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Abstract 

Data envelopment analysis (DEA) has been recently employed for performance and efficiency 

evaluation of decision-making units (DMUs) with multiple inputs and outputs. Complex internal 

relations within a DMU required more accurate DEA models than existing classic DEA. In real world 

applications, shared resources, among stages of a supply chain, is of great interest for managers and 

decision makers. Unfair allotment of shared factors can render the assessment invalid. In this study, 

an innovative DEA model is formulated for efficiency evaluation of a supply chain with shared 

factors. In the first step, a linear DEA model is presented in the multiplier form, based on the slack-

based measure for efficiency assessment, in order to obtain the optimal proportion of the shared 

resources and shared feedbacks which are dual-role factors are presented. Then, the aggregate 

efficiency is decomposed into its stage efficiencies.  Next, the presented model is extended for 

deriving the Common Set of Weights (CSW) for efficiency evaluation of the entire chain and 

correspondence stages. The case of 20 sustainable supply chains in the oil industry is considered with 

the developed DEA approach. 

 

Keywords: DEA; Sustainable Supply Chain; Share resources, Shared Feedbacks, Slack Based Measure of 

efficiency, CSW.  

 

1. Introduction 

DEA is a mathematical method used extensively in the subject literature for performance evaluation 

of a set of DMUs. After developing the first DEA models by Charnes, Cooper, and Rhodes [1], 

which deals with the context of multiple inputs and outputs, several modifications are performed on 

classic DEA models. Afterward, using DEA models, it is possible to have multiple indicators that 

consider the effect of different indicators on performance. The key feature of the non-radial measure 

is to consider the effects of non-radial slacks in the efficiency, but slacks are neglected in radial DEA 

models which gets the efficiency simply and directly, Tone [2]. 

Usually, DMUs have network structures with intermediate products. Thus, classic DEA models 

consider black-box evaluation. Moreover, a more complicated case is where some inputs of the first 

stage should be split up and used by the second stage. This is a critical issue, as it can understate the 

efficiency when DEA fails to consider that some of the inputs generate other second-stage outputs. 

Shared resources are studied in the DEA technique from different aspects.  Cook and Zhu [3] 
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presented a paper to extend the usual DEA structure for determining the best resource split to 

optimize the aggregate efficiency score. Amirteimoori and Shafiei [4] provided a DEA method for 

omitting the shared resources from all DMUs due to abrupt incidents.  Chen et al. [5], and 

Amirteimoori [6] presented DEA models for the performance assessment of a network consisting of 

two stages with non-splitable shared inputs. An et al. [7] developed a network DEA model where 

shared resources are considered with cooperative and non-cooperative gaming. Also, An et al. [8] 

introduced network processes with shared extra intermediate resources in DEA. Moreover, An et al. 

[9] introduced profit inefficiency decomposition with resource sharing in DEA. Moghaddas, 

Mohhamadpour Tosarkani, and Yousefi [10] extended inverse DEA models in network structures. Ma 

[11] studied partial impact between inputs and outputs for network production systems. Izadikhah et 

al. [12] and Puri, Yadav, and Garg. [13] considered DEA models with shared resources and measured 

interval efficiencies. Stefaniec et al. [14] and Zhou and Hu [15] introduced a network with shared 

resources that incorporates undesirable output.  Chai and Zhao [16], Chao, Yu, and Hsieh [17] and 

Phung et al. [18] respectively examine a parallel production system, a dynamic network DEA, and a 

mixed-network structure to allocate shared resources for efficiency measurement.  Álvarez-Rodríguez 

et al. [19] proposed a dynamic Network model for sustainability-oriented efficiency evaluation. Jiang 

et al. [20] suggested allocating shared resources to satisfy conditions for an optimizable operation. 

Azadi Et al. [21] developed a novel network range directional measure (RDM) approach for 

evaluating the sustainability of a set of DMUs. Li and Cui [22] conducted a study on different stages 

in airline departments with shared inputs. Wang et al. [23] obtained overall and individual efficiency 

scores with altering weight in the model. Avilés-Sacoto et al. [24] and Avilés-Sacoto et al. [25] 

studied DMUs grouped according to multiple attributes and with multiple shared inputs. Zhang, 

Wang, and Zhu [26] presented a two-stage network DEA model with shared inputs and fuzzy set 

qualitative comparative analysis. Wang, Wu, and Chen [27] provided the decomposition of weights in 

a network DEA model with shared resources. Phung et al. [18] developed a new DEA model to solve 

a mixed network structure. According to Shi et al. [28], dual-role factors play both input and output 

roles simultaneously. 

Supply chain management is widely affected by measuring the sustainability performance of supply 

chains, according to Gupta and Palsule-Desai [29].  Thus, production and business practices can be 

improved as stated by Min and Kim [30]. As a variety of systems extensively benefit from sustainable 

supply chains, sustainable supply chains are frequently utilized.  Also, DEA is applied for the 

performance and efficiency assessment of supply chains in various aspects. Roy et al. [31] suggested 

strategies for environmental sustainability by introducing a methodology based on fuzzy cognitive 

map and DEA. Tavassoli, Ketabi, and Ghandehari [32] and Kalantary et al. [33] evaluated the 

sustainability of networks. Wang et al. [23] proposed a multi-region input-output DEA model. 

Álvarez-Rodríguez, Martín-Gamboa, and Iribarren [19] employed DEA modeling for the operational 
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performance. Tang et al. [34] introduced a model for eco-efficiency evaluation. Gilani, Sahebi, and 

Oliveira [35] studied the fuzzy integrated method for selecting the suitable supply potential points.  

Various models have been introduced in the DEA technique to evaluate DMUs with a network 

structure, yet the SBM model which evaluates efficiency more accurately has been employed less 

frequently. It is essentials to consider the feedbacks in the applications of network models, which has 

attracted scanty attention in the field of shared sources.  Also, the models have not addressed fair 

evaluation of efficiency using the common set of weights model, which aims to maximize the 

efficiency of all units at the same time, that have so far allocated shared resources in network DEA. 

