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Abstract 

Natural and technology-induced disasters have posed significant threats to human life all 

around the world and caused many damages and losses so far. The current study addresses a 

location-routing problem to make an efficient and timely distribution plan in response to a 

possible earthquake. This problem considers uncertainty in such parameters as demand, 

access to routes, travel time, and the number of available vehicles. To deal with these 

uncertainties, stochastic programming (SP) is performed while the objective function is to 

minimize the time of carrying relief commodities (RCs) to affected areas. The problem is 

coded in the CPLEX solver to obtain optimal solutions to small-scale problems, and an 

adaptive large neighborhood search (ALNS) is proposed to solve mixed-integer linear 

formulas for large-scale problems. To validate the formulation and evaluate the performance 

of the proposed ALNS, several types of tests are devised. To shows the efficiency of the 

proposed ALNS, two other metaheuristic algorithms, the Genetic algorithm (GA) and 

simulated annealing algorithm (SA), are used as well. The results of the calculations suggest 

the satisfactory performance of the suggested algorithm and the effectiveness of the model 

for the desirable delivery of humanitarian aids to affected areas. 

Keywords: Humanitarian logistics, Disaster management, Location-routing problem, 

Adaptive large neighborhood search, Scenario-based planning. 

 

1.     Introduction 

The vehicle routing problem (VRP) is one of the most attractive and important planning 

problems that has been studied widely since its introduction. In recent years, the problem has 

gained special significance due to the introduction of new meta-heuristic and heuristic [1]. 

The VRP was first introduced by Dantzig & Ramser in 1959 [2]. The objective of the 

classical VRP is to minimize the time of product delivery to customers. There are various 
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classifications of VRP, such as maximum length of route, pickup and delivery, service time 

windows, and backhauls [3-6]. The capacitated VRP (CVRP) and the time window 

(VRPTW) are two important problems in these categories [7]. In the CVRP, the objective is 

to meet customer demand with the lowest number of vehicles and the least cost. Location-

routing problems (LRPs) address two critical issues in logistics planning [8] including vehicle 

routing problems (VRPs) and classical location problems (LPs) [9]. An LRP is solved to find 

responses to the following basic questions [9]: 

a) Which locations (facilities) should be in use and which ones should be closed? 

b) Which vehicles and from which route should deliver the RCs to the distribution centers 

(DCs)? 

Due to its features, an LRP is categorized of NP-HARD problems [10]. According to it, as 

the number of applicants and vehicles grows, the problem-solving time grows too through an 

exact algorithm. In recent years, meta-heuristic algorithms (e.g., GA, SA, PSO) have been 

widely applied to solve this type of problem. Studies show the usefulness of meta-heuristic 

algorithms in this regard [11]. In such studies, the problems have usually been investigated in 

deterministic circumstances, while this is impossible in the real world [12]. For example, in 

critical situations, the amount of demand in several conditions can be different at any time. 

As a result, uncertainty can bring the study closer to the real situation. 

Natural disasters are an integral part of human life. In recent years, disasters such as floods 

and earthquakes have imposed great financial and human costs on many countries. In some 

cases, they have been so severe, making it very difficult to help the injured people. This is 

where a routing problem and the timely delivery of RCs to the injured applicants gains 

importance. According to Clark and Culkin, humanitarian efforts should be based on three 

principles, including impartiality, neutrality, and humanity[13]. In this view, the main 

objective should be to deliver RCs to the injured people without any discrimination. In other 

words, fairness should be fully respected in times of crisis. Also, the delivery of RCs to the 

most affected groups, such as children and injured people, is a priority. Meeting the demands 

of all the affected areas may require a great deal of facilities, but the distribution of RCs to 

the regions should be fair and prompt as much as possible. These issues should be taken into 

consideration by any model of relief. The present study aims at an LRP in critical situations. 

As mentioned before, a state of uncertainty brings simulations closer to real situations. 

Scenario-based planning is done to formulate the problem of the current study. There are 
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several LDs in the problem. Each LD has its own number of vehicles and helicopters. In 

addition, there are a number of DCs that distribute RCs. The problem is modeled in two 

steps. In the first step, the vehicles transport the RCs to the DCs and finally return to the local 

LDs. In the second step, the helicopters deliver the remaining RCs of the first step and the 

RCs of the second step simultaneously. The aim is to reduce the time of delivering the RCs to 

the affected areas. Based on what explained, the primary contributions of this study are as 

follows: 

 Studying a joint resource allocation, location, and routing problem under disaster 

conditions; 

 Implementing humanitarian logistics operations through minimizing delivery time of 

RCs; 

 Considering uncertainty of demand, capacity, as well as time; 

 Employing an extended version of ALNS to solve the suggested formulation and 

comparing it with some other solution algorithms. 

The residue of the paper is as follows: Section 2 is dedicated to the literature review. In 

Section 3, problem description and mathematical modeling are presented. Section 4 provides 

solution methods. In Section 5, various numerical examples are studied. Lastly, Section 6 

discusses conclusions. 

2.     Literature review 

In this section, related studies are reviewed. Then, the research gap is discussed. 

