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Abstract. Community detection is a signi�cant issue in extracting valuable information
and understanding complex network structures. Non-negative Matrix Factorization (NMF)
methods are the most remarkable topics in community detection. The Modularized tri-
factor NMF (Mtrinmf) method was proposed as a new class of NMF methods that combines
the modularized information with tri-factor NMF. It had high computational complexity
due to its dependence on the choice of the initial value of its parameter and the number
of communities (c). In other words, the Mtrinmf method should search among di�erent
candidates to �nd correct c. In this paper, a novel Hybrid adaptive Mtrinmf (Hamtrinmf)
method is proposed to improve the performance of Mtrinmf and reduce the computational
complexity e�ciently. In the proposed method, computational complexity reduction is
made possible by selecting the right c candidates and tuning parameter. For this purpose,
a hybrid algorithm including Singular Value Decomposition (SVD) and Relative Eigenvalue
Gap (REG) algorithms is suggested to estimate the set of c candidates. Next, the
Tuning parameter Mtrinmf (Tpmtrinmf) model is proposed to improve the performance
of community detection via employing a self-tuning � parameter. Moreover, experimental
results con�rm the e�ciency of the Hamtrinmf method with respect to other reference
methods on arti�cial and real-world networks.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Interconnected data and systems of di�erent areas can
be modeled as complex networks. These networks
represent community structures while understanding
these communities can provide helpful information
about interconnections like determining the closest
pro�les in social networks [1]. Therefore, community
detection is an important problem in complex network
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analysis, which clusters complex networks into cohe-
sive subgroups [2]. In recent years, the community
detection algorithm has been used in various scienti�c
�elds, such as nonlinear system decomposition and
feedback control design in electrical engineering [3], en-
tity resolution and pro�le matching in social networks
analysis [4], as well as exploring and understanding
complex network structures like biological networks,
social networks, and citation networks [1]. Nowadays,
substantial attention has been drawn to community
detection, and this topic has been presented based on
many methods from di�erent points of view. Some of
these methods are single-objective and multi-objective
evolutionary optimization [5,6], fuzzy clustering [7], La-
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bel Propagation Algorithm (LPA) [8,9], random walk
[10], and Non-negative Matrix Factorization (NMF).

Community detection based on NMF is a powerful
method for clustering data. Generally, the NMF algo-
rithm has found extensive applications in various �elds
such as audio source separation in audio mining [11],
image processing [12], prominent topics contained in a
document corpus in text mining [13], and community
detection in graph mining [14]. These �elds include net-
works clustering with di�erent similarity measures [15],
clustering improvement using topology and structure
similarity information [16], fuzzy clustering [17], semi-
supervised community detection method using prior in-
formation [18,19], robust NMF model using noisy prior
information [20], as well as multi-view and adaptive
clustering using the link and content information [14].
Moreover, community detection based on NMF is a
robust tool for detecting hidden communities in various
networks [21{23].

However, the NMF-based community detection
methods su�er from high computational complexity
or low accuracy of clustering by increasing the size of
networks due to the need to tune the internal hyperpa-
rameters and to determine the number of communities
(c) [14,24]. Therefore, they are not scalable or proper
for large networks. Actually, one of the important
requirements in NMF models is to select c. in advance.
Over the years, several approaches have been presented
to determine c. Some sequential approaches including
maximum modularity [24], maximum modularity den-
sities [25], and maximum general modularity densities
[25] aim to �nd the best c. On the other hand, some
approaches estimate c according to network features,
such as Singular Value Decomposition (SVD) [26,27],
cross-validation [28], Classical Multi-Dimensional Scal-
ing (CMDS), and Relative Eigenvalue Gap (REG) [29].
Obtaining the best c candidates from measurements
of complex network structures is of higher accuracy.
However, it is more time-consuming than estimation
approaches. While estimating c via less computa-
tional methods is preferred, higher accuracy relates
to network features with a long computation time.
Thus, identifying c is still an open challenging issue for
many networks, as emphasized in the related literature
[25,26]. Therefore, in this paper, a new method is
developed to estimate the correct c to be used in NMF
models.