Therefore, it seems necessary to evaluate the efficiency and determine the optimal shares of network 

stages from shared resources with the common set of weights method that examines performance 

evaluation more fairly through the SBM model in a DMU with network structure that includes 

feedbacks (returned production). Determining optimal shares is an important issue since an inadequate 

portion of shared factors may cause the system to collapse. 

This paper aims to indicate that a DMU as a black box cannot reveal inherent relations among the 

stages while optimal shares of resources are investigated.  Notably, unfair allocation of shared 

resources can lead to inaccurate assessment of the aggregate and stage efficiencies. In almost every 

real application, there are complex internal relations, such as shared resources among different stages 

and importantly shared feedbacks, in networks that significantly affect the efficiency evaluation. The 

present study aims to fit the multiplier form of the SBM model on a decision-making unit with a 

network structure consisting of three stages with intermediate inputs/outputs, independent 

output/inputs, and feedbacks which are dual-role factors. Then, shared resources and feedbacks are 

considered/investigated in mathematical modeling for evaluating performance and determining the 

optimal shares of each stage of the network from assets they have in common. Moreover, the present 

model incorporates the decomposition of aggregate efficiency into its stage efficiencies. Afterward, 

using the common set of weights method makes it possible to evaluate DMUs fairly. It means 

maximizing the performance of all DMUs simultaneously. 

The contribution of this study can be summarized as follows: 

 For the first time, shared resources are obtained from the SBM-Network DEA model. 

 An innovative idea is considering shared feedback between the stages of the supply chain. 

 With an innovative idea, the presented model extended to find the common set of weights for 

fairly analyzing the efficiency scores for both the chain and its stages. 

 The proposed common set of weights model is a multi-objective model converted into a 

single objective model via goal programming. 

 A linear slack-based network model is presented to evaluate the efficiency scores of the entire 

supply chain and the stages. 

 A case study of 20 sustainable supply chains is presented. 
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The rest of the paper is organized as follows: in section 2, some DEA preliminaries are briefly 

reviewed. A new model with shared inputs, feedbacks, and outputs in a three-stage supply chain is 

introduced in section 3. Section 4 presents the case study for a set of sustainable supply chains. 

Finally, in section 5, managerial implications are presented and discussed, and section 6 concludes the 

paper. 

2. Research Gap 

2.1 literature review 

Consider Table 1 in which the literature review for several recent articles, relevant to this research, is 

mentioned. 

 

       2.2 Research Gap 

In network systems, resources can be shared by several stages of the network.  The use of shared 

resources and feedbacks and determining the share of each stage from the common resources is the 

concern of managers and decision makers.  In this respect, articles have mainly focused on finding the 

optimal share of each stage from common sources, and their goal is to maximize the efficiency of 

each decision-making unit. Note that, feedbacks as dual-role factors play both input and output roles. 

Also, the multiplier form of the SBM model, which can measure efficiency more accurately due to 

taking input and output vector components into analysis, has received less attention. Another feature 

of the model is to evaluate the performance of the network structural DMUs and determine optimal 

share of each stage of the network from common resources, to find an optimal common weight that 

can be used to maximize the efficiency of all DMUs simultaneously.  

 

3. DEA Preliminaries 

DEA is now extensively used for the performance evaluation of DMUs in production systems and 

activities. Multi-attribute decision-making methods have been introduced and improved (Liu and Liu 

[36]) but they have not the ability of deriving relative efficiency score like DEA method. As an early 

model, the CCR, named after Charnes, Cooper, and Rhodes [1], was quickly introduced and 

developed. The first non-radial model for efficiency evaluation was introduced by Tone [2], named as 

Slack Based Measure of efficiency (SBM).  

Let X  and Y  be the input and output matrixes, and  x and  y   be the input and output vectors. 

Consider   as the vector of intensifier variables, and s   and s  as the vectors of input slacks and 

output surpluses. Also,   is defined as the free variable for objective function of SBM model (1) 

which shows the efficiency score of the oDMU  which is under evaluation.  
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Tone (2001) [2] proved 
*0 1  , an inefficient DMUo can improve its inputs and outputs according 

to  * *,o ox s y s   . 

4. Slack-based DEA Model in a Sustainable Supply Chain with Shared Resources  

Consider a three-stage supply chain consisting of the supplier, manufacturer, and distributer as in 

Figure 1. X is the input for the supplier, and Q and Z are corresponding outputs. For the manufacturer, 

Z and L are the inputs, and Y is the output. Y is an input of the distributer and D is its output. 

Enveloping form of the SBM model for the specified supply chain in figure 1 is formulated as model 

(2). 
1 , 

2 , and 
3 are non-negative intensifier variables each used for the supplier, the 

manufacturer, and the distributor, respectively. X  is the input matrix of the supplier, and Z   is the 

matrix of intermediate product that is the output for the supplier. Also, Q  is a matrix of the 

independent output for the supplier. The manufacturer has two inputs, L    is the matrix of 

independent input, and Z  is the matrix of the intermediate product.  Y   is the matrix of intermediate 

product that is the output of the manufacturer and input of the distributer. Also,  D   is a matrix of 

desirable outputs for the distributer. Assume s  to be the slack variable of the input X . Also, assume  

s
 and s 

  respectively as the surplus variables for outputs  Z and Q  for the supplier. Assume ŝ  

and s  respectively as the slack variables of inputs L  and Z . Assume s    as the surplus variable of 

output Y  for the manufacturer. Let  s    be the slack variable of input Y  and  s  as the surplus 

variable of output D  for the distributer.  Consider oDMU  as the DMU under assessment. 
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Model (2) maximizes the efficiency of the entire chain while considering all the links among the 

stages.  Constraints (a), (b), and (c) show the inputs and outputs of the supplier. Constraints (e), (f), 

and (g) indicate the inputs and outputs of the manufacturer. The same is for constraints (h) and (i) that 

show the input and output of the distributor. The rest of the constraints show non-negative variables. 

Using variable transformations introduced in expression (3), nonlinear objective function of model (2) 

is converted into its linear counterpart. Thus, linear model (4) is obtained. 
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With reference to (3), it is clear that  0t   .  

