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Abstract: Precise and effective identification of modal parameters is important for a civil structure 

throughout the structural lifetime. A time-frequency method for modal parameter identification is developed 

based on a recently developed adaptive method for signal decomposition, i.e., empirical Fourier 

decomposition (EFD). The EFD is used to separate a multi-component free vibration response into the 

summation of several mono-component modal responses. The modal frequencies and modal damping ratios 

are calculated from the modal responses by using the empirical envelope method and a damping estimation 

method. Two numerical examples and one experimental example are provided to validate the EFD-based 

time-frequency method and highlight the improvements of the EFD-based method relative to the empirical 

mode decomposition (EMD)-based method. It is highlighted that the EFD-based method has a much higher 

frequency resolution and lower computational cost than the EMD-based method. Hence, the proposed EFD-

based method is suitable for online modal parameter identifications of structures with closely spaced modes. 

In addition, the EFD-based method is useful for both linear and nonlinear systems. 
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1. Introduction 

Modal parameter identification of a civil structure is important in various aspects including dynamic 

response assessment, structural health monitoring, vibration control, etc [1-6]. The important modal 

parameters for a specific structural mode include the natural frequency, the damping ratio, and the mode 

shape [7-10]. The modal parameters of a structure are often identified based on the vibration responses of the 

structure. According to the type of input, the vibration responses can be clarified into forced excitation-

induced response, ambient excitation-induced response, and impulse excitation-induced response. It is 

usually unrealistic and unsafe to obtain reliable forced excitation-induced responses for a large-scale civil 

structure. The requirement for accurate measurement of the input force brings additional difficulties to the 

application of forced vibration-based modal parameter identifications. Therefore, output-only methods based 

on impulse or ambient excitation-induced responses have been largely investigated for modal parameter 

identifications of large civil structures. Classical output-only methods identify the modal parameters in the 

frequency domain or the time domain. Typical frequency-domain methods include the peak-picking method, 

the frequency-domain decomposition method, the frequency-spatial domain decomposition method, etc [11]. 

Typical time-domain methods include the random decrement technique, the autoregressive moving average 

method, the stochastic subspace identification method, etc [12, 13]. These classical time-domain methods 

and frequency-domain methods have achieved promising results for the identifications of linear systems. 

However, these classical methods are incapable of dealing with nonstationary vibrational responses and 

identifying the underlying nonlinear features of a practical structure. Recent efforts have been advanced for 

automated modal identification of different structures [14-18]. 

Time-frequency methods are drawing increasing attention in modal parameter identification because of 

the ability to identify the nonlinear and time-varying features of a structure. The short-time Fourier 

transform-based method and the wavelet transform-based method are among the earliest time-frequency 

methods [19]. However, the former is criticized due to the limited time-frequency resolution while the latter 

is criticized due to the difficulty to select an appropriate mother wavelet. More recently, the Hilbert-Huang 

transform-based method is proposed as an alternative time-frequency method [20]. The key part of the 

Hilbert-Huang transform-based method is the empirical mode decomposition (EMD) [20], which is an 

adaptive decomposition method to extract modal responses (mono-component signals) from vibrational 

responses (often multi-component signals). The Hilbert-Huang transform-based method and several variants 

have found applications in modal parameter identifications of bridges and tall buildings, etc [21-23]. 

Although the Hilbert-Huang transform-based method is promising for identifying nonlinear and time-

varying systems, it is unable to identify a structure with closely spaced modes due to the limited frequency 

resolution of the EMD. More specifically, the intrinsic mode functions extracted by the EMD may include 

several closely spaced frequencies due to mode mixing [24]. Other shortcomings of the EMD include the end 

effects and the generated pseudo components with low energies and low frequencies [25]. Several improved 

versions (e.g., the ensemble EMD [26] and the complete ensemble EMD [27]) of EMD have been proposed 

to overcome these shortcomings. However, these improved EMD methods cannot fully avoid the mode 

mixing and end effects. Several different decomposition approaches with sound theoretical backgrounds 



3 

 

have also been proposed and utilized in modal parameter identifications, e.g., the variational mode 

decomposition [28] and the nonlinear mode decomposition [29]. However, these methods require large 

computational costs and hence they are not suitable for online modal parameter identification. 