As reviewed, the NMF-based community detec-
tion is a general method for all data types; therefore,
it does not consider any network feature and hidden
topological information. Modularity is one of the
various measurement criteria to evaluate the quality
of graph partitioning [1]. This criterion considers the
strength of relationship density of each edge within
every community and can regard the related nodes
between communities [30]. For this reason, the mod-

ularity criterion as an important criterion of network
clustering has been combined with the NMF method to
make the most of network feature [25,31]. Speci�cally,
Modularized tri-factor Non-negative Matrix Factoriza-
tion (Mtrinmf) was introduced in [25] as an advanced
NMF method for community detection. In the Mtrinmf
method, the modularized information is combined with
the NMF as the regularization term to improve the per-
formance of community detection. The method caused
a signi�cant improvement in identifying partitions and
modularity information. As its drawback, the Mtrinmf
model has a constant �, serving as a tuning parameter
whose best value is selected by trial and error. The
tuning � parameter via the current trial and error
strategy imposes signi�cant computational complexity
on this method. In addition, as a general drawback
of the NMF-based methods, selecting the best number
of communities (c) is a challenge that increases the
computational complexity of Mtrinmf.

Regarding the above discussions, in order to
improve performance and reduce the computational
complexity of the Mtrinmf, in this paper, a new
algorithm is proposed to obtain the number of clusters
and choose the best value for the tuning parameter �.
As a result, the hybrid of SVD and REG algorithms
will be adopted to determine the set of c candidates
with length K to reduce the dependence on network
features. The SVD algorithm is used to compute
singular values of the adjacent matrix, and the REG
algorithm determines the value ofK and then estimates
the set of c candidates with length K using the output
of the SVD algorithm.

Secondly, a novel NMF model called Tuning
parameter modularized tri-factor NMF (Tpmtrinmf)
will be proposed, which improves the performance of
community detection using a self-tuning � parameter.
Afterward, the best community candidates are selected
based on general modularity density information.

These steps form a promising novel community
detection method named Hybrid adaptive Modular-
ized tri-factor NMF (Hamtrinmf). By employing the
proposed method, the computational complexity is
reduced compared to the Mtrinmf method via selecting
the right c candidates and tuning the parameters.
Therefore, the main achievements of the proposed
method are high accuracy, internal adaptivity, low
complexity, and scalability for large networks. The via-
bility of the proposed algorithms would be investigated
on nine small/large-sized real-world networks and two
arti�cial ones.

In summary, the main achievements of this paper
are as follows:

� Unlike the Mtrinmf model, the Tpmtrinmf model
improves performance using a self-tuning � pa-
rameter, and an iterative method is developed for
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tuning �. This achievement not only reduces the
computational volume by avoiding the trial and
error in tuning �, but also improves the performance
of the community detection model;

� The provision of a solution for selecting the set of
c candidates is one of the innovations of this paper,
which reduces the computational volume, improves
performance of the community detection, and is
robust against the graph features;

� The proposed Hamtrinmf method outperforms other
reference methods by applying the set of c candi-
dates with length K by using the Tpmtrinmf model
and best community selector. Moreover, it has
reduced computational complexity compared to the
Mtrinmf method;

� The proposed approach has been evaluated on var-
ious arti�cial and real-world networks. According
to the experimental results, it is demonstrated that
the Hamtrinmf and Tpmtrinmf models outperform
other compared methods including the Mtrinmf
model.

The rest of the paper is organized as follows: Section 2
reviews related works on NMF algorithms. Section 3
demonstrates the proposed method and analyzes its
computational complexity. Section 4 presents sev-
eral experimental results of comparing the proposed
method with the other representative methods. Fi-
nally, Section 5 summarizes the proposed procedures
and achievements.

2. Related works

According to the previous section, community detec-
tion based on the NMF methods includes a class
of e�cient methods for clustering complex networks.
However, these methods have some disadvantages com-
pared to other community detection methods, such
as dependency on choosing the best internal param-
eters and the need for pre-determining the number
of communities (c). Therefore, in this section, NMF-
based community detection methods are reviewed and
discussed �rst. Then, several approaches such as
modularity and general modularity density indices
are presented to estimate correct c values. Finally,
extended models based on NMF are reviewed at the
end of this section.