2.1.   Related studies 

The literature is rather rich in the research conducted on the subjects relevant to the topic of 

this study. Barbarosoǧ lu and Arda offered a model for RCs in two-stage while the demand 

was considered uncertain in transportation planning. The objective of the first stage was to 

minimize the total transportation cost. In the second stage, it was to minimize the total in-

network costs, maintenance costs, and mode shift costs [14]. Tzeng, Cheng studied how to 

design relief delivery systems for victims. They used a multi-objective planning method to 

describe their problem. The study aimed to minimize the total time and the total costs of the 

delivery of RCs to injured people. It also sought to maximize the satisfaction of the applicants 

during the course [15]. In another study, Ukkusuri and Yushimito focused on resolving 

potential network disruptions as well as vehicle routing. Predicting the RCs required in 

natural disasters was an essential issue in their study. To find the best location of resources, 
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they used an integer programming model and a highly reliable path approach [16]. A 

location-allocation problem was also studied by Zhan and Liu. The demand and the available 

paths were considered uncertain. The researchers used goal programming, scenario-based 

planning and chance constraints to insert uncertainty into the model [17]. Afshar and Haghani 

designed a response network to control the circulation of several RCs. Their model involved 

planning for the optimal locations of facilities and routing and provided delivery schedules 

[18]. Rawls and Turnquist proposed a dynamic plan to examine the allocation of resources to 

demand points in the short term. The proposed plan was a two-stage SP [19]. Rath and 

Gutjahr applied a formulation with three-objective to deal with short-term and medium-term 

economic issues, carry out humanitarian tasks and solve the location and routing problem of 

intermediate warehouses after natural disasters. The ε-constraint was applied to solve the 

problem accurately. The NSGA-II meta-heuristic was also used to compare the results [20]. 

To solve a problem of locating DCs and deal with VRP in emergencies, Wang, Du examined 

a nonlinear model of integers. Total cost, reliability, and travel time in separate deliveries 

were the points of focus in the model. The dominated sorting genetic algorithm (DSGA) and 

the non-dominated sorting differential evolution algorithm (NDSDEA) were used [21]. 

Similarly, Vahdani, Veysmoradi formulated a three-level relief chain. Their problem was 

investigated under time window constraints in multi-periods and for multi-commodities. To 

solve the model, NSGA-II and MOPSO were applied as two efficient meta-heuristic 

algorithms [22]. Plus, Davoodi and Goli presented an integrated routing, location, and 

allocation formulation for a disaster relief logistics problem. They considered that their model 

is under deterministic conditions. Finally, they solved their developed model employing the 

benders decomposition approach and variable neighborhood search algorithm [23]. 

Additionally, Molladavoodi, Paydar studied a facility location problem for a RCs distribution 

network using mathematical modeling. The objective functions of their proposed model were 

aimed at minimizing the total cost, maximizing the coverage and accessibility of relief 

centers, and minimizing unfulfilled demand. To solve their multi-objective model, they 

developed a hybrid algorithm by combining the LP-metric method with the GA [24]. 

Moreover, Beiki, Seyedhosseini investigated location-routing problems for RCs during a 

disaster. To that aim, they developed a multi-objective MIP formulation. Their model’s 

objective functions minimized response time, minimized operational costs, and maximized 

the transportation network’s reliability. Eventually, they used ɛ -constraint approach to deal 

with the multi-objectivity of their proposed model [25]. With multiple trips taken into 

account for disaster response operations, Maghfiroh and Hanaoka presented a multi-modal 
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relief distribution model using a three-level chain made up of (1) supply nodes, (2) logistics 

operational areas, and (3) affected areas[26]. Determining operational regions, modes of 

transportation, and the volume of commodities allocated to each mode of transportation were 

the objectives of the model that was given. In order to assist sustainability in the context of 

humanitarian relief operations, a three-level relief chain problem is developed in the 

Boostani, Jolai, and Bozorgi-Amiri’s study in the before and post-disaster phases [27]. They 

considered a mixed-integer stochastic programing model in which minimizing total costs of 

the humanitarian relief supply chain, the environmental impacts, and maximizing social 

welfare were the objective functions. Similarly, Ali and Reza investigated the topic of 

sustainability in the problem of natural disasters. They developed a multi-objective 

mathematical programming model for designing a sustainable distribution network of 

emergency goods in disaster relief logistics. For validation of the proposed model, they 

considered a real case study. In order to obtain simultaneous routing and scheduling of trucks 

to transport people from impacted areas to shelters and supply them with essential relief 

commodities, Sabouhi, Bozorgi-Amiri,Moshref-Javadi, and Heydari suggest an integrated 

evacuation and distribution logistic system[28]. The goal of the suggested Mixed-Integer 

Linear Programming model for the problem was to minimize the total time it takes for 

vehicles to arrive to distribution points, shelters, and affected areas; Memetic Algorithm 

(MA) was used by authors to solve the model. 

Table 1 presents a summary of the reviewed studies along with their corresponding features. 

2.2. Research gap 

Disaster relief operations require several resources [29]. By resources, we mean RCs. In fact, 

the manner of managing RCs is highly critical from different perspectives. Plus, when it 

comes to disaster, the criticality of such problems is accentuated even more. So, in this paper, 

resource allocation decisions are studied. Plus, it is clear that routing in the distribution of 

RCs to demand points is another critical point, which has vast impacts on humanitarian 

operations. Moreover, location of facilities can be highly influential in such problems. Hence, 

investigating a joint location-routing problem is thoroughly crucial during a crisis. So, this 

paper tries to shed light on the importance of the resource allocation problem along with a 

joint location-routing problem in disaster relief operations. Plus, considering uncertainty in 

such problems is very necessary. A Recent paper by Davoodi and Goli has neglected 

uncertainty [23]. So, this paper considers demand uncertainty, capacity uncertainty, as well as 



6 
 

time uncertainty to bridge the gap in the literature. Above all, a novel ALNS algorithm is 

developed to deal with the NP-hardness of the proposed model.
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3.      Problem description and the mathematical model 

Natural disasters such as earthquakes can destroy roads, and, depending on the situation, the 

demand can change for the damaged areas at any time. Therefore, logistics planning is a basic 

problem in critical situations. In such situations, logistics planning is different from 

commercial conditions [30]. In a crisis such as an earthquake, it is important to deliver RCs 

as soon as possible and meet the needs of all the affected areas. In the literature on the 

subject, the demand and the routes in which vehicles have to deliver relief supplies to DCs 

are predetermined, but the issue of delay in the delivery of RCs and the type of vehicle 

delivering the RCs (e.g., trucks and helicopters) have not been addressed. In this study, a two-

stage stochastic programming approach is proposed to design a problem of distributing 

humanitarian aids by the available vehicles from local depots (LDs) to distribution centers 

(DCs) in the event of an earthquake. The LDs are considered to be temporary; when there is 

no crisis, they are non-static and nonfunctional. They are generally located in suitable 

positions for managing large inflows and outflows. DCs are the centralized locations in which 

people can collect their immediate needs (e.g., canned food, water bottles and blankets) faster 

and more easily. They are selected among the existing schools and stadiums in nearly every 

one of the districts in need. LDs are in charge of the operation and, finally the demobilization 

of DCs. The type and the quantity of the stuffs to be sent to different DCs are determined at 

LDs. 