More recently, the empirical Fourier decomposition (EFD) [30] is proposed as a new adaptive 

decomposition method to overcome some shortcomings of existing adaptive decomposition methods. The 

EFD uses an adaptive segmentation technique to divide the Fourier spectrum of a multi-component signal 

and then constructs the mono-component signals based on a zero-phase filter bank and the inverse Fourier 

transform. Compared to the EMD, the EFD has higher frequency resolution and reduced end effects. The 

computational cost of the EFD is also low, and hence it is promising for online modal parameter 

identification. Zhou et al. [30] showed that the EFD can accurately decompose several types of multi-

component signals; further, they showed that the EFD can calculate the instantaneous frequencies of the 

decomposed mono-component signals. However, the identifications of instantaneous damping ratios were 

not addressed. In addition, for typical civil structures (e.g., structures with closely spaced modes), the 

underlying superiorities of EFD in modal parameter identifications compared to existing time-frequency 

methods require further investigation. 

Inspired by the improved capabilities of EFD in processing multi-component signals, this paper proposes 

an EFD-based time-frequency method for modal parameter (including modal frequency and damping ratio) 

identifications of systems with closely spaced modes. The superiorities of the proposed EFD-based method 

relative to the EMD-based method and several other methods are demonstrated by several numerical and 

experimental examples representing typical civil structures. The remainder of this paper is organized as 

follows. Starting with a brief introduction of the EFD in Section 2, the proposed EFD-based identification 

method is introduced in detail in Section 3. Two numerical examples and one experimental example are 

provided in Section 4 and Section 5 respectively to validate the EFD-based time-frequency method and 

highlight the improvements of the EFD-based method relative to the EMD-based method and several other 

methods. Some main conclusions are summarized in Section 6. 

2. Empirical Fourier decomposition (EFD) 

The vibrational (displacement, velocity, or acceleration) responses of a multiple-degree-of-freedom 

system are often multi-component signals. It is necessary to extract the modal responses (mono-component 

signals) from the multi-component signals in order to identify the modal parameters in the time-frequency 

domain. A free vibration response can be directly used to extract the modal responses. However, for an 

ambient vibration response, the signal should be processed (e.g., using the autocorrelation method or random 

decremental technique [31, 32]) to obtain the equivalent free vibration response. The multi-component free 

vibration response is then decomposed into the combination of several mono-component modal responses. 

The decomposition of a multi-component signal can be described as follows 

             
1 1

sig noise cos noise
N N

n n n n

n n

t c t t A t t dt t 
 

        (1) 

where sig(t) is the multi-component vibrational signal; ck(t) (n = 1 ~ N) are the modal responses; N is the 

number of modal responses embedded in the vibrational signal; An(t), ωn(t), and φn represent the 
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instantaneous amplitude, the instantaneous frequency (in rad/s), and the initial phase of cn(t), respectively; 

noise(t) represents the measurement noise in the multi-component vibrational signal. The instantaneous 

frequency of cn(t) in Hz can be calculated as fn(t) = ωn(t)/(2π). 

The EFD [30] normalizes the Fourier spectrum of sig(t) into a frequency range of −π ~ π. The Fourier 

spectrum is then divided by an improved segmentation technique and filtered into several frequency 

segments by a zero-phase filter bank. A mono-component signal is generated based on each frequency 

segment using the inverse Fourier transform. In the following parts of this section, the improved 

segmentation technique and the construction of the zero-phase filter bank are described for the frequency 

range 0 ~ π. Those for the frequency range −π ~ 0 can be deduced based on the Hermitian symmetry of the 

Fourier spectrum. 

In the improved segmentation technique, the frequency range is divided into N continuous frequency 

segments. The n
th
 (n = 1 ~ N) frequency segment is represented as ωn−1 ~ ωn. To determine the values of ωn, 

the local maxima of the Fourier spectrum are extracted into a series. The magnitudes at all local maxima and 

the Fourier spectrum magnitudes at ω = 0 and ω = π are sorted in descending order. Frequencies 

corresponding to the first N largest Fourier spectrum magnitudes in the sorted series are represented as Wn (n 

= 1 ~ N). Furthermore, W0 = 0 and WN+1 = π. The frequency range 0 ~ π is then divided into n segments with 

boundaries determined by 

 
 0 1 0 1

0
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arg min ~ if 
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
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 
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W
  



 
 


 (2c) 

where  0 1argmin ~X W W  represents the frequency corresponding to the minimum spectrum magnitude in 

the frequency range 0 1~W W ;  argmin nX   (n = 1~ (N−1)) represents the frequency corresponding to the 

minimum spectrum magnitude in the frequency range 1~n nW W  ;  1argmin ~N NX W W   represents the 

frequency corresponding to the minimum spectrum magnitude in the frequency range 1~N NW W  . The 

normalized Fourier spectrum of sig(t) is now divided into N segments using the improved segmentation 

technique described by Eq. (2). 

A zero-phase filter bank is then constructed based on divided frequency segments. A zero-phase filter for 

a specific frequency segment is a band-pass filter with cut-off frequencies of ωn−1 and ωn. Hence, the filter 

retains the component in the considered frequency segment while all other components are filtered out. 

