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Abstract. The aim of deploying hybrid nanouids is to optimize the thermal transport
characteristics of the model under study. Hybrid nanouids incorporate composite nanopar-
ticles that enhance thermal conductivity. Here, Silver (Ag) and Graphene oxide (Go) are
used as nanoparticles with kerosene oil as the base uid. The impacts of Ohmic heating,
viscous dissipation, and thermal radiation are considered in order to model the problem
of steady ow over a stretching/shrinking geometry. The model equations are tackled
by a built-in scheme, bvp4c, in MATLAB. Moreover, there are dual solutions for a given
range of pertinent parameters. The impact of the melting heat transfer parameter on the
coe�cient of skin friction and Nusselt number for both hybrid nanouid and nanoparticles
is considered. A comparison is established between our results and the pre-existing results,
which are in good agreement. It is noted that the values of the coe�cient of friction drag for
the upper branch are reduced for a particular range of shrinking parameter values, while the
opposite trend is observed for the lower branch. The magnetic force reduces the ow �eld
and energy distribution for the stable branch while increasing them for the lower branch.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Recent discovery of hybrid nanocomposites has piqued
curiosity about their possible applications in a va-
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riety of �elds. Hybrid nanouids combine metallic,
polymeric, or non-metallic nanoparticles with a base
uid to boost heat transmission. They are known for
their great electrical and thermal conductivity. Their
exceptional dynamic strengths and speci�c heat result
from their nanostructure and particle bonds. These
features are expected to aid various �elds of industry
and technology, including telecommunications, oph-
thalmology, thermoplastic elastomers, biotechnology,
etc. Many research groups were motivated by Iijima's
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discovery of carbon nanotubes in 1991 [1]. Huang et
al. [2] studied the pressure drop and energy transport
enhancement properties of hybrid nanouid. By taking
multiple diameters of water con�ned in single-walled
carbon nanotubes, Liu et al. [3] investigated the ow
transport and its structural properties. Madhesh and
Kalaiselvam [4] experimentally noted the impact of
forced convection on hybrid nanouids through heat
exchangers. Toghraie et al. [5] conducted experimental
veri�cation of nanoparticle concentration on energy
enhancement for ZnO-TiO2/EG. The hybrid nanouid
model with free convection within porous media was
presented by Tlili et al. [6] They applied Finite
Element Method (FEM) and Gauss-Seidel method to
obtain the desired outcomes. Yang et al. [7] conducted
thermal transport investigation for Casson nanouid
ow. Tang et al. [8] made a comparison of interfa-
cial properties on crude oil-water with rheological at-
tributes of polymeric nanouids. Further recent studies
related to hybrid nanouid are presented in [9{16].

Melting heat transfer is a complicated and signif-
icant �eld of thermo-physics that is linked to phase-
transition issues in production such as electromagnetic
crucible systems, metallic processing, glass treatment,
polymer synthesis, and laser ablation. In thermally
driven ows, melting heat transfer simulation is com-
plicated because the uid dynamics must be combined
with a moving interface. Such issues are commonly
referred to as the \Stefan shifting boundary" problem.
The melting process and heat transfer rate are the two
most important elements to consider when evaluating
the melting heat transfer process. To address melting
heat transfer issues e�ectively and precisely as moving
boundary problems, strong computational techniques
are necessary. An alternative approach is to model the
melting e�ect as a boundary condition, which avoids
the need to explicitly simulate the moving interface.
This method works with boundary layer ow models
as well, but is less accurate. Roberts [17] �rst reported
the melting behavior of an ice slab in a hot air stream.
Yacob et al. [18] scrutinized the heat transfer in a

micropolar uid boundary layer stagnation point ow
across a stretching/contracting sheet with a melting
e�ect. Bachok et al. [19] explored the characteristics of
melting heat transport in the viscous uid ow toward
a stretching surface. Hayat et al. [20] scrutinized
the ow of Maxwell uid towards a stretched surface
with a melting phenomenon. The melting process in
a magnetized ow over a moving surface with heat
radiation was explored by Das [21]. The related similar
studies can be found in [22{28].

The objective of this study is to reveal the
properties of melting heat transfer in the ow of
hybrid nanouid ow across a stretching/shrinking
surface in the stagnation point region. Here, kerosene
oil is assumed as the base uid, while silver (Ag)
and Graphene oxide (Go) are the nanoparticles. The
results for various physical parameters are obtained
and presented graphically and in tables. In addition,
the limiting case comparison results are based on
previously published data.