2.1. NMF-based community detection
algorithms

Given an adjacent matrix A 2 Rn�n for the input
graph with n nodes andm edges, NMF models factorize
a given similarity matrix A into two new matrices
W 2 Rn�c and H 2 Rn�c: A ' WHT where W
and H are called community indicator feature matrix
and community relation matrix, respectively. The error

between A and WHT is measured by the cost function
JNMF (W;H). W and H are found by minimizing
JNMF (W;H) as follows:

min
W;H

JNMF (W;H) = jjA�WHT jj2F ; (1)

where jj:jjf stands for the Frobenius norm. As an
extension to NMF, Symmetric Nonnegative Matrix
Factorization (SNMF) can drastically improve com-
munity detection. In SNMF, A is assumed to be a
symmetric matrix and the objective function would be
rewritten as follows [25]:

min
H
JSNMF (H) = jjA�HHT jj2F : (2)

One of the other extensions of NMF model is tri-
factor NMF (triNMF) model that can factorize matrix
A into two non-negative matrices W 2 R+

c�c and
H 2 R+

n�c, where A ' HWHT [32,33]. H and W are
the community membership and community relation
matrix, respectively, and c denotes the number of
communities. The error between A and Trinmf model
(HWHT ) is measured by cost function JTrinmf (W;H)
as follows:

min
W;H

JTrinmf (W;H) =nXn

i=1

Xn

j=1
(Aij � (HWHT )ij)

2jo ;
s.t.:

H2Rn�c+ ;W 2Rc�c+ ;
Xc

r=1
Hir=1;8i=1; 2; :::; n; (3)

where Hij and Wij denote the existence probability of
node i in community r and the existing probability of
edges between i and communities j, respectively.

2.2. Several approaches to estimating correct c
values

2.2.1. Modularity
The modularity criterion determines the validity of
community detection based on the density of edges
in each cluster and intergroup communication [1,25].
Therefore, in general, community detection based on
modularity criteria can be rewritten as an optimization
problem with the following conditions [25]:

Q=
1

2m
tr(HTBH); B=A�B1; (B1)ij=

kikj
2m

; (4)

where B is the modularity matrix, A is the adjacent
matrix, ki is the degree corresponding to the nth node,
X = [Xijj] 2 Rn�c is the members matrix for each
cluster, and (B1)ij = kikj

2m .

2.2.2. General modularity density
The general modularity density index considers the
average inner degree and outer degree of each cluster.
The inner degree refers to the sum of the edges of
interval nodes in each cluster, and the outer degree is
the sum of edges between the nodes of the cluster with



M. Ghadirian and N. Bigdeli/Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 1068{1084 1071

the nodes of another cluster. It can be rewritten for k
number of partitions (fVcgc(r=1)) as follows [34]:

D�(fVcgcr=1)

=
Xc

r=1

2�l(Vr; Vr)� 2(1� �)l(Vr; V r)
jVrj ; (5)

where:

l(V1; V2) =
X

i2V1;j2V2
Aij ; l(V1; V2)

=
X

i2V1;j2V2
Aij ; V 1 = V nV1;

and Vr is the set of vertices in the rth community.
Furthermore, D� evaluates small and large clusters by
using ratio association and ratio cut for � < 0:5 and
� > 0:5, respectively. Therefore, D� equals modularity
density when � = 0:5. Advantages such as selecting
the best communities with di�erent sizes, not dividing
cliques, and resolving graph types are obtained by
selecting di�erent � values.

It is noteworthy that general QD is a generaliza-
tion of the modularity density, which is a combination
of the ratio cut and ratio association [19,34] and can
be written in a matrix form as in the following:

QD = tr(UT (2A� 2(1� �)C)U); (6)

where C is a diagonal matrix with values Cii =Pn
j=1Aij , U denotes a column vector whose element is

ur which satis�es ur = sirpnr . Moreover, nr represents
the number of nodes in the rth community and sir
indicates that node i belongs to the rth community.
QD equals the ratio association, modularity density,
and ratio cut for � = 0, � = 0:5, and � = 1,
respectively.

2.3. Extended models based on NMF
In recent years, a challenging topic for improving the
NMF-based methods has been the use of network fea-
tures (structure information, topological information,
and network speci�cations) or prior information. These
methods have resolved some of the shortcomings, but
they are still dependent on their internal parameter and
there is a need to select the correct c.