The Fourier transform of a signal sig(t) can be expressed as 

    sig sig j tt e dt






 



   (3) 

A zero-phase filter bank is constructed as 
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   11 if 

0 otherwise
ˆ n n

n

  
  

  
 


 (4) 

The resulting signal filtered by  ˆ
n   is 

      
  1sig if 

sigˆ ˆ
0 otherwise

n n
n nc

   
    

  
  



 (5) 

The frequency-domain signal described by Eq. (5) can be transformed into the time domain as 

        
1

1

ˆ ˆ ˆ
n n

n n

j t j t j t

n n n nc t c e d c e d c e d

 
  

  

     






 

      (6) 

Finally, the original signal sig(t) can be decomposed as 

      
1

sig noise
N

n

n

t c t t


   (6) 

where cn(t) is a mono-component signal with a frequency band of ωn−1 ~ ωn. cn(t) represents the modal 

response of a specific mode. 

3. Modal parameter identification 

Since cn(t) represents the modal response of a specific structural mode, it can be used to identify the 

modal parameters of this specific mode. In the following parts of this section, the subscript n is dropped for 

brevity. 

The modal response is a mono-component signal with amplitude modulation and frequency modulation 

that can be expressed as 

            cos cos 2c t A t t dt A t f t dt          (7) 

where A(t) is the instantaneous amplitude;   cos 2 f t dt    is the frequency carrier; f(t) is the 

instantaneous frequency in Hz;   is the initial phase. 

The instantaneous amplitude can be calculated using the amplitude-modulation and frequency-modulation 

decomposition proposed in [33]. The instantaneous frequency was usually calculated using the Hilbert 

transform and some improved variances [33]. However, due to the limitations of the Bedrosian theorem and 

Nuttall theorem [25], the Hilbert transform-based method sometimes results in large fluctuations and 

negative values in the calculation result. The empirical envelope method [34] can overcome the limitations 

of these theorems and therefore results in a better calculation of the instantaneous frequency. Hence, the 

empirical envelope method is used in this paper to calculate the instantaneous frequency. 

The instantaneous logarithmic decrement δ(t) can be calculated based on the instantaneous amplitude as 

follows [35] 

  
 

 

 

 2
1

2
ln

1

i i

i

i i

A t t
t

A t t






 


 (8) 

where i represents the i
th
 time instant; ξ(t) is the instantaneous damping ratio. 
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For a structural mode with a low damping ratio, the denominator at the right-hand side of Eq. (8) is close 

to one, and hence ξ(t) can be approximated as [35, 36] 

  
   1ln( / )

2

m mA t A t
t




  (9) 

For a linear system, the instantaneous frequency and instantaneous damping ratio of each mode are 

theoretically constant. However, they may fluctuate slightly around a constant value due to the discrete 

sampling of the signal and the numerical error of the identification method. The constant modal frequency 

and damping ratio can be calculated as the mean values of the instantaneous frequency and instantaneous 

damping ratio, respectively. For a time-varying or a nonlinear system, the modal frequency and damping 

ratio can be identified following the same procedure. However, the instantaneous frequency and 

instantaneous damping ratio of each mode may vary significantly with time due to the time-varying or 

nonlinear feature of the system. Finally, it is noted that this study deals with modal parameter identification 

from impulse excitation-induced responses. If only ambient excitation-induced responses are available, the 

method can be used together with the random decremental method. 

In summary, the proposed modal parameter identification method is outlined as follows: (1) the mono-

component modal responses are extracted from the multi-component vibration responses using the EFD 

method; (2) for each modal response, the instantaneous frequency is identified based on the empirical 

envelope method; (3) for each modal response, the instantaneous damping ratio is identified based on Eq. (8) 

and Eq. (9). 

4. Numerical examples 

Two numerical examples are studied in this section to validate the EFD-based method for modal 

parameter identifications of structures with closely spaced modes. The superiorities of the EFD-based 

method relative to the EMD-based method and several other methods are also discussed. 

4.1. A linear signal with two closely spaced modes 

The first example studies a linear signal with two closely spaced modes described by Eq. (10) 

    1 12 2

1 1 1cos 2 1
f tc t e f t  

   (10a) 

  2 22 2

2 2 2cos 2 1
f tc e f t  

   (10b) 

      1 1 2sig t c t c t   (10c) 

where f1 and f2 are the modal frequencies of c1(t) and c2(t), respectively; ξ1 and ξ2 are the modal damping 

ratios of c1(t) and c2(t), respectively. The signal sig1 is a general representation of the free vibration response 

of a linear two-degree-of-freedom system. 