Therefore, the linear counterpart of model (2) is formulated as follows: 
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Consider variable transformations as 
1 1t  , 

2 2t  , 
3 3t  , ,ts s   , ,ts s ts s      

,ˆ , , ,ˆts s ts s ts s ts s            and ts s  . For simplicity, the notations are considered the 

same for variables before the transformation. After variable transformation, all new variables are non-

negative, because 0t    and the fact that all initial variables were non-negative. 

Considering constraints (c) and (g), Z is an intermediate product which is the output of stage 1 and the 

inputs of stage 2. A combination of these two constraints can be used as follows. 

1 2 2 1,  ,   0,  0   o o o oZ tz s Z tz s s s Z tz s tz s Z                      

2 1 Z Z                                                                                                                                           

(5) 

Y is an intermediate product between manufacturer and distributor, so the same argument holds for 

constraints (f) and (h). Therefore, 

3 2 Y Y    (6) 

Expressions (5) and (6) are consistent with the network axiom. It implies that the amount of input 

used in the next stage, supplied by intermediate production, must be less than the outputs that are 

produced from the previous stage.  

The dual model corresponds to model (4) is formulated as in model (7). Consider the intermediate 

products  z   and  y   in model (4). For the intermediate products, different variables in the dual model 

(7) are considered.  When  z   is the output of stage 1, the corresponding variable is set to be 
1w . Also, 

when z   is the input of stage 2, the corresponding variable is set to be 
2w .  Similarly, when y   is the 

output of stage 2, the corresponding variable is set to  
1u   and for the inputs of stage 3, the 

corresponding variable is set to be .   
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With regards to expression (5), we should consider a similar dual variable for constraints (c) and (g), 

which means 
1 1w w w  .  The same holds for constraints (f) and (h), according to expression (6), 

thus 
1 2u u u  , as stated in Chen et al. [5]. Therefore, Model (7) will be written as follows: 
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According to model (8), 1 o o co ohq d kl vx       shows the efficiency of the chain. Model (8) 

can be simplified using the following relation: 

1 o co o od kl hq vx        (9) 

Thus, model (10) will be obtained. 
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Figure 1shows the three-stage supply chain. Having optimal solution (weights) of model (10) 

efficiency scores of each stage can be calculated via relations (11). 
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The objective function of the model (10) can be discussed from another viewpoint. The objective 

function of the model (10) is to maximize the weighted sum of stage-efficiency scores. With regards 

to the weights defined in (12), equivalent to the objective function of the model (10) is the relation 

(13). For each stage, weight is defined as a ratio of the sum of weighted inputs of each stage to the 

sum of weighted inputs of all stages. 
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 Then, considering relations (11) and (12), the objective function of the model (10) will be defined as 

the sum of weighted stage efficiency scores (13). 
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For maximizing the ratio in the objective function, the nominator of fraction (13) is maximized, and 

the denominator is minimized. The linear equivalent to relation (13) is the relation (14). 
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Notably, equations (13) and (14) are equivalent in identifying efficient units. In maximizing 

expression (14), the first term is maximized and the second minimized. After simplification, as can be 

seen, expression (14) is similar to the objective function of the model (10). Instead of maximizing 

aggregate efficiency, o o o od hq vx kl     can be maximizing. Thus, the objective function of the 

model (10) can be considered as expression (14). Moreover, for deriving the efficiency score of each 

stage, corresponding relations (b), (c), and (d) are also added in the model (15). 
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Constraints (b), (c), and (d) respectively confine the stage efficiency scores in a way that 

1 21, 1,e e   and 3 1e  . Constraint (e) confines the efficiency of the chain in a way that  1E  . As 

evident in Figure 2, shared inputs exist in the chain. Input  X   has two parts of X , and  1 X . 

Clearly,  1X X X    . Note that 𝛽 is a variable for which 0 1  . Now, consider X  as 

the input for the supplier and   1 X   as the input for the manufacturer. 
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Now consider model (16) for analyzing the supply chain as demonstrated in Figure 2. 

 1  1o o o o oMax d hq v x v x kl            

(16) 

. .s t    

0hQ wZ v X     (a) 

   1 0u Y kL wZ v X       (b) 

0,D uY     (c) 

 1 0,D kL v X hQ v X          (d) 

 1 1 1
,

o o o o o

o

d kl v x hq v x

a d

  


       
  

 
  (e) 

 1 1 1
,

o o o o o

o

d kl v x hq v x
h

b q

         
  

 
  (f) 

1 1
,

o

k
e l

 
  

 
  (g) 

  
1 1 1

,
1 oo o

v
m xm x x 

 
   

   
  (h) 

0, 0,  0 1.w u       (i) 

 

Model (16) is non-linear, thus with the following variable transformation (17), the linear counterparts 

of constraints of the model (12) can be formulated.  

   
 1

1               1       
ˆ

ˆ
  

v v
v v v v v v

v v v


   



  
        

 
  (17) 

According to 0   and 0v  , and using (17), ˆ 0v   and ˆ 0v v   are obtained. Afterwards, 

according to the variable transformation introduced in (17), consider model (18) as the following. 

 1 ˆ ˆ  o o o o oMax d hq vx v v x kl       (a) 

(18) 

. .s t    

0ˆhQ wZ vX vX      (b) 

0ˆuY kL wZ vX      (c) 

0D uY     (d) 

  0ˆ ˆD kL hQ v v X vX         (e) 

  1ˆ1 ˆ
o o o o o

o

d kl v v x hq vx

a d




       
  

 
  (f) 

 
,

ˆ1 1ˆ
o o o o o

o

d kl v v x hq vx
h

b q

       
  

 
  (g) 

1 1
 

o

k
e l

 
  

 
  (h) 
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1 1

o

v
m x

 
  

 
  (i) 

0,    0,   w u     

0,      0,  ˆ ˆv v v      

In model (18), expression  ˆ ˆ
o ovx v v x   can be simplified and then replaced with ovx . 