There are some factors that restrict the local agents in making decisions and planning 

influential strategies. The amount and the type of demands, the size of the available vehicles 

and the state of infrastructures are the highly uncertain factors in this study. Moreover, due to 

the uncertainty in the road network, transportation time is uncertain too. So, the knowledge of 

the time is not gained until the damaged routes are determined. As far as uncertainty is 

concerned, these issues and their consequences are the particular points of focus in this study. 

It is to be noted that the demand districts may be in remote areas, and the disaster areas might 

be in a chaotic state under emergencies, making it impossible to have a comprehensive   

overview. Hence, demand is often considered as one of the most uncertain parameters in 

humanitarian logistics. 

It can fluctuate unexpectedly because of other factors such as aftershocks. Unpredictable 

demand patterns affect the distribution plans as well as the management of relief efforts. 

Therefore, the planning of distribution activities is complicated by uncertain and limited data. 
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In general, based on the location of the demand districts, several DPs are inaugurated in the 

area to provide RCs for the affected people. The location of the DPs serves as the basis for 

the determination of the LDs to open and operate. In this study, it is assumed that RCs are 

available in the local depots and that they are transported from the local depots to the DCs to 

be delivered to the victims. An overview of the decisions at each stage is presented in Fig. 1.  

The initial data on the demand are received from the DCs, and the number of the available 

vehicles at each LD, the status of access to the routes in the road network, and the time of 

travels are confirmed. 

Accordingly, the initial distribution plan is designed in the first stage. Assignment of DCs to 

LDs, selection of appropriate routes for different vehicles, and determination of the number 

of RCs to deliver to DCs are the essential actions in the first stage. Because there is no access 

to accurate data on the level and the nature of the demand in the DCs when the vehicles leave 

the local warehouses, at least some data on the demand (i.e., the main demand) must be 

gained initially. Therefore, the vehicles sent must deliver the RCs to the extent possible. In 

some cases, due to demand fluctuations, additional demand, called extra demand, is taken 

into account at the DCs.  

The second stage corresponds to the updated demand information and the required actions for 

the RCs re-transported toward different DCs. It is assumed that new data on demand are 

received when the vehicles have arrived at DPs and delivered RCs to them. The challenges 

involved in the second stage include assigning DCs to LDs, determining the number of RCs 

to be carried, and finding routes and a sequence for helicopter movements. The faster the 

relief operations, the more people are saved from serious injuries. For this reason, in the 

second stage, RCs are sent from LDs to DCs through an air transportation network. The first-

stage transportation is carried out by various vehicles in the road network. A set of routes is 

also defined between every two nodes in the second-stage road network so that alternative 

routes will be available to use if some of them are destroyed. At this stage, multiple depots 

are opened, but a vehicle must start its tour from one of the LDs, travel to one or a few DPs 

and then return to the same depot without a sub-tour. The second-stage transportation is 

carried out by helicopters in the air network. Choosing routes for the helicopters is based on 

the same requirements as for the other vehicles; each helicopter must start its tour from a 

single LD, visit its assigned DCs and come back to that center without sub-tours. In short, the 

current study presents a multi-depot multi-transportation mode for a locating-routing model 
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with a two-level relief chain in an uncertain environment, which includes LDs and DPs. Fig. 

2 presents the scheme of the relief supply chain. 

The proposed formulation is according to the following assumptions: 

(i) In the first and the second stages, split delivery is allowed.  

(ii) Multiple vehicles can serve each DC. That is, one DC can receive RCs with 

different carriers, and one of them can partly satisfy the demand of one DC.  

(iii) Capacity considerations are essential to determine the quantities to deliver.  

(iv) The total RCs delivered by a vehicle on one tour cannot exceed its capacity.  

(v) The total RCs sent from each LD should not exceed its capacity.  

(vi) The maximum number of the available vehicles at LDs is limited.  

(vii) Each DC can receive services from only one LD in the first and the second stage.  

(viii) Each vehicle is assigned to one LD. 

3.1. Sets, parameters and decision variables 

This section defines the sets, indices, parameters and decision variables involved in the 

mathematical formulation. 

Sets: 

 2LDs indexed by , 1, ,..., i i I I  , I  

 2DCs indexed by , 1, ,..., j j J J  , J  

 DCs and LDs indexed b ,y , 1 2, .., .i j G I J   , G  

Vehicles in the first stage indexed by 1,2,..., V

is
s S

i I

r R Max F




  
    

  
 , R  

Helicopters in the second stage indexed by 1,2,..., H

is
s S

i I

r R Max F




  
     

  
 , R  

 Disaster scenarios ind 1,2,...,exed by s S S  . S  

Deterministic parameters: 

 3The occupied volume of each unit of  ,RC m  Q  
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 3The load capacity of each vehicle in the first stage ,m  VC  

 3The load capacity of each helicopter in the second stage ,m  HC  

Maximum number of the potential LDs that can be opened in the first stage and 

in scenario ,s
 V

SN  

Maximum number of the potential LDs that can be opened in the second stage and

 in scenario ,s
 H

SN
 

The probability of disaster occurrenc 1e in scenario 0 ; 1  s s

s

s P P
 

   
 

 , SP  

A large positive number. M  

Stochastic parameters: 