It is first assumed that f1 = 5.0 Hz, f2 = 5.4 Hz, ξ1 = ξ2 = 0.005. These two modes are closely spaced since 

the differences between f1 and f2 are within 10% of their modal frequencies. Fig. 1(a) and Fig. 1(b) show the 

time-domain and frequency-domain representations of sig1. The sampling frequency is 1000 Hz and the 

sampling time is 20 s. A beat phenomenon is observed in Fig. 1(a), which is a typical feature for the free 

vibration response of a structure with closely spaced modes. 
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The signal sig1 is processed by the EFD to extract the modal responses. The decomposition results are 

presented together with the theoretical modal responses in Fig. 1(c) and Fig. 1(d). It can be seen that the EFD 

can successfully extract the modal responses from the signal sig1. The extracted modal responses agree very 

well with the theoretical modal responses. On the other hand, the EMD is unable to extract the modal 

responses, as shown in Fig. 2. More specifically, the EMD results in 8 intrinsic mode functions (IMFs). The 

first intrinsic mode function is close to the sig1, which is confirmed by their Fourier spectra in Fig. 3. This is 

because the EMD is unable to separate modal responses with closely spaced modes due to the limited 

frequency resolution of the EMD. The comparison suggests that EFD has a higher frequency resolution than 

EMD. Indeed, the EFD performs very well even if 2 1/ 1.05f f  . However, as discussed by Feldman [37], 

the EMD cannot accurately separate two modes as long as 
2 1/ 1.50f f  . In addition, the EMD generates 

several low-frequency and low-energy pseudo components, which may be confusing in the modal parameter 

identification for a real structure. The EEMD is also unable to separate the modal responses while the EEMD 

results are not shown for brevity. It is noted that better results may be obtained by changing the stopping 

criterion or other parameters of the EMD. However, changing the stopping criterion or other parameters 

cannot significantly improve the decomposition results due to the limited frequency resolution of EMD. It is 

also noted that there are some improved EMD-based methods that have better frequency resolution. However, 

these improved EMD-based methods are developed for specific types of signals, and the improvements in 

the frequency resolution are often limited. In addition, the computational time of the EFD for the considered 

signal is about 0.5 seconds, the computational time of the EMD is about 1 second, while the computational 

time of the EEMD (the ratio of standard deviations between added noise and sig1 is 0.01, the ensemble 

number is 1000) is about 24 minutes on a laptop with an i7-8665U CPU, 32.0 GB of RAM, and 64-bit 

Windows 10. In summary, the EFD has a higher frequency resolution than the EMD and therefore the EFD 

is more suitable for modal parameter identifications of structures with closely spaced modes. 

Fig. 4 shows the instantaneous frequencies and instantaneous damping ratios of sig1 estimated using the 

EFD-based method. It can be seen that the estimated results agree very well with the theoretical values. The 

estimated results fluctuate slightly around the theoretical values, which have been discussed in Section 3. 

The identified modal parameters and modal damping ratios are listed in Table 1 (i.e., the case with signal-to-

noise ratio SNR = + ∞). It can be seen that the identified values are exactly consistent with the theoretical 

values. The results presented in Fig. 4 and Table 1 convincingly validate the accuracy of the EFD-based 

method. The EMD is unable to separate the two closely spaced modes and hence the EMD-based method 

cannot identify the modal parameters of the considered signal. 

The accuracy of the EFD-based method is further examined for modal parameter identifications from 

signals with various single-to-noise ratios (SNRs). More specifically, Gaussian white noise with a zero mean 

value is added to sig1. The SNR is defined as     110log var sig / var noise , where var represents the 

variance. The modal parameters identified from signals with various SNRs are listed in Table 1. It can be 

seen that the identification results agree well with the theoretical values for all considered SNRs. This is due 

to the robustness of the EFD to noises. 
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To further examine the identification accuracy of the EFD-based method for signals with closely spaced 

modes, f2 is varied and the identification results for different f2 are presented in Fig. 5. The identification 

error is defined as  identified value theoretical value / theoretical value . It can be seen that the EFD-

based method is capable of identifying the modal frequencies of very closely spaced modes with 

2 1 1( ) / 2.0%f f f  . However, the identification accuracies for the modal damping ratios decrease for very 

closely spaced modes. The identification errors for the modal damping ratios are within 5% for 

2 1 1( ) / 5.0%f f f  . 