2. Formulation of the problem

We assume a boundary layer ow of hybrid nanouid
on a shrinking surface, with melting heat transfer. It is
assumed that the external ow velocity is ue(x) = ax,
where the stretching/shrinking velocity is uw(x) =
bx. The coordinate system is selected such that the
direction of the ow be along the x � axis and the
y � axis be perpendicular to it. The magnetic force
with strength Bo is imposed in a vertical direction.
Moreover, nonlinear thermal radiation with Ohmic
heating and viscous dissipation is taken into account
in order to describe the thermal transport of a hybrid
nanouid. The melting surface temperature is assumed
to be Tm, whereas the free-stream temperature is T1,
where T1 > Tm. The ow structure of our considered
problem is depicted in Figure 1. Using the assumption
above, the ow problem is designed as follows:
@u
@x

+
@v
@y

= 0; (1)

Figure 1. Geometry of the problem.
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The boundary conditions is obtained by Eq. (4) as
shown in Box I. Letting:

u = axf 0 (�) ; v = �pa�ff (�) ;

� =
T � Tm
T1 � Tm ; � =

r a
�f
y; (5)

which satis�es Eq. (1) and converts the motion equa-
tion into the following:

1
�hnf =�f

�
�hnf
�f

f 000
�

+ ff 00 � f 02

+
�hnf =�f
�hnf =�f

M (1� f 0) + 1 = 0; (6)

Eq. (7) is shown in Box II. With the boundary condi-
tion Eq. (8) is obtained as shown in Box III. The in-
volved physical parameters are de�ned as follows: � =� b
a
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the Eckert number.

3. Physical quantities

The expressions for physical quantities are expressed
as follows:

Cf =
�w
�fu2

e
; and Nu =

xqw
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; (9)

where �w and qw denote the surface heat and mass
uxes that are de�ned as:
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The dimensionless form of Eq. (10) is:
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Box III
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4. Results and discussion

With the help of the shooting method, the governing
Eqs. (6) and (7) as well as the boundary condition
(8) are numerically solved. The dimensionless uid
velocity and temperature distribution, as well as the
skin friction coe�cient and heat transfer rate, are
depicted graphically in Figures 2 to 12 as a result
of changing various physical parameters. Throughout
the analyses, the numerical signi�cance is assigned to

grasp the physical purpose of the problem, M = 0:1,
me = 0:5, � = �0:2, Rd = 1:0, �w = 1:1, and
Ec = 0:1. In particular, the numerical values of Re

1
2Cf

and Re�
1
2Nu against the shrinking parameter � with

M = (0:1; 0:3; 0:5) are depicted in Figure 2(a) and
(b). From these illustrated upshots, we concluded
that the necessary values changed from the left to
the right when the magnetic parameter varied from
0.1 to 0.5, corresponding to �c = �2:8412 and �c =

Figure 2. Plot of M via Re
1
2Cf and Re�

1
2Nux.

Figure 3. Plot of me via Re
1
2Cf and Re�

1
2Nux.
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Figure 4. Plot of �2 via Re�
1
2Nux.

Figure 5. Plot of Ec via Re�
1
2Nux.

�4:3573. These Bifurcation values make it clear that
both branches of the solutions exist in the range
�c < �, whereas no solution is found outside of
turning points or when � < �c; only one branch is
discovered when � = �c. Figure 3(a) and (b) shows
the impact of me against the shrinking parameter �
on Re1=2

x Cfx and Re1=2
x Nux. These conclusions show

that improving the melting parameter force reduces
the skin friction coe�cient and heat transfer rate (in
an absolute sense). Figure 4 shows how the volume
fractions of nanoparticles a�ect the heat transfer rate.
Physically, due to an increase in the kinetic energy
of the system, the heat transfer rate declines. This
increase in kinetic energy improves the heat transfer

Figure 6. Plot of M via f 0(�).

Figure 7. Plot of � via f 0(�).

rate in the upper branch solution. The consequence
of the Eckert number Ec on Re1=2

x Nux is depicted
in Figure 5. Here, it is noted that the suspense in
a boundary layer separation is una�ected by boosting
the Eckert number. Therefore, the dual solutions are
exclusively valid up to the exact necessary value for all
Ec's. The pro�les f 0(�) for distinct values of Magnetic
�eld parameter M and shrinking parameter � are
shown in Fiures 6 and 7, respectively. The increment in
the values of these constraints improved the velocity of
the uid in the upper solution branch, while it declined
in the lower solution branch. Figure 8 illustrates
the impact of nanoparticle volume fraction on the
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Figure 8. Plot of �2 via f 0(�).