Initial demand for  in scenario ,jDC s  
V

jsD
 

Additional demand for  in scenario ,jDC s  
H

jsD
 

Total number of the available vehicles at  in scenario ,iLD s  V

isF  

Total number of the available helicopters at  in scenario ,iLD s  H

isF  

 

Travel time between nodes  and   in the road transportation network in 

scenario in minutes ,

i G j G

s

 
 

V

ijsT
 

 

Travel time between nodes   and   in the air transportation network in

scenario in minutes .

i G j G

s

 
 

H

ijsT
 

Variables in the first stage: 

1 if  is opened in the first stage and in scenario ; 0 otherwise,iLD s  V

isL  

1 if  is assigned to  in the first stage and in scenario ; 0 otherwise,j iDC LD s  
V

ijsX
 

1 if vehicle  travels from node  to node   in the road network in scenario ; 

0 otherwise,

r i G j G s 
 

V

ijrsZ
 

 The arrival time of the vehicle  at  in scenario ,js DC s  
V

jsT
 

Accumulated demand distributed by vehicles in scenario  when they reach ,js DC  
V

jsU
 

The maximum value of vehicle arrival times at different DCs in scenario (at the end of the 

second stage).

s
 T

sA  
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Variables in the second stage: 

1 if  is opened in the second stage and in scenario ; 0 otherwise,iLD s  H

isL  

1 if  is assigned to  in the second stage and in scenario ; 0 otherwise,j iDC LD s  
H

ijsX
 

1 if helicopter  travels from node   to node   in the air network in scenario 

; 0 otherwise,

r i G j G

s

 
 

H

ijr sZ   

 The arrival time of the helicopter  at  in scenario ,js DC s  
H

jsT
 

Accumulated demand distributed by helicopters in scenario  when vehicles 

reach the .j

s

DC
 

H

jsU
 

3.2. Mathematical formulation 

Objective function (1), as follows, optimizes the total waiting time for DCs to receive RCs or 

the total latency, which is equal to the sum of the helicopters’ arrival times at DCs at the end 

of the second stage. 

(1) Min    Z= . H

s js

j J s S

P T
 

  

Constraints (2) and (3) show the vehicle flow continuity in routes, and constraint (2) 

emphasizes that each vehicle entering a node must depart from the same node. Constraint (4) 

ensures that every vehicle visits any given DC at most once. Constraint (5) guarantees that 

every DC is assigned to only one route and every route begins exactly one LD. Constraint (6) 

denotes that a DP is assigned to an LD if there is a route connecting them together. Constraint 

(7) guarantees that each DC is supplied from exactly one LD. Constraints (8) guarantees that 

each DC is visited by at least one vehicle. Constraint (9) shows that the number of vehicles 

sent from each LD is restricted to the maximum number of vehicles in that LD. Constraint 

(10) guaranteed that the number of the potential DCs that are opened is restricted to the 

maximum number allowed. Constraints (11) and (12) are sub-tour elimination constraints. 

Constraint (12) also ensures that the total load carried by each vehicle does not exceed the 

vehicle capacity. Latency at different DCs is calculated using constraints (13) and (14). If 

vehicles arrive at a DC from an LD, their arrival time is equal to the sum of the travel times 

between the LD and the DC and the arrival time of vehicles at the LD in the first stage. If 

they arrive at a DC from another DC, their arrival time is equal to the sum of the travel time 

between the two DCs and the arrival time of vehicles at the first DC. Moreover, constraint 
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(15) emphasizes that vehicles can visit DCs only when they are assigned at least to one LD. 

Constraint (16) calculates the maximum time of visiting all the DCs at the end of the first 

stage. 

First-stage constraints: 

(2) , , ,i G r R s S     
0,

j i

V V

ijrs jirs

j G j G

Z Z



 

    

(3) , , ,j J r R s S     
1,      

j j

V

jj rs

j J

Z







  

(4) , , ,j J r R s S     
1,      

i j

V

ijrs

i G

Z




  

(5) , ,r R s S    1,      V

ijrs

i I j J

Z
 

  

(6) , , , ,i I j J r R s S      
1 ,     

j j

V V v

ijrs jj rs ij s

j J j G

Z Z X



 

 

     

(7) , ,j J s S    1,      V

ijs

i I

X


  

(8) , ,j J s S    
1,      

i j

V

ijrs

i G r R

Z


 

  

(9) , ,i I s S    .L ,     
V
is

V V V

ijrs is is

j J r F

Z F
 

  

(10) ,s S   ,     V V

is s

i I

L N


  

(11) , , , , ,j J j J j j r R s S        .(1 ) . ,       V V V V V

js j s jj rs j sU U C Z D Q       

(12) , ,j J s S    .  ,        V V V

js jsD Q U C   

(13) , , , ,i I j J r R s S      (1 ). ,           V V V

ijs ijrs jsT Z M T    

(14) , , , , ,j J j J j j r R s S        (1 ). ,       V V V V

j s jj s j jrs jsT T Z M T       

(15) , ,j J s S    . ,   V V

js ijs

i I

T M X


   

(16) , ,j J s S    ,   V T

js sT A  

Constraints (17) -(30) correspond to (2) -(15) of the first stage. 