Although the Standard NMF model can o�er net-
work partitions, it may ignore some essential network
speci�cations such as modularity information [25]. Yan
and Chang [25] indicated Mtrinmf using modularity
information. The Mtrinmf model can be rewritten as
follows:

minW;H JMrinmf (W;H) =nXn

i=1

Xn

j=1
(Aij�(HWHT )ij)

2��tr(HTBH)
o

s.t.:

H 2 Rn�c+ ; W 2 Rc�c+ ; � > 0;Xc

r=1
Hir = 1; 8i = 1; 2; :::; n; (7)

where � is the weight of the modularized regulariza-
tion. Yan and Chang [25] showed that modularity
information enhancement made the Mtrinmf model
perform better than Trinmf. In addition, they demon-
strated that the Mtrinmf method, which is named
Mtrinmf+general QD, eliminated the requirement to
set the candidate number of communities (c) by em-
ploying general QD.

Lu et al. [27] proposed two semi-supervised NMF-
based methods: SVDCNMF and SVDCSNMF, which
used prior information to improve community detec-
tion. The SVDCNMF and SVDCSNMF methods im-
proved standard NMF and SNMF models, respectively,
and the objective function was represented as:

min
H

JSVDCSNMF (H)

=
����A�HHT ����2

F + 2�tr(HTLH); (8)

where L is the graph Laplacian of prior information.
In Eq. (8),

��A�HHT
��2
F refers to SNMF models and

2�tr(HTLH) represents the prior information term.
The SVD algorithm detects c, and the trial-and-error
approach estimates the correct � value.

Wu et al. [16] proposed a mixed hypergraph
NMF named Modularized Deep Nonnegative Matrix
Factorization (MDNMF) by combining NMF with
hypergraph regularization, which encoded the higher-
order information into NMF by hypergraph and made
use of structure similarity information and topological
connection information. The MHGNMF model was
divided into MHGNMFkl and MHGNMFsq models
based on the type of the community detection function.
However, the MHGNMFsq algorithm is preferred
due to use of the Frobenius norm in its optimization
function. The objective function of MHGNMFsq is
de�ned as:

min
W;H

JMHGNMF (W;H)

=
����A�WHT ����2

F + �tr(HTLhH); (9)

where Lh is a hyperlaplacian matrix, and tr(HTLhH)
term presents the structure similarity and topological
connection information. Both algorithms select the
best � using the trial-and-error approach.

Additionally, Zhang and Zhou [35] suggested a
new model named MDNMF, which combined modu-
larity with DNMF-based community detection. The
MDNMF model is composed as follows:

min
(Ui;H;M;C)

JMDNMF (U1; :::; Un;H;M;C)
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=
����A� U1:::UpHT ����2

F + �
����M �HTCT

����2
F

� �tr(HTBH) + �tr(HLHT );

s.t.:
Ui;M;C;H � 0; 8i = 1; 2; :::; p; (10)

where L and � denote the graph Laplacian matrix
and the regularization parameter, respectively, and
�tr(HLHT ) utilizes a regularized graph. Also, the
MDNMF model depends on the choice of �, �, and
� to extract the best cluster.

Ye et al. [36] proposed a novel model, named
Deep Autoencoder-like NMF (DANMF), for commu-
nity detection. Similar to deep autoencoder, DANMF
consisted of an encoder component and a decoder
component. This model was de�ned as:

min
(Ui;Hp)

JDANMF (U;H) =
����A� U1:::UpHp

T ����2
F

+
����Hp � UT1 :::UTn A����2F + �tr(HpLHp

T );

s.t.:
Ui;Hp � 0; 8i = 1; 2; :::; p: (11)

It should be noted that according to Eq. (11), choosing
the best � parameter would improve the DANMF
model. As a result, the performance e�ciency of
this method depends on the correct selection of the �
parameter. Therefore, eliminating the trial-and-error
approach to selecting this parameter may reduce the
computational complexity and improve the e�ciency
of this method, as well.

3. Proposed community detection method

As mentioned earlier, in the present paper, a new
Hamtrinmf method will be proposed to improve the
performance and reduce the computational complexity
of the Mtrinmf method. Figure 1 demonstrates the
owchart of the Hamtrinmf method. According to
Figure 1, the Hamtrinmf method is planned in three
parts as follows:

� Determining a set of c candidates with length
K: The SVD algorithm obtains singular values
of the adjacent matrix. Furthermore, the REG
algorithm identi�es the value of K and collects the
index of the largest members of the REG set with
length K and, then, organizes a set of c candidates;

� Tpmtrinmf model: a new model is proposed to
enhance the performance of the Mtrinmf model by
introducing a self-tuning parameter;

� Best community selector: The general modular-
ity density is used to identify the best community
detection among the K outputs of the Tpmtrinmf
model for complex networks.