Figure 9. Plot of me via �(�).

uid velocity. Physically, the conduct is an outcome
of intermolecular oscillations of nanoparticles, thus
improving mass di�usion and reducing the ow �eld.
Figure 9 shows how the temperature curves are a�ected
by the melting parameter me. Further, it is noted
that when the melting parameter increases, the �rst
solution decays, whereas the second solution expands.
According to Figure 10, the temperature distribution
is elevated even at larger Eckert number Ec. Higher
values of Ec physically retain more heat energy in
the uid. Therefore, the friction forces ultimately
improve the temperature pro�le. In Figure 11, there

Figure 10. Plot of Ec via �(�).

Figure 11. Plot of Rd via �(�).

has been an increasing trend in the thermal distribution
for the radiation parameter Rd. The dominance of
heat radiation over conduction is, therefore, indicated
by higher values of Rd. As a result, rising values
show that the system is absorbing more radiative heat
energy, which raises the value of �(�). Temperature
distribution in the presence of melting heat increases
in the case of the upper and lower branch solutions as
the temperature ratio parameter �w increases in value,
as shown in Figure 12.

Thermophysical properties of hybrid nanouid
and nanouid are [29]:
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Table 1. Thermo-physical properties [29].

Physical properties cp (J/kgK) k (W/mK) � (kg/m3) � (S/m1)

Ag 235 429 10500 63 � 10�6

Go 717 5000 1800 6:30� 107

Kerosene oil 2090 0.145 783 21 � 10�6

Table 2. The numerical values of f 00(0) for shrinking parameter � when me = 0.

Bachok et al. [19] Wang [30] Present study
� F.S. S.S. F.S. S.S. F.S. S.S.

{1.0 1.3288170 0 1.32882 0 1.328873 0
{1.1 1.1866805 0.0492290 { { 1.186642 0.049924
{1.15 1.0822315 0.1167022 1.08223 0.116702 1.082431 0.116863
{1.2 0.9324739 0.2336497 { { 0.932743 0.235432

Figure 12. Plot of �w via �(�).
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:

Table 1 shows the thermo-physical properties of the
base uid of nanoparticles.

5. Tabular comparison

A comparison of f 00(0) for the shrinking case (� < 0)
is shown in Table 2, which demonstrates a positive
correlation with past research.

6. Concluding remarks

This study investigated the stagnation point ow of a
hybrid nanouid over a permeable shrinking surface.
Using similarity transformations, the boundary layer
governing equations were converted into nonlinear or-
dinary di�erential equations, which were then solved in
MATLAB using bvp4c. The impact of several dimen-
sionless constraints on uid velocity and temperature
distribution was scrutinized. The numerical results of
friction drag and heat transfer rates were discussed
concerning various parameters. The key �ndings of the
study are as follows:

� An increase in the melting parameter value sped up
the separation of the boundary layer and reduced
the velocity and temperature pro�les marginally;

� In the presence of magnetic parameter, the uid
velocity was reduced due to the produced Lorentz
force;
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� Larger radiative and temperature ratio parameter
caused a signi�cant increase in the thermal state and
related boundary layer thickness;

� For the thermal radiation parameter, the temper-
ature �eld of hybrid nano liquid was signi�cantly
enhanced;

� An increase in Eckert number and temperature ratio
parameter enhanced the temperature of the uid.
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Nomenclature

u; v Velocity components [ms�1]

vf Kinematic viscosity [m2s�1]

kf Thermal conductivity [kgmK�1s�3]

�f Density [kgm�3]

�f Dynamic viscosity [kgm�1s�1]

�f Thermal di�usivity [m2s�1]

(cp)f Speci�c heat [m2K�1]
�1 Ag volume fraction
�2 Go volume fraction
T Fluid temperature [K]
T1 Ambient temperature [K]
M Magnetic parameter
Pr Prandtl number
� Stretching/shrinking parameter
me Melting parameter
�w Temperature ratio parameter
Ec Eckert number
Rd Thermal radiation

For hybrid nanouid

khnf Thermal conductivity [kgmK�1s�3]

�hnf Thermal di�usivity [m2s�1]

(cp)hnf Speci�c heat [m2s�2K�1]

�hnf Dynamic viscosity [kgm�1s�1]

vhnf Kinematic viscosity [m2s�1]

�hnf Density [kgm�3]

For nanouid

knf Thermal conductivity [kgmK�1s�3]

�nf Thermal di�usivity [m2s�1]

(cp)nf Speci�c heat [m2s�2K�1]

�nf Dynamic viscosity [kgm�1s�1]

vnf Kinematic viscosity [m2s�1]

�nf Density [kgm�3]
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