4.2. A nonlinear system with amplitude-dependent frequencies and damping ratios 

A two-degree-of-freedom nonlinear system described by Eq. (11) is considered in this example 

      2

1 1,  0 1 1,0 1 1 1,  0 1 14 0.1 0.01 (2 0.1 ) 0c f A A c f A c         (11a) 

      2

2 2,  0 2 2,0 2 2 2,  0 2 24 0.1 0.01 (2 0.1 ) 0c f A A c f A c         (11b) 

      2 1 2sig t c t c t   (11c) 

where A1 and A2 represent the instantaneous amplitudes of c1 and c2, respectively; the overdot indicates the 

derivative with respect to time t; f1,0 = 5.0 Hz and f2,0 = 5.4 Hz represent the modal frequencies of the 1
st
 and 

2
nd

 modes when the amplitudes are A1 = 0 and A2 = 0, respectively; ξ1,0 = 0 and ξ2,0 = 0 are the damping ratios 

of the 1
st
 and 2

nd
 modes when the amplitudes are A1 = 0 and A2 = 0, respectively. Both modes have modal 

frequencies and damping ratios that are dependent on the vibration amplitude. The amplitude-dependency of 

modal parameters is very typical for large-scale civil structures [35, 38, 39]. The two modes are assumed 

uncoupled and therefore the free vibration response is the summation of the modal responses of the two 

modes, as shown by Eq. (11c). 

Eq. (11) is numerically integrated by a standard Newmark-β method with a sampling frequency of 1000 

Hz. The initial conditions are  1 0 1c t   ,  1 0 0c t   ,  2 0 1c t   , and  2 0 0c t   . Time-domain 

and frequency-domain representations of the free vibration response are depicted in Fig. 6. A beat 

phenomenon is observed in Fig. 6(a), which is a typical feature for the free vibration response of a structure 

with closely spaced modes. As can be seen from Fig. 6(b), the signal has two dominant frequencies at around 

5 Hz and 5.4 Hz, respectively. However, the Fourier spectra contain no information regarding the 

nonlinearity of the considered system. 

The signal sig2 is processed by the EFD to extract the modal responses. The decomposition results are 

presented together with the theoretical modal responses in Fig. 6(c) and Fig. 6(d). It can be seen that the EFD 

can successfully extract the modal responses from the signal sig2. The extracted modal responses agree very 

well with the theoretical modal responses. The computational time of the EFD for the considered signal is 

less than 0.5 seconds. 

Fig. 7 shows the modal frequencies and damping ratios of sig2 estimated using the EFD-based method. 

Since the modal frequencies and damping ratios of sig2 are dependent on the vibration amplitudes, the 

estimated modal parameters are fitted as amplitude-dependent functions as follows 
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       
polynomial fitting

,A t f t f A  (12a) 

       
polynomial fitting

,A t t A   (12b) 

It can be seen that the estimated results agree very well with the theoretical values. The estimated results 

fluctuate slightly around the theoretical values, which have been discussed in Section 3. The results 

presented in Fig. 7 convincingly validate the accuracy of the EFD-based method for nonlinear systems with 

closely spaced modes. For comparison, the second example is also identified with the EMD-based method. It 

is found that the EMD is unable to separate the two closely spaced modes and hence the EMD-based method 

cannot identify the modal parameters of the considered signal. The EMD results of the considered signal are 

not shown for brevity. 

5. Experimental validation 

An experimentally recorded signal sig3 is considered in this section to validate the accuracy of the EFD-

based method. The signal is the acceleration history of a four-story steel structure, which was recorded after 

the structure was excited by a hammer impact. The structure was designed as the IASC-ASCE structural 

health monitoring benchmark problem, as shown in Fig. 8. Fig. 9(a) and Fig. 9(b) show the time-domain and 

frequency-domain representations of sig3. The sampling frequency is 1000 Hz and the sampling time is 20 s. 

The Fourier spectrum in Fig. 9(b) suggests that the signal has at least five peaks in the frequency range 0 ~ 

22 Hz, with two closely spaced modes around 7.5 Hz. 

The signal sig3 is processed by the EFD to extract the modal responses. The decomposition results are 

presented in Fig. 9(c) ~ Fig. 9(h). The mean value of c1 is not zero, indicating that c1 is not a modal response 

while it may be induced by the zero-shift of the sensors. c2 ~ c6 represent the modal responses of different 

modes. It can be seen that amplitudes of some components (e.g., c4) decay exponentially due to damping as 

expected. On the other hand, the amplitudes of some components (e.g., c6) do not decay exponentially, which 

might be due to the existence of measurement noise. Therefore, the modal parameters are identified based on 

the segments of the modal responses with exponentially decaying amplitude. The instantaneous amplitudes 

of the utilized segments are highlighted by red lines in Fig. 9(c) ~ Fig. 9(h). 

The identified modal parameters are listed in Table 2 together with the results of some previous papers. 

