frequency.  

1|| ( ) || 1W H s 

   (14) 

  

The weighting function for rotor angle can be designed by minimizing fitness function as given 

below: 

Fitness function: 1|| ( ) || 1W H s 

   (15) 

 

Subject to   

( )

( )

K s a
W

s b






 

(16) 

1|| ( ) || 1W H s 

   (17) 

 

Each 𝑊𝛿
  that satisfies these constraints could be considered as a weighting function.  

For rotor speed uncertainty, the frequency responses of the transfer function of the linearized 

system (i.e. ( )H s as given in (18)) is depicted under different loading conditions. 

2

( )
( )

( )

s
H s

p s



  

(18) 

Similar to the procedure for the weighting function of rotor angle, to achieve the maximum 

robustness against possible uncertainties the envelope of responses shown in Fig. 3-b, is selected as 

the weighting function of rotor speed as follows: 

8

( 2)
W

s
 


 

(19) 

Finally for voltage uncertainty, the frequency responses of the transfer function of the linearized 

system (i.e. ( )EH s as given in (20) is depicted under different loading conditions. 

3
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( )
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t
E

E s
H s

p s


  

(20) 

  



 

9 

 

In order to achieve the maximum robustness against possible uncertainties the envelope of 

responses shown in Fig. 3-c, is selected as the weighting function of terminal voltage as follows: 

2.3

( 2)
EW

s



 

(21) 

The weighting functions of uncertainties are now included in the linearized model of the SMIB 

system as shown in Fig. 4, where 𝐺𝑒𝑛 represent the linear model of the system shown in Fig.1.  

2-4- Design of the proposed robust damping controller 

   Two different designs are proposed for the robust damping controller of the SMIB system. The 

first damping controller, hereafter referred to as the first type controller considers the operational 

uncertainties without including the conventional PSS.   It will be shown that the first type of robust 

controller suffers from internal instability while the robust stability is fulfilled. Also, internal 

stability is added as a constraint to the first-type controller to check the possibility of internal 

stability. However, the first-type controller even by adding the internal stability criterion fails to 

fulfill both the robust and internal stabilities simultaneously.  The second-type controller combines 

the first-type controller with the conventional PSS to provide the robust damping of oscillations 

with satisfying the internal stability. The details of both damping controllers are presented below.  

2-4-1- First type damping controller 

Any proposed damping controller should satisfy both the robust and internal stabilities 

simultaneously. Internal stability refers to the stability of each input-output transfer function. 

Internal stability is a basic requirement for a practical feedback system.  Internal stability guarantees 

that all signals in a system are bounded. 

According to (22), to achieve a robust design of damping controller, the H-infinity norm of the 

transfer function (i.e. 11|| ||N  ) should be minimized [35]. The overall design of the first type 

controller has been illustrated in Fig. 5, where the  , w and Et represent normalized uncertainty 

model (i.e. (|| || 1,|| || 1 || || 1)w Etand         . According to Fig. 5, the transfer function of 11[ ]N

is defined as follows:  

1 1

2 211 12

3 321 22

1

[ ]

m m

p p

p pN N
N

p pf N N

T TZ





     
    

                 
    
      

 (22) 

where the transfer function of 11[ ]N may be determined according to (23). The robust stability 

criterion is defined as given in (24).  
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   
   
  

   
   
   

 

 

(23) 

11|| || 1N   (24) 

  

To design the first type of robust controller the optimization model given in (25)-(26) is minimized. 

 

1 11min || ||cZ N   

 

(25) 

max( ( ( ))) 0.2real poles N   (26) 

  

2-4-2- Second type of damping controller 

To fulfill the internal and robust stability criterion, the conventional PSS is added to the first type 

controller as shown in Fig. 6. The modified combinatorial damping controller, hereafter referred to 

as the second type controller is then optimized using a new multi-objective fitness function as 

follows: 

 

2 1 1 2min. cZ f f    (27) 

1 max( ( ( ))) 0.2f real poles N   (28) 

2 11|| || 1f N    (29) 

 

Subject to: 

 

11|| || 1N   

(30) 

max( ( ( ))) 0.2real poles N          (31) 

where,  1f maximizes the routine stability and 2f maximizes internal stability. However, the critical 

value of each internal and retinue stability is considered as a constraint. The value of the damping 

factor must be tolerable in the excitation system.  This is achieved using the constraint of (31), by 

which the minimum value of the real part of the poles is restricted ( ( ))real poles N .According to the 

related constraints, any set of weighting factors preserves stability (i.e.) 11|| || 1N   and the real part 

of dominant oscillatory mode is less than -0.2 (i.e. ( ( ( ))) 0.2real poles N  ).   