 

Definition: Having the optimal solution of model (18), the aggregate efficiency (A.E) and stage 

efficiencies (S.E) for   oDMU  under evaluation are defined as follows: 

* * * *

* * * *
Agreggate  Efficiency A. o o o o

o o o o

d u y w z h q
E

v x w z k l u y

   
 

  
  

(19) 

* *

1 * *
Efficiency of Stage 1    

ˆ
. o o

o o

h Q w z
E S

v x v x


 


  

*

2 * * *
Efficiency of Stage  2 

ˆ
. o

o o o

u Y
E S

k L w Z v X
 

 
  

*

3 *
Efficiency of Stage  3  . o

o

d
E S

u Y


    

An important feature of model (18) is that it is based on the SBM model, and that all possible 

inefficiencies might exist in each element of the input, intermediate, and output vectors. Now consider 

more complicated sustainable supply chains as shown in Figure 3. Consider the chain demonstrated in 

Figure 3.  α  and δ  are variables introduced to recognize shares of Y  and L , respectively. Note that 

F is the manufacturer's output entirely consumed by the distributer and  1α Y  is a part of the 

manufacturer's output that enters the distributor. Therefore, the remaining part ( )Y  is the feedback 

of the manufacturer that enters the supplier. Also, let  1δ L  be the part of the manufacturer's input 

and the remaining part  δL  to be the input of the distributer that enters the chain. Consider the 

expression (20) for introducing the shares of Y  and L . 

    
 u 1

u 1 u            u u u 1  
ˆ

ˆ
       

u u

u
u

u


   



  
        

 
   

 

According to 0 1  , 0,u   0u  , and relation (20), 0 and  0ˆ ˆu u u    are 

obtained 

(20) 

                     
 1

1               1
ˆ

ˆ
        

k k
k k k k

k k k


     



  
        

 

               

 

(21) 
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Similarly, considering 0 1   , 0k  , 0,k    and relation (21), ˆ 0k   and  ˆ 0k k   are 

acquired. 

Notice model (22) for efficiency evaluation of a three-stage supply chain as shown in Figure 3. 

According to the defined variable transformations in model (18),    1  uY u uY Y    , 

 1v X v X vX     and  1kL kL kL      are replaced for simplicity of notations in 

constraints. 

 

 1  o o o oMax d hq vx kl      

(22) 

. .s t    

  0,ˆwh Q z vX vX Y       (b) 

0,ˆpF uY kL wZ vX       (c) 

   1 1   0,D Y L pF          (d) 

0,D kL hQ vX       (e) 

1 1
  ,o o o o

o

d hq vx kl

a d




    
  

 
  (f) 

1 1
,o o o o

o

d hq vx kl
h

b q

     
  

 
  (g) 

1 1
,

o

k
e l

 
  

 
  (h) 

1 1
,

o

v
m x

 
  

 
  (i) 

0,   0,  v 0,  0,w u p       

0,  0,k u      

 

The entire Y is the output of stage 2, but only 𝛼Y is used as an input of stage 3. The other portion, 

 1 Y , is returned to the supplier.  

Now according to relations (20) and (21), model (23) will be converted to its linear counterpart as 

follows: 

 1  o o o oMax d hq vx kl      

(23) 

. .s t    

  0,ˆw ˆh Q z vX vX uY uY        (b) 

0,ˆ ˆpF uY kL kL wZ vX        (c) 

,ˆ 0ˆ  D uY k L pF       (d) 

     0,D k L h Q vX       (e) 
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1 1
  ,o o o o

o

d hq vx kl

a d




    
  

 
  (f) 

1 1
,o o o o

o

d hq vx kl
h

b q

     
  

 
  (g) 

1 1
,

o

k
e l

 
  

 
  (h) 

1 1
,

o

v
m x

 
  

 
  (i) 

0,   u 0,  w    

0 ,0 ,0 ,v v k k u u           

0,    0,    0,  ˆˆ ˆv v u u k k        

                                                                     

Definition 2: Having the optimal solution of model (23), the aggregate efficiency (A.E) and stage 

efficiencies (S.E) for  𝐷𝑀𝑈𝑜 under evaluation are as follows. Moreover, according to this 

decomposition of stage efficiencies, corresponding weights can be obtained.                                                                 

* * * *

* * * * *
Aggregate  Efficiency .

  ˆ
A o o o o

o o o o o

d u y w z h q
E

v x w z k l u y u y

   
 

   
  

(24) 

* *

1 * *
Efficiency of Stage 1 

ˆ
. o o

o o

h q w z
E S

v x v x


 


  

* *

2 * * * *
E c

ˆ ˆ
ffi iency of Stage  2 . o o

o o o o

u Y p F
E S

k l k l w z v x


 

  
  

*

3 * * * *
Efficiency of Stage  3 .  

  ˆˆ  

o

o o o o

d
E S

u y u y k l p F


 

  
  

According to definition 2, weights that are used in objective function of model (23) are as follows:                                                                  

* *

1 * * * * *
 

ˆ

ˆ 

o o

o o o o o

v x v x

v x w z k l u y u y





   
  

(25) 

* * * *

2 * * * * * 

ˆ ˆ

ˆ
o o o o

o o o o o

k l k l w z v x

v x w z k l u y u y


  


   
  

* * * *

3 * * * * *

   

 

ˆˆ

ˆ
o o o o

o o o o o

u y u y k l p F

v x w z k l u y u y


  


   
  

For more efficient investigation among DMUs, model (26) is presented. The innovative idea behind 

the model (26) is that it searches for the common set of weights based on the SBM model to evaluate 

the DMUs. This technique in DEA is introduced for fair evaluation, according to Jahanshahloo et al. 
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[37]. The multi-objective optimization model (26) aims to maximize the efficiency of all DMUs, 

simultaneously.  Note that model (23) considers oDMU  and tries to find optimal weights to 

maximize the efficiency of oDMU . 

    1 ,   ,1   j j j j j n n n n nMax d u y hq vx kl d u y hq vx kl                

s.t. 