The modal parameters are also identified based on a standard data-driven stochastic subspace identification 

(SSI) method [40]. Perez-Ramirez et al. [41] identified the modal parameters using a wavelet transform-

based method, which is criticized due to the difficulty to select an appropriate mother wavelet. Yanez-Borjas 

et al. [42] identified the modal parameters based on the nonlinear mode decomposition, which is also an 

adaptive decomposition method. However, the computational cost of the nonlinear mode decomposition is 

much higher than the EFD. More specifically, for the considered signal, the computational time of the EFD 

is less than 2 seconds, the computational time of the wavelet transform is about 2 minutes, and the 

computational time of the nonlinear mode decomposition is about 14 minutes on a laptop with an i7-8665U 

CPU, 32.0 GB of RAM, and 64-bit Windows 10.  

The four methods estimate similar results of modal frequencies. However, estimation results for modal 

damping ratios are quite scattered. This is expected because the damping ratio is sensitive to some 



10 

 

uncertainties like noises and decomposition errors. The results of this example suggest that the EFD-based 

method can be used for online modal parameter identifications of real structures with closely spaced modes. 

6. Conclusion 

A new empirical Fourier decomposition (EFD)-based method is proposed for identifying the modal 

parameters of civil structures from the free vibration responses (which can be obtained from free vibration 

test or constructed from ambient vibration responses). Three examples are analyzed to show the effectiveness 

of the proposed method, including a linear signal with closely spaced modes, a nonlinear system with 

amplitude-dependent frequencies and damping ratios, and a four-story steel structure designed as the 

structural health monitoring benchmark problem. 

The numerical examples show that the EFD-based method has a much higher frequency resolution and 

lower computational cost than the empirical mode decomposition (EMD)-based method. More specifically, 

the EFD-based method is capable of identifying the modal frequencies of very closely spaced modes with 

relative frequency differences of 2.0%, and identification errors for the modal damping ratios are within 5% 

if the relative frequency difference is larger than 5.0%. For the experimental example, the proposed EFD-

based method achieves similar results compared to previous papers using the wavelet transform-based 

method and nonlinear mode decomposition-based method. However, the computational cost of the EFD-

based method is much lower than the other two methods. 

References 

1. Ramezani, M. and Bahar, O. “Indirect structure damage identification with the information of the vertical 

and rotational mode shapes”, Scientia Iranica, 28, pp. 2101-2118 (2021). 

2. Nabavian, S., Davoodi, M., Navayi-Neya, B., et al. “Damping estimation of a double-layer grid by output-

only modal identification”, Scientia Iranica, 28, pp. 618-628 (2021). 

3. Haghi, A. and Rahimi, M. “Control and stability analysis of VSC-HVDC based transmission system 

connected to offshore wind farm”, Scientia Iranica, 29, pp. 193-207 (2022). 

4. Shayanfar, M., Hatami, A., Zabihi-Samani, M., et al. “Simulation of the force-displacement behavior of 

reinforced concrete beams under different degrees and locations of corrosion”, Scientia Iranica, 29, pp. 

964-972 (2022). 

5. Zhang, M., Wu, T., and Øiseth, O. “Vortex-induced vibration control of a flexible circular cylinder using a 

nonlinear energy sink”, Journal of Wind Engineering and Industrial Aerodynamics, 229, p. 105163 

(2022). 

6. Zhang, M. and Xu, F. “Tuned mass damper for self-excited vibration control: Optimization involving 

nonlinear aeroelastic effect”, Journal of Wind Engineering and Industrial Aerodynamics, 220, p. 104836 

(2022). 

7. Song, Y., Liu, Z., Rønnquist, A., et al. “Contact wire irregularity stochastics and effect on high-speed 

railway pantograph–catenary interactions”, IEEE Transactions on Instrumentation and Measurement, 69, 

pp. 8196-8206 (2020). 



11 

 

8. Song, Y., Wang, Z., Liu, Z., et al. “A spatial coupling model to study dynamic performance of 

pantograph-catenary with vehicle-track excitation”, Mechanical Systems and Signal Processing, 151, pp. 

107336 (2021). 

9. Wang, Z., Yang, J., Shi, K., et al. “Recent Advances in Researches on Vehicle Scanning Method for 

Bridges”, International Journal of Structural Stability and Dynamics, 22, p. 2230005 (2022). 

10. Yang, Y. and Yang, J. “State-of-the-art review on modal identification and damage detection of bridges 

by moving test vehicles”, International Journal of Structural Stability and Dynamics, 18, p. 1850025 

(2018). 

11. Bendat, J. and Piersol, A. “Engineering applications of correlation and spectral analysis”, Wiley 

Interscience, New York (1980). 

12. Gautier, P., Gontier. C., and Smail, M. “Robustness of an ARMA identification method for modal 

analysis of mechanical systems in the presence of noise”, Journal of Sound and Vibration, 179, p. 227-

242 (1995). 