The multi-objective function given in (27) tries to satisfy the internal and robust stabilities via 

the proper selection of weighting factors 1 and 2 .  
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2-5- Extending the proposed method to a Multi-Machine system 

Fig.7 shows the configuration of the ith-machine of a multi-machine power system, where N 

synchronous generators are connected by transmission lines. The entire N-machine power system is 

equipped with PSSs and the proposed robust controller. Details of this multi-machine dynamic 

model could be found in[47]. All procedures of designing the robust controller could be followed as 

demonstrated in Sections 4 and 5. 

3- Simulation Results in SMIB system 

In this section, the performance of both proposed damping controllers is investigated over the 

SMIB system. The dynamic data of the SMIB system has been given in Appendix A. In part A, the 

simulation results of the first type controllers, and in part B the results of the second type damping 

controller are presented. Also, to verify the performance of the proposed controllers, time 

simulations under the step changes of inputs are presented in Part C. The proposed robust damping 

controllers are optimized using Genetic Algorithm.  

3-1- Part A.  

The first type of damping controller is optimized to obtain the minimum value of 11|| ||N  . The 

optimal parameters of the first type controller are obtained as 1 20.1854, 5.125r rT T  and

42.651RCK  . The eigenvalues of the linearized SMIB model (i.e. the linearized system shown in 

Fig. 7) have been reported in Table I. It can be seen that there is an unstable oscillatory mode as

0.06913 6.3672j .  

According to Fig. 8, the best amount of 11|| ||N   is equal to 0.72 using the genetic algorithm. The 

parameters of the genetic algorithm are set as follows: The initial population is 200, the cross-over 

is a scattered function, the mutation is assumed using a Uniform function with a Rate of 0.009, and 

the maximum iteration is assumed as 200. The singular value of the proposed robust controller has 

been illustrated in Fig. 9. Unlike the acceptable value of 11|| ||N  , it is evident that the first type of 

robust controller results in internal instability of the SMIB system. Therefore, the internal stability 

is added to the optimization problem of the first type controller as a constraint and the modified 

controller is re-optimized. The variations of the cost function of the modified first type controller 

have been illustrated in Fig. 10. It can be seen that the best value of the proposed robust damping 

controller is equal to 11|| ||N  =3.38 which violates the robust stability of the system. It is concluded 

that the proposed first type damping controller even with the described modification is not able to 

fulfill both internal and robust stability simultaneously. To this end, the second type of damping 

controller is implemented as given in the next part.  
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3-2- Part B.  

In this part, the proposed second type damping controller is optimized using the Genetic 

Algorithm. The optimal parameters of the second type controller are obtained as given in Table II. 

According to [44], the real part of dominant oscillating modes must be smaller than -0.20. The 

inverse of the real part of the dominant modes (i.e. closed-loop poles or the eigenvalues of the 

linearized system state matrix are close to the imaginary axis in the mode plane) refers to the time 

constant of the exponential trajectories of state variables. Therefore, a real part of -0.20 refers to a 

time constant of 5 seconds. If we assume that the variations of the state variables decay 

exponentially, then after 4 to 5-time constants, these variations die out. In other words, under a real 

value of -0.20, the low-frequency oscillations should die out within 20 seconds to 25 seconds.  

Also the value of the H-infinity function (i.e. 11|| ||N  must be lower than 1. It is noted that the 

proposed controller is stable over the defined range of operating conditions provided that 

the constraint of 11|| || 1N  is fulfilled. Therefore, the weighting factors in the utilized multi-

objective function (i.e. the objective function given in (27)) have been considered as 1 2( , ) (5,1)   . 

The variations of the cost function of the second type controller have been illustrated in Fig. 11. It 

can be seen that the best value of the proposed robust damping controller is obtained as

1 0.29077cZ    and the maximum real part of poles is equal to -0.22.  

The eigenvalues of the linearized SMIB model using the second type damping controller have 

been reported in Table III. It can be seen that there is no unstable oscillatory mode. The singular 

value of the proposed robust controller has been illustrated in Fig. 12. It can be seen that the second 

type of robust controller fulfills both internal and robust stability simultaneously.   

According to the optimal parameters obtained by the genetic algorithm, the transfer functions of 

the robust controller and the transfer function of conventional PSS are given in (32) and (33) 

respectively.  

3-3- Part C. Time simulation  

In this section, the performance of the proposed robust damping controllers under step changes 

of some inputs is investigated using time simulations for rotor angle, rotor speed, and electrical 

power. The time variations of rotor speed under different step-change in mT and ∆𝑉𝑟𝑒𝑓 are shown in 

0.5476 1 5
9.454

0.1 1 5 1
PSS

s s
T

s s


 

 
 

(32) 

0.13406 1
58.86

4.1263 1
robust

s
T

s





 

(33) 

 



 

13 

 

Fig. 13. Furthermore, to the analysis of the system for change in operation condition the equivalent 

reactance between the machine terminal and the infinite bus is changed from 0.4 to 2.5 Pu. The 

system responses for this equivalent reactance have been shown in Fig. 14, it can be seen that the 

performance of the second type damping controller is better than the first type damping controller. 