 

(26) 

  0,ˆw ˆh Q z vX vX uY uY         

0,ˆ ˆpF uY kL kL wZ vX        (b) 

,ˆ 0ˆ  D uY k L pF       (c) 

     0,D k L h Q vX       (d) 

1 1
,    j 1,   ,  n,

j j j j

o

d hq vx kl

a d




     
   

 
         (e) 

1 1
,

j j j j

o

d hq vx kl
h

b q

     
  

 
      j=1, …, n (f) 

1 1
,      j 1,   ,  n

j

k
e l

 
   

  

  (g) 

1 1
,     j 1,   , n,

j

v
m x

 
   

  

  (h) 

0,   u 0,  w    (i) 

0 ,0 ,0 ,v v k k u u            

0,    0,    0,  ˆˆ ˆv v u u k k         

 

Model (26) has “n” objective functions. Considering Goal Programming, Multiple Criteria Decision 

Making (MCDM) technique, and constraint (e). Let    1, ,je j n     be the positive deviation 

variable. Thus, instead of maximizing the “n” objective function, it is possible to minimize the sum of 

deviational variables equivalently. The linear counterpart of the model (26) is as follows.      

1

  
n

j

j

Min e


   
 

(27) 

. .s t    

  0,ˆw ˆh Q z vX vX uY uY        (b) 

0,ˆ ˆpF uY kL kL wZ vX        (c) 

,ˆ 0ˆ  D uY k L pF       (d) 

    0,  jD k L h Q vX e        (e) 

1 1
  ,    j 1,   ,  n,

j j j j

o

d hq vx kl

a d




     
   

 
         (f) 



 

16 

 

1 1
,

j j j j

o

d hq vx kl
h

b q

     
  

 
      j=1, …, n (g) 

1 1
,      j 1,   ,  n

j

k
e l

 
   

  

  (h) 

1 1
,     j 1,   , n,

j

v
m x

 
   

  

  (i) 

0,   u 0,  w     

0 ,0 ,0 ,v v k k u u            

0,    0,    0, 0. ˆˆ ˆv v u u k k e          

Based on the optimal weights obtained from model (27), using expression (28), the efficiency score 

for any    1, ,jDMU j n   can be calculated.  

Definition 3: The aggregate efficiency (A.E) and stage efficiencies (E.S) for  1,   ,  jDMU j n   

are evaluated with the optimal common set of weights obtained from the model (27).                                              

 
* 1* * *

* * * * *
Agreggate  Efficiency DMU A.      1, ,

   ˆ

j j j j

j j
j j j j j

d u y w z h q
E j n

v x w z k l u y u y

   
   

   
  

(28) 

* *

1 * *
Efficiency Stage 1   for DMU ( . )        1,

ˆ
,

j j

j j

j j

h q w z
E S j n

v x v x


   


  

* *

2 * * * *
Efficiency Stage  2  for DMU ( . )       1, ,

ˆ ˆ

j o

j j

j j j j

u Y p F
E S j n

k l k l w z v x


   

  
   

*

3 2* 2* * *
Efficiency Stage  3  or DMU ( . )         1, ,

   ˆˆ

j

j j

j j j o

d
E S j n

u y u y k l p F


   

  
   

 

4. Case Study 

Consider the data of a three-stage sustainable supply chain as mentioned in Tables 2 and 3. The 

mentioned indexes in Table 2 show the influence of sustainability. The data incorporates 20 oil 

factories from Iranian Stock Exchange Market1. The cost of trained personnel in the field of safety 

and health is the burden and cost of training personnel for possible occupational accidents and 

diseases. Materials cost is known as raw material costs. Labor cost per project is a figure obtained 

from adding up the various rates each worker is paid on a project. Warehousing cost shows the costs 

involved in storing goods in a warehouse. Supplied Materials means all the materials necessary to 

produce a product. Transportation cost shows all the expenses related to the transportation of raw 

materials, final products, and employees. Supplier revenue shows the payments received by the 
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supplier. Necessary tools signify essential and required tools.  Revenue is the total amount of income 

generated by the sale of goods and services. Cost of trained personnel on safety and health issues 

costs and materials cost are shared inputs between the supplier and manufacturer. Labor cost per 

project and warehousing cost are shared inputs between the manufacturer and distributor.  Supplied 

material is the output of manufacturer and shared inputs between the supplier and distributor. 

 

The provided model (23) and corresponding aggregate and stage efficiencies were acquired and 

discussed in the presented case study. The main concern about this model and the findings is 

efficiency evaluation while optimal shares for resources are determined. Model (23) benefits from the 

SBM model that is more accurate in efficiency evaluation than radial models. Moreover, converting 

the final model into a linear model (23) is the other main achievement of this study. 

Figure 4shows three stages of a chain with inputs, outputs, intermediate products, and feedback. 

 

Table 4 shows the aggregate and stage efficiencies obtained from expressions (24). According to the 

stage efficiency, DMUs scores 3, 4, 7, 8, 11, 12, 13, 17, and 19 performed efficiently in supplier 

and/or manufacturer and/or distributer stages. Also, DMU3 is an aggregate efficient unit and performs 

efficiently in supplier, manufacturer, and distributer. 

 

 

Only DMU3 is aggregate efficient. Efficiency scores of DMU12 and DMU17 are 0.96611 and 

0.99772, respectively. Among inefficient DMUs, DMU1 and DMU18 have the first and second ranks 

with 0.33737 and 0.41693, respectively. Consider Figure 5, in which stage and aggregate efficiency 

scores of DMUs from model (23) are listed. 

 

 

Table 5 shows the optimal weights for 𝑦, obtained from model (23). As observed in Table 5, DMUs 2 

and 14 are the only ones that returned a portion of y to the supplier. Thus, the rest of DMUs used y as 

the input of the distributor. Note that 𝛼𝑢  shows the share of 𝑦 for the supplier and  1 u  share of 

y  for the distributor.    

  

 

Table 6 shows the optimal weights for 1x  and 2x  that are the independent input of the system and 

obtained from model (23). It is a feature of the presented model that finds the optimal share of each 

input element separately. Note that 1v  shows the share of 1x   for the supplier and   11 v  share of 
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1x  for the manufacturer. Similarly, 2v  shows the share of  2x  for the supplier, and the   21 v   

share of 2x  for the manufacturer.  

 DMUs 3, 6, 7, 8, 9, 10, 12, 15, and 17 used their shared first input in supplier and the rest DMUs used 

it the manufacturer. For 2x , DMUs 6, 7, 9, 10, 12, 13, 15, 16, and 17 used their shares from 1x  in the 

supplier.  The remaining DMUs used it in the manufacturer. As seen, DMUS 6, 7, 9, 10, 12, 15, and 

17 have all used their shares from 1x  and 2x  in the suppliers. 