13. Peeters, B. and De Roeck, G. “Reference-based stochastic subspace identification for output-only modal 

analysis”, Mechanical systems and signal processing, 13, pp. 855-878 (1999). 

14. He, Y., Yang, J., and Li, X. “A three-stage automated modal identification framework for bridge 

parameters based on frequency uncertainty and density clustering”, Engineering Structures, 255, p. 

113891 (2022). 

15. Tronci, E., De Angelis, M., Betti, R., et al. “Multi-stage semi-automated methodology for modal 

parameters estimation adopting parametric system identification algorithms”, Mechanical Systems and 

Signal Processing, 165, p. 108317 (2022). 

16. Mugnaini, V., Fragonara, L., and Civera, M. “A machine learning approach for automatic operational 

modal analysis”, Mechanical Systems and Signal Processing, 170, p. 108813 (2022). 

17. Charbonnel, P. “Fuzzy-driven strategy for fully automated modal analysis: Application to the 

SMART2013 shaking-table test campaign”, Mechanical Systems and Signal Processing, 152, p. 107388 

(2021). 

18. Yao, X., Yi, T., Zhao, S., et al. “Fully Automated Operational Modal Identification Using Continuously 

Monitoring Data of Bridge Structures”, Journal of Performance of Constructed Facilities, 35, p. 

04021041 (2021). 

19. Kijewski, T., Kareem, A. “Wavelet transforms for system identification in civil engineering”, 

Computer‐Aided Civil and Infrastructure Engineering, 18, pp. 339-355 (2003). 

20. Huang, N., Shen, Z., Long, S., et al. “The empirical mode decomposition and the Hilbert spectrum for 

nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London Series A: 

mathematical, physical and engineering sciences, 454, pp. 903-95 (1998). 

21. He, X., Hua, X., Chen, Z., et al. “EMD-based random decrement technique for modal parameter 

identification of an existing railway bridge”, Engineering Structures, 33, pp. 1348-1356 (2011). 

22. Ren, W. and Zong, Z. “Output-only modal parameter identification of civil engineering structures”, 

Structural Engineering and Mechanics, 17, pp. 429-444 (2004). 



12 

 

23. Fu, C. and Jiang, S. “A Hybrid Method for Structural Modal Parameter Identification Based on 

IEMD/ARMA: A Numerical Study and Experimental Model Validation”, Applied Sciences, 12, p. 8573 

(2022). 

24. Rilling, G. and Flandrin, P. “One or two frequencies? The empirical mode decomposition answers”, 

IEEE transactions on signal processing, 56, pp. 85-95 (2007). 

25. Zhang, M. and Xu, F. “Variational mode decomposition based modal parameter identification in civil 

engineering”, Frontiers of Structural and Civil Engineering, 13, pp. 1082-1094 (2019). 

26. Wu, Z. and Huang, N. “Ensemble empirical mode decomposition: a noise-assisted data analysis method”, 

Advances in adaptive data analysis, 1, pp. 1-41 (2009). 

27. Torres, M., Colominas, M., Schlotthauer, G., et al. “A complete ensemble empirical mode decomposition 

with adaptive noise”, IEEE international conference on acoustics, speech and signal processing 

(ICASSP): IEEE, New York, pp. 4144-4147 (2011). 

28. Dragomiretskiy, K. and Zosso, D. “Variational mode decomposition”, IEEE transactions on signal 

processing, 62, pp. 531-544 (2013). 

29. Iatsenko, D., McClintock, P., and Stefanovska, A. “Nonlinear mode decomposition: a noise-robust, 

adaptive decomposition method”, Physical Review E, 92, p. 032916 (2015). 

30. Zhou, W., Feng, Z., Xu, Y., et al. “Empirical Fourier decomposition: An accurate signal decomposition 

method for nonlinear and non-stationary time series analysis”, Mechanical Systems and Signal Processing, 

163, p. 108155 (2022). 

31. Zubaydi, A., Haddara, M., and Swamidas, A. “On the use of the autocorrelation function to identify the 

damage in the side shell of a ship's hull”, Marine Structures, 13, pp. 537-51 (2000). 

32. Ibrahim, S. “Random decrement technique for modal identification of structures”, Journal of Spacecraft 

and Rockets, 14, pp. 696-700 (1977). 

33. Huang, N., Wu, Z., Long, S., et al. “On instantaneous frequency”, Advances in adaptive data analysis, 1 

pp. 177-229 (2009). 

34. Zheng, J., Cheng, J., and Yang, Y. “A new instantaneous frequency estimation approach-empirical 

envelope method”, Zhendong yu Chongji(Journal of Vibration and Shock), 31, pp. 86-90 (2012). 