To give a comparative analysis, dominant eigenvalues are evaluated for three different types of 

damping controller by changing the operational conditions. As shown in Fig. 15, in case of using 

the pole placement controller, the dominant eigenvalues move to the unstable area. However, using 

the proposed robust controller, the stability of system is fulfilled under changing the operational 

conditions. In Fig. 15, the variations of two dominant modes (i.e. two different dominant 

eigenvalues) are illustrated for each damping controller. Other eigenvalues are far from the 

imaginary axis. 

4- Simulation Results in Multi Machine System 

In this section, the performance of the proposed damping controller is investigated over the 

Multi-machine power system. The proposed method is implemented in IEEE 39-bus test system.  

All data of this test system can be found in [48]. 

4-1- Implementation of the conventional controller in IEEE 39-Bus Test System 

As mentioned in section 5.2, the robust stability criterion is ( 11|| || 1N  ) and the internal 

stability constraint is (i.e. max( ( ( ))) 0.2real poles N    All parameters of the Conventional PSS of 

the system are reported in Table IV. The values of critical eigenvalues in normal loading is given in 

Table V. The singular values of the test system are shown in Fig. 16. According to Fig. 16, the 

infinite norm of the system is 1.90. Therefore, the system is internally unstable. 

4-2- Implementation of the proposed second type robust controller in IEEE 39-Bus test 

system 

In order to design the robust controller, we first optimize the value of the objective function for 

1 0  (i.e. only infinite norm of 11N is considered). In this case, the value of the objective function 

is 0.654. In the second step, we optimize the objective function considering 2 0  (i.e. only real 

part of eigenvalues is considered). In this case, the value of the objective function is -0.61.  

Therefore the values of 2  and 1  are assumed to be as 1.07 and 1 respectively. The mean and best 

values of the objective function using GA algorithm is shown in Fig. 17. The best value is 0.43229 

in which, f1=-0.5287 and f2=0.998. All parameters of the proposed controller are given in Table VI.   

As shown in Fig. 18 the singular values of the system are lower than 1. 



 

14 

 

4-3- Comparison of the controllers 

In this section to verify the performance of the proposed controller, the operating point including 

generation and loading pattern are changed up to 20% randomly. The step response of the system 

with conventional PSS controller and the second type robust controller are shown in Fig. 19 and 

Fig. 20 respectively. As shown in Fig. 19 and Fig. 20, the step response of the system is not stable. 

However, the step response of the system with the second type robust controller is stable. 

5- Conclusions 

In this paper, the operational uncertainties including the uncertainties in rotor speed, rotor angle, 

and terminal voltage were included in the robust design of the damping controller. Two different 

designs for low-frequency oscillation damping controllers were developed. The major findings of 

this paper are summarized as follows. 1) Without considering the conventional PSS the proposed 

damping controller (i.e. the first type design) results in internal instability. However, the second 

type of damping controller in combination with the conventional PSS fulfills both internal and 

robust stability simultaneously. 2) By doing a comparative analysis, it was shown that the CPSS 

and Pole Placement Damping controllers both result in small-signal instability, and the dominant 

eigenvalues of the state space matrix enter the unstable area (i.e. the area where the real parts of the 

eigenvalues are positive). However, the proposed damping controller in this paper locates the 

eigenvalues far from the imaginary axis and the real parts of the dominant oscillatory modes are all 

lower than -1, which implies the strong small-signal stability of the system under operational 

uncertainties. Since the time constant of exponential variations of the state variables is equal to the 

inverse of the real part of dominant modes or eigenvalues, a real part of -1 says that the time 

constant of exponential time variations (i.e. exponential decay) of state variables is equal to 1 

second. Therefore, the oscillations die out within 4 to 5 seconds. Indeed, we can assume that the 

oscillations die out after 4 to 5 time-constant. 3) In order to validate the modal analysis, the 

performance of the developed damping controllers was verified using both modal analysis and time 

simulations.  The presented time-domain simulations confirmed the effectiveness of the proposed 

controller. The coordination of the proposed second type controller in a multi-machine power 

system to damp both local and inter-area oscillation modes is an open question for further 

researches. 
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Figures Captions 

 

Fig. 1. Linearized Heffron-Phillips model of SMIB system 

Fig. 2. Block diagram of the conventional power system stabilizer 

Fig. 3. Frequency response under different load variations (0.6pu to 1.5 pu) for a) ( )H s , b) ( )H s ,

c) ( )EH s

Fig. 4. Linear model of SMIB system considering operational uncertainties 

Fig. 5. Robust damping controller in the linearized model of SMIB system 

Fig. 6. Robust second type controller for linearized SMIB model 

Fig. 7. Second Type Robust controller for the linearized model of generator i in a Multi-Machine 

system  

Fig. 8. Mean and best values of fitness function of 11|| ||N   using the genetic algorithm 