 

 

Tables 7 shows the optimal value for the independent input 1l  and 2.l   DMUs 4, 6, and 7 used their 

shares from independent input 2l  just in the distributor. The rest of the DMUs used their shares for the 

manufacturer. DMUs 4 and 7 are the only two DMUs that used their shares of independent input 1l  

and 2l   for both stages, the manufacturer and distributor. 

 

Joint evaluation is as important as self-assessment. Table 8 summarizes the common set of weights 

obtained from model (27). Consider the optimal shares of weights obtained from the classic model 

(23) and the common set of weights model (27).  

 

 

According to optimal weights of Table 9 and expression (28), aggregate and stage efficiencies are 

obtained and listed in Table 9. Model (23) finds the minimum sum of distances of DMUs from the 

efficient frontier, implying that this model has an optimistic viewpoint. 

 

In Table 9, with the common set of weights, none of the units is aggregate efficient. An important 

point is that the aggregate efficiency score is greater than the minimum efficiency core among the 

three stages for each DMU, while in Table 5, only one aggregate efficient unit is found. The reason is 

joint evaluation. In the common set of weights, the goal is to maximize performances of DMUs 

simultaneously, not just to maximize the performance of a DMU under evaluation. Remarkably, joint 

evaluation assesses all the units under the same conditions. In self-assessment, the decision makers’ 

perspective is optimistic in favor of the DMU being evaluated. It means that there is a tendency of the 

efficiency of the DMU under to be maximized. 

Note that performance assessment with the common weights aims to maximize the efficiency of all 

decision-making units. Therefore, each efficient DMU in model (27) is efficient in the classical model 

(23). In model (27), the problem-solving viewpoint aims to maximize efficiency scores of all DMUs 



 

19 

 

simultaneously. However, if a DMU is efficient under these conditions, it will certainly be efficient in 

model (23) that aims to evaluate each unit separately. 

In model (23), there is no parameter on which sensitivity analysis can be directly applied, because the 

input and output parameters are the “observed values” of the decision-making units. Therefore, to 

analyze the results, “efficiency interval” is taken into account.  We consider the maximum sum of 

distances of the DMUs from the efficient frontier. Consequently, all DMUs reach their minimum 

efficiency, simultaneously. In this case, an efficiency interval is constructed, the upper bound 

represents optimistic evaluation, and the lower bound represents pessimistic evaluation. Therefore, the 

efficiency scores calculated from multiple optimal solutions for the decision-making unit certainly 

will occur in this interval. The results in Table 10 showed the efficiency obtained from the pessimistic 

perspective of the common set of weight models (27).  In the common set of weights model, in an 

optimistic viewpoint, we sought the minimum sum of distances of DMUs from the efficient frontier.  

 

 

According to the results of Tables 8 and 9, the efficiency interval, [ ,  ]L UE E , for each unit can be 

considered as introduced in Jahanshahloo et al. [38].  

 

5. Conclusion 

Internal linking and shared resources exist in a variety of networks, which affect the efficiency score. 

Thus, unfair allocation of shared resources can result in invalid efficiency scores. This study presents 

a DEA model for the efficiency assessment of networks with shared resources and feedback. This 

model is on the slack-based measure of efficiency. For further analysis, decomposition of the 

aggregate efficiency score into stage efficiency scores is applied. The presented model is modified to 

obtain the common set of weights for a fair assessment. This model tries to maximize the efficiency of 

all DMUs at the same time. Therefore, the optimal solution of the proposed model shows the best 

proportion of the shared resources and feedbacks, and enhances the efficiency scores. The case of 20 

sustainable supply chains in the oil industry with three stages, supplier, manufacture, and distributer, 

is considered with the newly developed DEA approach. Then, the aggregate and stage efficiency 

scores are obtained. Furthermore, optimal shares of resources and feedbacks are obtained. Further 

analysis shows that the efficiency scores obtained from the classic model and common set of weights 

model are comparable.  According to the results, the efficiency scores in the classic and common set 

of weights models are different. Note that the variance of efficiency scores obtained from the common 

set of weights model is less than that of the classic model.  Therefore, DMUs acquired optimal fair 

shares of resources. The common set of weights model aims to maximize the efficiency of DMUs 

simultaneously. Importantly, alternative optimal weights require pose several limitations for defining 

diverse strategies based on alternative optimal solutions.  
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For further research, non-discretionary factors or weak disposability assumptions can be considered in 

the newly presented model. For further research in this subject, consider the case where the stage’s 

operation has the priority over each other in order to be optimized, thus it is suggested to use the 

leader-follower method, Vaezi et al. [39]. 
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Figure 5. Stage and aggregate efficiency scores from model (23) 
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                   Table 1. Comparison of proposed method with previous methods 

 

Studies 

Shared 

resources 

Shared 

feedbacks 

Non-radial 

Model 

CSW 

model 

Sustainable 

Factors 

Shared  

intermediate 

Cook et al. [3] √ × × × × × 

Amirteimoori and Shafiei 

[2] 

√ × × × × × 

Ma [11] √ × × × × √ 

Álvarez-Rodríguez et al. √ × × × √ × 
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[38] 

Chao et al. [17]  √ × × × × √ 

Tang et al. [34] √ × √ × × × 

Li and Cui [22] √ × √ × × × 

Zhu and Hu. [15] √ × × × √ × 

Ding et al. [40] √ × × × × × 

Izadikhah et al. [12] √ × × × × × 

 Phung et al. [18] √ × × × × × 

An, Liu, and Ding [8] √ × × × × √ 

Ma, Qu, and Deng [41] √ × × × × × 

Wang et al. [27] √ × × × √ × 

Avilés-Sacoto et al. [25] √ × × × × × 

Zhang et al. [26] √ × × × √ √ 

Chai and Zhao [16] √ × × × × × 

Puri et al. [13] √ × × × √ × 

 Ding et al. [42] √ × × × × × 

Shi et al. [28] √ × × × × √ 

An et al. [7] √ × × × × × 

An et al. [9] √ × × × × √ 

Avilés-Sacoto et al. [24] √ × × × × × 

Present Study √ √ √ √ √ √ 

 