Second-stage constraints: 

0,      

j i

H H

ijr s jir s

j G j G

Z Z



 

 

    
, , ,i G r R s S      (17) 

1,      

j j

H

jj r s

j J

Z



 



  
, , ,j J r R s S      (18) 

1,      

i j

H

ijr s

i G

Z







  , , ,j J r R s S      (19) 
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1,      H

ijr s

i I j J

Z 

 

  , ,r R s S     (20) 

1 ,     

j j

H H H

ijr s jj r s ij s

j J j G

Z Z X



   

 

     
, , , ,i I j J r R s S        (21) 

1,      H

ijs

i U

X


  , ,j J s S    (22) 

1,      

i j

H

ijr s

i G r R

Z





  

  , ,j J s S    (23) 

.L ,     
H

is

H H H

ijr s is is

j J r F

Z F

 

   , ,i I s S    (24) 

,     H H

is s

i I

L N


  ,s S   (25) 

.(1 ) . ,       H H H H H

js j s jj r s j sU U C Z D Q        , , , , ,j J j J j j r R s S          (26) 

.  ,        H H H

js jsD Q U C   , ,j J s S    (27) 

(1 ). ,       T H H H

s ijs ijr s jsA T Z M T     , , , ,i I j J r R s S       (28) 

(1 ). ,       H H H H

j s j js j jr s jsT T Z M T        , , , , ,j J j J j j r R s S          (29) 

. ,   H H

js ijs

i I

T M X


   , ,j J s S    (30) 

Non-negativity constraints for all the stages: 

0,    and  Integer   T

sA   
,s S   

(31) 

, , , 0,    and  Integer   V V H H

js js js jsT U T U   , ,j J s S    
(32) 

 , 0,1 ,   V H

ijs ijsX X   , , ,i I j J s S     
(33) 

 , 0,1 ,   V H

is isL L   , ,i I s S    
(34) 

 , 0,1 ,   V H

ijrs ijr sZ Z    , , , , , .i G j G i j r R r R s S         
(35) 

Finally, constraints (31) -(35) define the ranges and the types of decision variables. 

4.    Solution methods 

4.1. CPLEX solver 

In order to obtain optimal solutions, the proposed mathematical model is coded in the IBM 

ILOG CPLEX® solver environment. Due to the capabilities of CPLEX, as reported in several 

studies, it is used to obtain optimal solutions to models with integer and mixed-integer 

properties. To solve a model, CPLEX uses the branch-and-cut exact solution algorithm. In 

this method, the algorithm adds a cut to the model in each iteration to obtain an optimal 

solution. As the number of the scenarios and distribution points of the problem increases, the 

number of constraints and, consequently, the time required to solve the problem by the 

algorithm increase too. Therefore, to deal with this problem, heuristics or meta-heuristic 
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algorithms are preferred. In this study, the CPLEX solver has been employed to solve small 

test examples optimally in order to find the efficiency of the suggested ALNS and compare 

ALNS with other well-known metaheuristic algorithms (e.g., GA, and SA). 

4.2.    Simulated annealing algorithm (SA) 

According to the literature, the SA is one of the effective metaheuristic algorithms in the 

field of transportation issues [31]. It was created and inspired by a physical process, the solid 

annealing principle. Generally, the SA works like other metaheuristic optimization algorithms 

[32]. The pseudo-code of the SA is represented in Fig. 3. 

Note. For more details, see supplementary file (A). 

4.3.   Genetic Algorithm (GA) 

  Previous studies showed that GA is one of the metaheuristic algorithms that can be adapted 

to lot kind of problems. According to nature of GA there are a lot of ways and operators to 

evaluate and generate new solutions [33, 34]. In current paper, the GA proposed by Ghoseiri 

and Ghannadpour is used [35]. The generalized procedure of the GA in this study is 

represented in Fig. 4. 

Note. The value of parameters of the GA algorithm is shown in the supplementary file (B). 

4.4.   Adaptive large neighborhood search (ALNS) 

The local search algorithm improves the initial solution just by applying operations on a 

small part of that solution. The ALNS algorithm works like a local algorithm, except that it 

can change a large part of a solution instead of making changes to a limited part of it. This 

feature is applied by two important types of operators including a) removal operators 

(destruction) and b) insert operators (repair). Generally, the ALNS is an expanded version of 

the LNS algorithm, which was first introduced by Shaw [36]. The LNS consists of a series of 

pick-up and drop-out movements, and the search for a neighbor is done by removing several 

parts (nodes) from the solution and putting them back on the track. The feature that 

distinguishes these two algorithms is the number of the operators implemented to apply 

removal and insert operators. In the removal section of the ALNS algorithm, several different 

criteria and methods can be applied to remove the nodes from the solution. Also, several 

criteria and methods can be used to insert the removed nodes in the solution. The algorithm 

works in a specific manner. First, it starts with a feasible solution, and then it uses the 

insertion and removal operators to make changes to the initial solution and generate a new 
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solution. If the new solution is better, it will be entered into the algorithm as an input in the 

next step. The removal and insertion operators are selected using the Roulette Wheel 

mechanism (RWM). The chances of each operator are updated according to its past 

performance. The operators that have improved the solutions have higher chances to be 

selected. A sample of an algorithm implementation process is presented in Fig. 5. 

The pseudo-codes of the ALNS algorithm are listed in Fig. 6. 

4.4.1. The removal operators (destruction) 

After the initial feasible solution is entered into the algorithm as the input, it uses the 

operators to create a new solution. In the removal operators, a number of customers are 

removed in each period. As the nodes are removed, two types of lists are created. The first list 

is a reduced solution, which is obtained as the selected nodes are removed from the previous 

solution, and the second list includes the deleted nodes. In general, the pseudo-code of the 

removal operators is as follows (Fig. 7): 

The present study draws upon eight types of removal operators including (I) Random 

removal (RR), (II) Worst-distance removal (WDR), (III) Proximity-based removal (PBR), 

(IV) Random tour removal (RTR), (V) Worst-time removal (WTR), (VI) Neighborhood 

removal (NR), (VII) Depots costs, and (VIII) Choice based on the geographical location. 

Methods (I) to (VI) are picked from a study by [37], but methods (VII) and (VIII) are 

presented as two new heuristic ones. 

I) Random removal 

In this method, a certain number of nodes are randomly selected among the nodes in the 

solution set and removed from the set. The operator starts with an empty list and puts the 

deleted nodes inside the list when it is executed. 