35. Zhang, M. and Xu, F. “Nonlinear vibration characteristics of bridge deck section models in still air”, 

Journal of Bridge Engineering, 23, p. 04018059 (2018). 

36. Chopra, A. Dynamics of structures, Pearson Education, India (2007). 

37. Feldman, M. “Analytical basics of the EMD: Two harmonics decomposition”, Mechanical Systems and 

Signal Processing, 23, pp. 2059-2071 (200). 

38. Zhang, M., Xu, F., and Han, Y. “Assessment of wind-induced nonlinear post-critical performance of 

bridge decks”, Journal of Wind Engineering and Industrial Aerodynamics, 203, p. 104251 (2020). 

39. Ge, X. and Yura, J. The strength of rotary-straightened steel columns. Proceedings-Annual Stability 

Conference, SSRC, St Louis, pp. 425-442 (2019). 

40. Alıcıoğlu, B. and Luş, H. “Ambient vibration analysis with subspace methods and automated mode 

selection: case studies”, Journal of Structural Engineering. 134, pp. 1016-1029 (2008). 



13 

 

41. Perez-Ramirez, C., Amezquita-Sanchez, J., Adeli, H., et al. “New methodology for modal parameters 

identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet transform”, 

Engineering Applications of Artificial Intelligence, 48, pp. 1-12 (2016). 

42. Yanez-Borjas, J., Amezquita-Sanchez, J., Valtierra-Rodriguez, M., et al. “Nonlinear mode 

decomposition-based methodology for modal parameters identification of civil structures using ambient 

vibrations”, Measurement Science and Technology, 31, p. 015007 (2019).  



14 

 

List of figure and table captions 

 

Fig. 1. A linear signal sig1 with two closely spaced modes and EFD results. 

Fig. 2. EMD results of a linear signal sig1 with two closely spaced modes. 

Fig. 3. Fourier spectra of sig1 and the first intrinsic mode function. 

Fig. 4. Instantaneous frequencies and instantaneous damping ratios of a linear signal sig1 with two closely 

spaced modes. 

Fig. 5. Identification results of modal parameters from signals with various f2. 

Fig. 6. Free vibration response of a two-degree-of-freedom nonlinear system and EFD results. 

Fig. 7. Amplitude-dependent frequencies and damping ratios of a two-degree-of-freedom nonlinear system. 

Fig. 8. Structure for IASC-ASCE structural health monitoring benchmark problem. 

Fig. 9. Free vibration response of a four-story steel structure and EFD results. 

 

Table 1. Identification results of modal parameters from signals with various SNRs. 

Table 2. Identification results of modal parameters for a four-story steel structure.  



15 

 

 

Fig. 1. A linear signal sig1 with two closely spaced modes and EFD results.  
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Fig. 2. EMD results of a linear signal sig1 with two closely spaced modes.  
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Fig. 3. Fourier spectra of sig1 and the first intrinsic mode function.  
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Fig. 4. Instantaneous frequencies and instantaneous damping ratios of a linear signal sig1 with two closely 

spaced modes.  
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Fig. 5. Identification results of modal parameters from signals with various f2.  
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Fig. 6. Free vibration response of a two-degree-of-freedom nonlinear system and EFD results.  
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Fig. 7. Amplitude-dependent frequencies and damping ratios of a two-degree-of-freedom nonlinear system.  



22 

 

 

Fig. 8. Structure for IASC-ASCE structural health monitoring benchmark problem.  
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Fig. 9. Free vibration response of a four-story steel structure and EFD results.  



24 

 

Table 1. Identification results of modal parameters from signals with various SNRs. 

SNR (dB) f1 (Hz) f2 (Hz) ξ1 (%) ξ2 (%) 

+ ∞ 5.00 5.40 0.50 0.50 

40 5.00 5.40 0.50 0.50 

30 5.00 5.40 0.50 0.50 

20 5.00 5.40 0. 49 0.48 

10 4.97 5.40 0.51 0.48 
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Table 2. Identification results of modal parameters for a four-story steel structure. 

Mode  

number 

f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) 

EFD-based method SSI [40] 
Yanez-Borjas et al. 

[42] 

Perez-Ramirez et al. 

[41] 

1 7.50 0.770 7.49 0.86 7.48 0.552 7.47 0.87 

2 7.70 0.555 7.76 0.74 7.77 0.426 7.77 0.79 

3 14.45 0.021 14.49 0.15 14.48 0.114 14.51 0.11 

4 19.89 0.013 19.89 0.00 19.89 0.003 19.88 0.00 

5 20.99 0.034 21.01 0.04 21.02 0.045 21.01 0.08 
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