 

Table 2. Description of indices 

Index Definition 
 

Sustainability 
Type of 

data  

𝑥1  

Cost of trained personnel 

on safety and health issues 

costs 

Shared between stage 1 and 2 

Social 10000$  

𝑥2  Additive materials cost  Economic 1000$ Shared between stage 1 and 2 

𝑞1 Supplier revenue 
 

Economic 1000T 
- 

𝑧1 Necessary tools - Economic 1000$ 
 

𝑧2 Processed material - Environmental 1000T 
 

𝑙1  Labor cost per project 
 

Social 1000$ Shared between stage 2 and 3 

𝑙2  Warehousing cost 

 

Economic 1000$ 
Shared between stage 2 and 3 

 

𝑦  Supplied material  
- 

Economic 10000T  
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𝑓  Transportation cost 
Shared Feedback from stage 2     

to stage 1 
Environment 1000T 

𝑑1 Revenue - Economic 10000$ 

  
 

  
 

 

                                                                        Table 3. Data set 

DMUs 𝒇 𝒚 𝒍𝟏  𝒍𝟐  𝒛𝟏  𝒛𝟐  𝒒 𝒊𝟏  𝒊𝟐  𝑫 

1 564 231 849 337 53 147 383 7 739 401 

2 512 423 1195 222 28 125 193 3 963 323 

3 765 125 300 130 57 23 232 2 925 124 

4 812 543 684 99 86 109 437 12 889 653 

5 876 376 1083 318 73 169 598 7 773 720 

6 761 276 601 281 61 43 704 15 1020 385 

7 592 217 472 91 93 112 864 14 958 827 

8 738 428 720 127 14 65 914 9 568 711 

9 827 381 1194 262 61 136 819 12 858 528 

10 792 268 1418 273 51 227 885 15 717 432 

11 672 241 1064 301 9 170 654 8 644 651 

12 778 349 1303 249 5 124 960 12 582 166 

13 619 269 973 112 86 159 354 2 706 171 

14 729 257 1159 158 94 122 431 4 851 344 

15 698 321 671 196 15 201 852 13 733 167 

16 734 372 1322 192 19 137 991 11 852 431 

17 772 287 1163 335 23 28 791 6 1008 569 

18 693 265 1511 194 8 238 442 11 941 767 

19 792 275 1467 334 56 89 810 10 846 238 

20 827 354 1377 249 47 133 927 14 909 480 

 

 

Table 4. Aggregate efficiency and stage efficiencies  

Classic Efficiency 

DMUs Supplier Manufacturer Distributer Aggregate 

1 0.69057 0.33618 0.48536 0.33737 

2 0.23943 0.98744 0.56826 0.44108 

3 1.00000 1.00000 1.00000 1.00000 

4 0.50735 1.00000 0.62708 0.59542 

5 0.87631 0.70504 0.57714 0.57763 

6 0.70339 0.64687 0.18645 0.44974 

7 1.00000 0.66254 1.00000 0.86967 

8 1.00000 1.00000 0.62122 0.81063 

9 0.86549 0.45892 0.37597 0.51684 

10 0.97104 0.32524 0.47233 0.53042 

11 1.00000 0.59607 0.89820 0.59741 

12 1.00000 1.00000 0.19910 0.96611 

13 1.00000 1.00000 0.28996 0.77792 



 

28 

 

14 0.96033 0.78849 0.74141 0.74341 

15 0.83792 0.73017 0.27966 0.57533 

16 0.92190 0.58667 0.44453 0.59238 

17 1.00000 1.00000 0.52984 0.99772 

18 0.53074 0.58258 0.62649 0.53693 

19 1.00000 0.32917 0.33650 0.49623 

20 0.87692 0.59175 0.84046 0.54870 

 

Table 5. Optimal weights  

DMU 𝜶𝒖 (𝟏 − 𝜶)𝒖 𝒖 

1 0.0001000 0.0014740 0.0015740 

2 0.0021120 0.0010190 0.0031310 

3 0.0001000 0.0043450 0.0044450 

4 0.0001000 0.0002460 0.0003460 

5 0.0001000 0.0007770 0.0008770 

6 0.0001000 0.0012000 0.0013000 

7 0.0001000 0.0010180 0.0011180 

8 0.0001000 0.0006170 0.0007170 

9 0.0001000 0.0009950 0.0010950 

10 0.0001000 0.0008960 0.0009960 

11 0.0001000 0.0006130 0.0007130 

12 0.0001000 0.0008290 0.0009290 

13 0.0001000 0.0047370 0.0048370 

14 0.0019710 0.0004870 0.0024580 

15 0.0001000 0.0010210 0.0011210 

16 0.0001000 0.0007630 0.0008630 

17 0.0001000 0.0032500 0.0033500 

18 0.0001000 0.0002940 0.0003940 

19 0.0001000 0.0010630 0.0011630 

20 0.0001000 0.0003540 0.0004540 

 

 

 

Table 6. Optimal weights of inputs 

DMUs 𝛽𝑣1 𝛽𝑣2 (1 − 𝛽)𝑣1 (1 − 𝛽)𝑣2 𝑣1 𝑣2 

1 0.06672 0.00054 0.00472 0.00013 0.07144 0.00068 

2 0.01599 0.00010 0.15069 0.00042 0.16668 0.00052 

3 0.25003 0.00010 0.00000 0.00044 0.25003 0.00054 

4 0.00985 0.00010 0.03182 0.00046 0.04167 0.00056 

5 0.03466 0.00028 0.03677 0.00037 0.07144 0.00065 

6 0.03334 0.00049 0.00000 0.00000 0.03334 0.00049 

7 0.03572 0.00052 0.00000 0.00000 0.03572 0.00052 

8 0.05556 0.00049 0.00000 0.00039 0.05556 0.00088 

9 0.04167 0.00058 0.00000 0.00000 0.04167 0.00058 

10 0.03334 0.00070 0.00000 0.00000 0.03334 0.00070 

11 0.02715 0.00022 0.03535 0.00056 0.06251 0.00078 
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12 0.04167 0.03803 0.00000 0.00000 0.04167 0.03803 