II) Worst-distance removal 

In this operator, for each iteration, the algorithm selects the β nodes among the nodes in the 

present solution set that enter the model at the highest cost and removes them from the 

solution set. Here, the cost is considered equal to the distance between the nodes: 

Cost( ) Distance( , 1) Distance( , 1)n n n n n     (36) 

III) Proximity-based removal 
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Of all the nodes, one node is randomly selected (e.g., node i). Using Eq. (37), the Euclidean 

distance between node i and the other nodes is calculated. Finally, the  percentage of the 

consumers that have a minimum distance from the selected node is chosen and put in the 

removal list. The selected node is deleted from all the routes. 

2 2distance( , ) ( ) ( )i j i ji j x x y y   
 

(37) 

How this operator works is shown in Fig. 8. 

IV) Random tour removal 

This operator randomly selects a complete path or tour and removes all the nodes on that tour 

(Fig. 9). 

V) Worst-time removal (WTR) 

In this method, for each customer i, the deviation of the service start time from time i  is 

calculated. After that, the customer with the largest deviation is removed. This operator 

prevents long waits and delays in the starting service. 

 VI) Neighborhood removal (NR) 

This method regards the average distance of paths in the network. The path with the longest 

average distance in the network is selected. Then, among the customers present in the 

selected route, those that have the greatest difference from the average value are chosen. For 

each path, the following relation is taken into account: 

1 2

1 2

,

1 ( , )
{ ,..., }:

i i

AA i i B

d
A j j d

A
   and 

*

\{ }argmax { }i A A A ii d d  . (38) 

VII) Depot costs 

In this method, from each depot, a vehicle that has provided the service is randomly selected. 

Among the customers who have been served by the vehicle, the one who has entered the 

route with the highest cost is selected and removed from the route. 

VIII) Choice based on geographical location 

In this method, the applicants are divided into four categories in terms of location. The areas 

with the highest and the lowest densities are selected. If the  percent of the customers is to 

be removed at each stage, the 1  percent of the customers is selected from the part with the 
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highest density and the rest from the low-density region. The customers are randomly 

selected. 

4.4.2. Insertion operators (repair) 

Insertion operators use the list of the deleted nodes at the destruction step and in the reduced 

solution. They place the removed nodes in the appropriate position using special methods and 

repair the reduced solution. The pseudo-code of the insertion operators is as follows (Fig. 10): 

In this study, greedy insertion (GI), greedy insertion with noise function (GIN), and regret 

insertion (RI) are the operators applied to repair the solution in the ALNS algorithm. 

A) Greedy insertion (GI) 

This operator places each node of the list of the removed nodes in the best position in the 

reduced solution. To find the best position for each node, Eq. (39) is applied, where d is the 

distance between nodes j and i. 

Cost( ) distance( , ) distance( , 1) distance( , 1)i j i i j j j       (39) 

B) Greedy insertion with noise function (GIN) 

GIN acts like GI, but there is a difference; after the greedy insertion of each node, the cost 

that it puts in the network is multiplied by a random number from 0.8 to 1.2. 

C) Regret insertion (RI) 

This operation works like GI. First, the operator calculates the cost of the nodes in the list 

of the eliminated nodes, similar to GI. Then, it chooses the first best position to place node i, 

1i , followed by the second-best position, 
2i . These two values are calculated for all the 

points by the use of the difference in the objective function value. Finally, according to Eq. 

(40), the node is replaced in a proper place. 

2 1( ) argmax { }i i iBest i     (40) 

Note. Additional explanations about the proposed ALNS algorithm and the values of the 

parameters are given in the supplementary file (C). 

5. Numerical examples 

To validate the proposed model, 30 different tests are generated. In each test, the 

mathematical formulation is coded in GAMS 25.1.2 and solved by a CPLEX solver on a PC 

with the configurations of Intel Core i7, 2.90 GHz, 64-bit and RAM 8.00 GB. To compare the 

proposed solutions, the problem is coded in the MATLAB R2019b software using the ALNS 
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algorithm. The specifications of the tests and the results of solving the formulation are given 

in Table 2, and also it presents the running time and the objective value of the algorithms. 

That also reports the lower bounds of the meta-heuristic algorithm and the CPLEX (LB). LB 

is the objective value of the LP relaxation. The percentage of the gap between the objective 

values of the best solution found and the LB, and the ratio of the running time and the value 

of the objective function between the two methods are calculated with Eqs. (41)- (44)[38]. 

metaheuristics(%) 100Time

CPLEX

Time
Ratio

Time

 
  
 

 (42) 
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.
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 
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 

 (43) 

Fig. 11(a) to 11(c) show changes in the computational time of the proposed meta-heuristic 

algorithm (ALNS), GA, SA, and the CPLEX method. According to the figures and the results 

reported in Table 2, on average, the proposed meta-heuristic algorithm works nearly 30% 

faster than the exact algorithm, and it is much faster than GA and SA algorithms. 

According to the figures, as the number of the problem constraints grows, the time to solve 

the problem increases in the CPLEX method. On average, when the number of constraints is 

more than 455,000, the problem cannot be solved within an acceptable time or within a 

specified time frame. Given the maximum problem-solving time in the proposed meta-

heuristic algorithm and the nature of the CPLEX method, the upper limit for the problem-

solving time is set at 3,500 seconds. 