Fig. 9. Singular value of the proposed system with first type damping controller 

Fig. 10. Mean and best values of fitness function of 11|| ||N   considering the internal instability 

criterion using the genetic algorithm 

Fig. 11. Mean and best values of fitness function of second type controller 

Fig. 12. Singular value of the second type damping controller 

Fig. 13. Rotor speed deviation using the second type controller versus conventional PSS under 20 

% step change in a) refv , b) mT  

Fig. 14. Rotor speed response under 20 % to 200 % step change in equivalent reactance 

a) first type damping controller, b) robust combinatorial damping controller 

Fig. 15. Variations of eigenvalues under changing the operational conditions 

Fig. 16. Singular value of the IEEE39 bus test system using conventional PSS 

Fig. 17. Mean and best values of fitness function of the second type controller 

Fig. 18. Singular value of the IEEE39 bus test system using proposed controller 

Fig. 19. Step response of the system after the change 20% in generation point of the IEEE39 bus 

test system in case of using conventional PSS. 

Fig. 20. Step response of the system after the change 20% in generation point of the IEEE39 bus 

test system in case of using proposed controller 
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Tables Captions 

Table I. Eigenvalues of the linearized SMIB system using the first type 11|| ||N  controller 

Table II. Parameters of the second type robust damping controller. 

Table III. Eigenvalues of the linearized SMIB system using the second type control 

Table IV. Parameters of the conventional controller in IEEE 39 bus test system (GEN1 is the 

reference) 

Table V. Eigenvalues (with damping ratio lower than 10%) of the linearized IEEE 39 bus test 

system using the conventional PSSs 

Table VI. Parameters of the Robust controller in IEEE 39 bus test system (GEN1 is the reference) 
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Mode Type (Stable/Unstable) Eigenvalues 

Stable -23.4550 

Stable -0.0909 

Stable -22.84 

Stable -11.203+4.905j 

-11.203-4.905j 

Unstable 1.06913+6.3672j 

1.06913+6.3672j 

 

Table I 
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Variable Value 

1rT  0.13406 

2rT  0.5486 

1T  0.1 

2T  -0.2417 

wT  5 

CpK  9.454 

RCK  58.486 

CpT  9.454 

 

Table II 
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Mode Type (Stable/Unstable) Eigenvalues 

Stable -16.6649 

Stable -10.56417 

Stable -7 

Stable -0.2417 

Stable -9 

Stable -150187+2.8098j 

-150187-2.8098j 

Stable -2.04119+8.5239j 

-2.04119-8.5239j 

 

Table III 
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PSS_name GEN2 GEN3 GEN4 GEN5 GEN6 GEN7 GEN8 GEN9 GEN10 

cpK  0.4999 0.500 2 1 4.000 7.490 2 2 1 

1T  9.5100 12.26 2.4580 4.4263 1.5252 0.8390 3.0536 3.3880 5.4061 

2T  0.0708 0.709 0.0688 0.0528 0.0276 0.0160 0.0552 0.0812 0.0437 

3T  5 5 5 5 5 5 5 5 5 

 

Table IV 
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Mode 

Number 
Real part

Imaginary 

part
Frequency

Damping 

ratio

Mode 

Type(Stable/Unstable) 

1 -0.2849172 6.9986454 1.1138690 0.0406766 Stable 

2 -0.3850304 6.6149199 1.0527972 0.0581080 Stable 

3 -0.4641656 7.5177541 1.1964877 0.0616252 Stable 

4 -0.4195530 6.1520555 0.9791300 0.0680391 Stable 

5 -0.5764449 7.4772932 1.1900481 0.0768646 Stable 

6 -0.6957257 8.9392823 1.4227309 0.0775932 Stable 

7 -0.3140888 4.0118904 0.6385121 0.0780506 Stable 

8 -0.7388887 8.8669296 1.4112156 0.0830430 Stable 

9 -0.8204883 9.1112823 1.45010562 0.089688 Stable 

 

Table V 
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cR No  GEN2 GEN3 GEN4 GEN5 GEN6 GEN7 GEN8 GEN9 GEN10 

cpK  4.9949 1.021 3.25 1.355 1.376 3.3167 4.0650 1.2815 3.8869 

1rT  4.987 1.095 1.9397 3.558 4.622 0.7268 1.5708 0.3380 0.1456 

2rT  1.1935 4.527 0.725 0.739 0.0115 3.4932 4.8084 4.8752 2.9624 

 

Table VI 
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