13 0.49802 0.00071 0.35054 0.00000 0.84856 0.00071 

14 0.01943 0.00014 0.10558 0.00044 0.12501 0.00059 

15 0.03847 0.00068 0.00000 0.00000 0.03847 0.00068 

16 0.03564 0.00059 0.00982 0.00000 0.04546 0.00059 

17 21.66271 0.07424 0.00000 0.00000 21.66271 0.07424 

18 0.01240 0.00010 0.03306 0.00043 0.04546 0.00053 

19 0.04783 0.00039 0.00218 0.00020 0.05001 0.00059 

20 0.01520 0.00012 0.02052 0.00043 0.03572 0.00055 

 

 

Table 7. Optimal weights of outputs 

DMUS 𝜹𝒌𝟏 𝜹𝒌𝟐 (𝟏 − 𝜹)𝒌𝟏 (𝟏 − 𝜹)𝒌𝟐 𝒌𝟏 𝒌𝟐 

1 0.000589 0.001484 0.000000 0.000000 0.000589 0.001484 

2 0.000418 0.002252 0.000000 0.000000 0.000418 0.002252 

3 0.005074 0.003847 0.023410 0.000000 0.028484 0.003847 

4 0.000100 0.004849 0.000631 0.000202 0.000731 0.005051 

5 0.000462 0.001572 0.000000 0.000000 0.000462 0.001572 

6 0.000832 0.000100 0.000000 0.001680 0.000832 0.001780 

7 0.001051 0.000100 0.000009 0.005395 0.001059 0.005495 

8 0.000695 0.003937 0.000000 0.000000 0.000695 0.003937 

9 0.000419 0.001909 0.000000 0.000000 0.000419 0.001909 

10 0.000353 0.001832 0.000000 0.000000 0.000353 0.001832 

11 0.000470 0.001661 0.000000 0.000000 0.000470 0.001661 

12 0.000384 0.002008 0.000000 0.000000 0.000384 0.002008 

13 0.000514 0.004465 0.000000 0.000000 0.000514 0.004465 

14 0.000431 0.003165 0.000000 0.000000 0.000431 0.003165 

15 0.000798 0.002551 0.000000 0.000000 0.000798 0.002551 

16 0.000378 0.002604 0.000000 0.000000 0.000378 0.002604 

17 0.000430 0.001493 0.000000 0.000000 0.000430 0.001493 

18 0.000100 0.002578 0.000231 0.000000 0.000331 0.002578 

19 0.000341 0.001497 0.000000 0.000000 0.000341 0.001497 

20 0.000363 0.002008 0.000000 0.000000 0.000363 0.002008 

 
                                             

                                               Table 8. Optimal common set of weights 

Variable Optimal value Variable Optimal value Variable Optimal value Variable Optimal value 

𝛽𝑣1 0.14508 𝛽𝑣2 0.00088 (1 − 𝛽)𝑣1 0.10492 (1 − 𝛽)𝑣2 0.00000 

𝛿𝑘1 0.00167 𝛿𝑘2 0.00424 (1 − 𝛿)𝑘2 0.00000 (1 − 𝛿)𝑘2 0.00126 

𝑤1 0.00515 𝑤2 0.00233 ℎ  0.00355 𝜎1 0.00022 

𝑝  0.00138 𝛼𝑢  0.00010 (1 − 𝛼)𝑢  0.00431 𝜎2 0.00238 

 

 

 

 

                                      Table 9. Optimal common set of weights optimistic viewpoint 
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Common set of weights efficiency 

DMUs Supplier Manufacturer Distributer Aggregate 

1 0.74242 0.38932 0.34989 0.35582 

2 0.36093 0.64917 0.63573 0.27858 

3 0.71289 0.90765 0.60070 0.61882 

4 0.46251 0.96578 0.63980 0.46622 

5 0.87274 0.56710 0.40440 0.46651 

6 0.68389 0.50016 0.28543 0.40456 

7 1.00000 0.50761 1.00000 0.71469 

8 0.95110 0.94788 0.58643 0.85289 

9 0.85571 0.53044 0.27134 0.46204 

10 0.99330 0.36530 0.51680 0.47318 

11 1.00000 0.42270 0.72474 0.54859 

12 0.99167 0.51097 0.23306 0.53070 

13 1.00000 0.62602 0.47166 0.51813 

14 0.94359 0.53661 0.72019 0.53778 

15 0.91267 0.57961 0.63028 0.62564 

16 0.99733 0.54945 0.44185 0.60551 

17 1.00000 0.50764 0.43603 0.56301 

18 0.60730 0.39844 0.55314 0.39907 

19 0.99801 0.39588 0.45822 0.48134 

20 0.88269 0.47549 0.72826 0.56995 

 

 

Table 10. Optimal common set of weights pessimistic viewpoint  

Common set of weights efficiency 

DMUs Supplier Manufacturer Distributer Aggregate 

1 0.024286 0.034102 0.048536 0.016357 

2 0.021656 0.038143 0.046150 0.015824 

3 0.023740 0.108971 0.031833 0.025944 

4 0.016708 0.107082 0.051642 0.025226 

5 0.034561 0.049157 0.053070 0.025590 

6 0.017384 0.057771 0.035283 0.017029 

7 0.024613 0.088053 1.000000 0.035791 

8 0.036109 0.083557 0.059409 0.040019 

9 0.027055 0.048873 0.038618 0.020460 

10 0.026545 0.039000 0.046786 0.019346 

11 0.032452 0.037770 0.076544 0.027527 

12 0.031005 0.044373 0.018396 0.017725 

13 0.053412 0.055077 0.028741 0.021200 

14 0.036990 0.049874 0.048680 0.024533 

15 0.027418 0.064156 0.033820 0.021887 

16 0.032771 0.046735 0.041241 0.024000 

17 0.035270 0.039771 0.052758 0.025704 

18 0.019227 0.037639 0.072220 0.019867 

19 0.029432 0.035498 0.033650 0.017582 



 

31 

 

20 0.025743 0.045061 0.053775 0.022842 

 