Fig. 12(a) to 12(c) show the percentages of the cost gap for the three scenarios. According to 

the figures, the percentage of the gap between the ALNS and exact method is very low, 

especially in problems with more constraints. On the other hand, it is quite clear that SA and 

GA behave quite similarly. In problems with a small number of constraints (in all three 

scenarios), all three algorithms have almost the same accuracy, but as the number of 

constraints grows, the accuracy of SA and GA decreases sharply compared to the proposed 

ALNS. As a concluding remark, averagely, all of the algorithms are run 30 times for each 

problem to reach the final feasible solution. Regarding Fig. 11 and 12, the proposed ALNS 

algorithm and the form of definitional chromosome to representation solution in this problem 

(supplementary file C.1), has a more desirable performance than SA and GA algorithms, 

especially in large size problem. 
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6. Conclusions 

In this study, a location-routing problem in critical situations was investigated. First, a 

mathematical formulation was suggested for the problem. The problem was modeled under 

uncertainty, and a scenario-based approach was used in the modeling. Then, to validate the 

proposed model, 30 problems in different aspects and with different parameter values were 

set and examined. Four methods were also applied to solve the formulation. First, the 

formulation was coded by the GAMS software and solved with a CPLEX solver. Due to the 

complexity of solving the studied problem in large-scale sizes, the ALNS, GA, and SA were 

used as meta-heuristic algorithms to deal with the problem. In addition, two new operators 

(depot costs, choice based on geographical location) were proposed to improve the ALNS 

algorithm. As indicated previously, the proposed algorithm is fast and efficient. Given the 

gap between the four methods, it can be concluded that the solution to the problem is 

acceptable to a large extent.  

In order to expand the approach presented in this study, other concepts related to the field of 

uncertainty (e.g., fuzzy theory and probability) are recommended to be investigated. Also, the 

expansion of the proposed algorithm and the comparative use of other meta-heuristic 

algorithms such as PSO and hybrid of some algorithms can make desirable topics for future 

research. 
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Fig. 12   Comparison of the performances of the suggested ALNS and the CPLEX with 

different gaps in the objective values 
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 Table 1. Specifications of the reviewed papers 

Authors (Year) 
Problems Uncertainty origins Other characteristics 

Solution methods 
RAP FLP VRP LRP Demand Capacity Time Multi-route Multi-mode Two-stage 

Rawls and Turnquist [39]           Lagrangian L-shaped  

Salmerón and Apte [40]           CPLEX  

Mete and Zabinsky [41]           CPLEX  

Zhan and Liu [17]           Goal programming  

Tricoire, Graf [42]           Branch-and-cut and ɛ -constraint  

Najafi, Eshghi [43]           CPLEX  

Rath and Gutjahr [20]           Math-heuristic and VNS 

Abounacer, Rekik [44]           ɛ -constraint  

Rennemo, Rø [45]           Heuristic algorithm 

Ahmadi, Seifi [46]           VNS algorithm 

Rath, Gendreau [47]           CPLEX  

Rezaei-Malek, Tavakkoli-

Moghaddam [48] 
          ɛ -constraint  

Caunhye, Zhang [49]           CPLEX  

Moshref-Javadi and Lee [50]           
Memetic Algorithm (MA) & Recursive 

Granular Algorithm (RGA) 

Tofighi, Torabi [51]           Differential evolution algorithm (DEA) 

Paul, Lunday [52]           ɛ -constraint  

Nedjati, Izbirak [53]           ɛ -constraint and NSGA-II  

Vahdani, Veysmoradi [22]           NSGA-II and MOPSO  

Molladavoodi, Paydar [24]           a hybrid LP–GA approach 

Beiki, Seyedhosseini [25]           ɛ -constraint  

Current paper           CPLEX and SA, GA, and ALNS algorithms 

Notation: Vehicle routing problem (VRP), resource allocation problem (RAP), facility location problem (FLP), location-routing problem (LRP). 
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Fig. 1   The decision-making structure of the problem over time 

 

 

Fig. 2   The general scheme of the distribution system in the proposed relief chain 

 

 

Fig .3   The pseudo-codes of the SA algorithm 
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Fig .4   The pseudo-codes of the GA algorithm 
 

 

 

 

(a) Initial solution (a feasible solution) (b) Removal step (c) Insertion step 
Fig .5   Graphical format of ALNS algorithm steps 

 

 

Fig .6   The pseudo-codes of the ALNS algorithm 

 

 

Fig .7   Destruction algorithm 
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(a) Feasible solution (b) Destroyed solution 

Fig .8   Proximity-based removal 
 

  

(a) Feasible solution (b) Destroyed solution 

Fig .9   Random tour removal 

 

 

Fig .10   Repairing algorithm 
 

  

(a) The first scenario (b) The second scenario 
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(c) The third scenario 

Fig .11   The run times of ALNS and CPLEX 

 

  

(a) The first scenario (b) The second scenario 

 

(c) The third scenario 

Fig .12   Comparison of the performances of the suggested ALNS and the CPLEX 

with different gaps in the objective values 



30 
 

Table 2. The values obtained from the four methods for the tests 

No. 

test 
(I/J/S/Ns

v /Ns
H) 

Proposed ALNS GA SA CPLEX solver Ratio (%) 

LB 
No. 

constraints 
Ob. 

value 

Running 

time 

Gap 

(%) 

Ob. 

value 

Running 

time 

Gap 

(%) 

Ob. 

value 

Running 

time 

Gap 

(%) 

Ob. 

value 

Running 

time 

Gap 

(%) 

Ratio Time (%) 

(ALNS, GA, SA) 

Ratio Value (%) 

(ALNS, GA, SA) 

1 (1,5,1,1,1) 5149 0.035 0 5149 0.069 0 5149 0.043 0 5149 1.024 0 (3.42,6.74,4.1) (100,100,100) 5149 297 

2 (2,5,1,2,1) 1048 2.14 0 1048 3.74 0 1048 2.43 0 1048 12.6 0 (16.99,29.69,19.28) (100,100,100) 1048 353 

3 (4,7,1,2,2) 2037 3.55 2.19 2037 5.75 2.19 2037 5.31 2.19 2037 27.8 2.19 (12.77,20.68,19.1) (100,100,100) 1992.46 1041 

4 (5,10,1,3,2) 1336 28.05 4.84 1336 29.35 27.15 1336 28.11 27.15 1336 48.9 4.83 (57.37,60.02,57.48) (100,100,100) 973.23 3052 

5 (6,8,1,4,2) 959 265.12 12.06 963 275.64 22.80 987 277.32 24.69 875 675.2 3.61 (39.27,40.82,41.07) (109.6,110.06,112.8) 743.37 3312 

6 (9,18,1,6,6) 3042 333.6 8.14 3091 397.04 42.98 3152 393.12 44.08 2954 842.3 5.40 (39.6,47.14,46.67) (102.9,104.64,106.7) 1762.51 12760 

7 (12,20,1,9,6) 4573 805.35 13.32 4620 949.01 16.36 4691 925.25 17.63 4356 1034.3 9.01 (77.87,91.75,89.45) (104.9,106.06,107.7) 3863.83 21500 

8 (15,25,1,12,9) 2327 627.2 15.75 2387 683.004 26.24 2570 680.7 31.5 2093.76 1825.7 6.37 (34.35,37.41,37.28) (111.1,114.06,122.7) 1760.45 23840 

9 (15,30,1,12,10) 3380 435.41 16.26 3534 471.64 19.92 3611 461.78 21.62 2984.7 1974.1 5.17 (22,23.9,23.39) (113.24,118.4,120.9) 2830.3 43700 

10 (15,35,1,12,10) 5030 594 1.98 5063 641.76 90.84 5347 615 91.33 5000.3 2467.4 1.39 (24.07,26,24.92) (100.6,101.25,106.9) 463.56 55655 

11 (1,5,2,1,1) 3612 0.085 0 3612 0.051 0 3612 0.083 0 3612 2.32 0 (3.7,2.19,3.57) (100,100,100) 3612 604 

12 (2,5,2,2,1) 2916 2.4588 0 2916 2.82 0 2916 2.8249 0 2916 14.6 0 (16.8,19.31,19.34) (100,100,100) 2916 706 

13 (4,7,2,2,2) 1708 10.82 0 1708 14.37 0 1708 12.04 0 1708 36.48 0 (29.66,39.39,33) (100,100,100) 1708 2054 

14 (5,10,2,3,2) 2952 95.68 6.38 2952 98.49 6.38 2952 101.73 6.38 2952 132.66 6.38 (72.12,74.24,76.68) (100,100,100) 2763.63 6044 

15 (6,8,2,4,2) 2358 284.403 15.16 2430 316.691 17.67 2403 327.31 16.75 2167 713.7 7.68 (39.85,44.38,45.86) (108.8,112.14,110.9) 2000.46 6560 

16 (9,18,2,6,6) 2781 356.462 9.72 2831 380.17 18.37 2827 389.075 18.26 2610 912.6 3.80 (39.06,41.66,42.63) (106.5,108.5,108.3) 2310.79 25268 

17 (12,20,2,9,6) 2116.4 964.364 6.28 2284 1035.648 13.16 2330 1021.07 14.87 2007.33 1436.15 1.19 (67.15,72.11,71.09) (105.4,113.8,116.08) 1983.47 42600 

18 (15,25,2,12,9) 1311 1,470.72 6.46 1493.4 19, 43.07 17.88 1577 2,124.0 22.24 1254 2674.68 2.21 (54.99,72.64,79.42) (104.5,119.09,125.7) 1226.27 47160 

19 (15,30,2,12,10) 2401 1,124.33 n/a 2834 1,524.33 n/a 2967 1,541.9 n/a n/a n/a n/a n/a n/a n/a 86620 

20 (15,35,2,12,10) 5129.6 2580.33 n/a 5701 2796.33 n/a 6176 2717.18 n/a n/a n/a n/a n/a n/a n/a 110400 

21 (1,5,3,1,1) 1836.9 0.11188 0 1836.9 0.37 0 1836.9 0.174 0 1836.9 1.74 0 (6.43,21.26,11.15) (100,100,100) 1836.9 911 

22 (2,5,3,2,1) 2617.5 0.089 5.88 2617.5 0.64 5.88 2617.5 0.141 5.88 2617.5 14.8 5.88 (0.6,4.32,0.95) (100,100,100) 2463.48 1059 

23 (4,7,3,2,2) 1646.1 7.74 13.04 1649.74 18.55 13.24 1671.3 11.24 14.35 1571.8 68.47 8.93 (11.3,27.09,16.42) (104.72,104.9,106.3) 1431.4 3067 

24 (5,10,3,3,2) 1421.3 416.61 6.69 1428 472.19 24.90 1443 451.66 25.68 1347.5 594.3 1.57 (70.1,79.45,75.99) (105.48,105.9,107.1) 1072.39 9036 

25 (6,8,3,4,2) 726.6 306.76 7.35 732.73 324.721 8.12 729.04 332.11 7.65 703.2 834.46 4.26 (36.77,38.91,39.80) (103.3,104.2,103.7) 673.22 9808 

26 (9,18,3,6,6) 4495.6 112.72 5.08 4607 123.03 7.38 4706 117.09 9.32 4374.9 1749.32 2.46 (6.44,7.03,6.69) (102.76,105.3,107.6) 4267.17 37776 

27 (12,20,3,9,6) 4246.5 360.40 9.53 4419.43 393.33 21.64 4573 372.92 24.27 3968.47 1467.85 3.19 (24.55,26.8,25.40) (107,111.36,115.23) 3463.04 63700 

28 (15,25,3,12,9) 2776.2 747.919 n/a 3076.49 786.47 n/a 2913 780.134 n/a n/a n/a n/a n/a n/a n/a 70480 

29 (15,30,3,12,10) 4714.2 1347.963 n/a 4802.44 1743.318 n/a 5337.07 2003.041 n/a n/a n/a n/a n/a n/a n/a 129540 

30 (15,35,3,12,10) 9451.8 2,149.49 n/a 9833 2,649.49 n/a 10372.3 2,616.7 n/a n/a n/a n/a n/a n/a n/a 165145 

Avg. - 3003.3 514.4637 6.644 3099.75 556.49 16.124 3186.50 610.38 17.03 2539.21 774.538 3.421 (32.29,38.19.36.43) (103.6,105.58,107.2) 2172.59 32801.6 
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