In this section, three parts of the Hamtrinmf method
are introduced. Afterward, the computational com-
plexities of the Hamtrinmf and Mtrinmf methods
are computed to demonstrate that complexity of the
Hamtrinmf method is lower than that of the Mtrinmf.

3.1. Determining a set of c candidates with
length K

Several methods have been proposed to determine the
number of communities (c) [14{16]. In this paper, a
hybrid method based on SVD and REG is employed.
The SVD equation for adjacent matrix A is expressed
as follows:

A = USV T ; S = diagf�1; �2; :::; �ng; (12)

where S denotes a diagonal matrix and diagonal entries
�i of S are singular values of A. After calculating
singular values, it is needed to �nd di�erences between
the two eigenvalues of the matrix called spectral or
eigenvalue gap, which is used for determining c. The
REG method suggested in [16] was �rst used in CMDS
methods. Since the eigenvalues found by the REG
method for CMDS are similar to the singular values
of the adjacent matrix A, in this paper, the generalized
REG method is extended to identify the existing gaps.
The output of the REG algorithm for SVD outputs is
as follows:

Figure 1. Flowchart of the Hamtrinmf method.
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REGi =
�i�1 � �i

�i
; 8i = 2; :::; h;

REG = fREG2; REG3; :::; REGhg; (13)

where h indicates the number of positive singular values
in the mentioned adjacent matrix; on the other hand, it
is better to ignore singular values close to zero because
it may cause a computational error.

For determining the set of c candidates with
length K, the RS set (Eq. (14)) is formed from sorting
REG (Eq. (6)) from maximum to minimum values
(REGj1 > REGj2 > ::: > REGjh�1 ; j1; j2; :::; jh�1 2f2; :::; hg).
RS = fREGj1 ; REGj2 ; :::; REGjh�1g: (14)

Finally, the set of c candidates (Eq. (15)) includes the
indexes of the �rst K members of RS set.

c 2 fj1; j2; :::; jkg: (15)

For identifying K values, the gaps between members of
RS are computed as performed in the REG algorithm
(Eq. (16)):

REGRS =
REGji�1 �REGji

REGji
; 8i = 1; :::; h� 1;

REGRS=fREGRS1 ; REGRS2 ; :::; REGRSh�1g: (16)

At last, K is equal to the index of the maximum value
of REGRS set as follows:

K=arg maxfi jmaxfREGRSi ; i=1; :::; h� 1gg: (17)

Figure 2 is a toy example for small graphs. The
input graph is �rst converted into an adjacent matrix
and, then, for the proposed SVD and REG algorithms,
three di�erent diagrams of singular value, REG, and
REGRS are plotted with respect to Eqs. (12), (14),
and (16). Finally, the best set of c with length K is
computed by Eq. (17).

3.2. Tpmtrinmf model
The dependency of the Mtrinmf model on the selec-
tion of � parameter [25] prompted the authors to
modify the cost function of Mtrinmf to include the
self-tuning � parameter to improve its performance.
On the other hand, as mentioned earlier, in Eq. (7),Pn
i=1
Pn
j=1 (Aij � (HWHT )ij)

2 is a clustering term
and is a modularity term, which is added to improve
the performance. Since � has no upper bound and the
clustering term is more important, the cost function
of the Mtrinmf must always be positive. As a result,
the modi�ed cost function including the self-tuning �
parameter is designed as the following:

min
W;H;�

JTpmtrinmf (W;H; �) =nXn

i=1

Xn

j=1
(Aij � (HWHT )ij)

2 � �tr(HTBH)
o
;

s.t.:

H 2 Rn�c+ ;W 2 Rc�c+ ; � > 0;Xc

r=1
Hir = 1; 8i = 1; 2; :::; n; (18)

where A and B matrices are symmetric; therefore, the
input graph is undirected. Moreover, W matrix is
symmetric, as well.

Since the matrices W and H as well as the
parameter � are nonnegative, the cost function in
Eq. (18) can be solved by the Lagrangian method.
Therefore, the Lagrangian cost function is derived as:

L(W;H; �) = tr(AAT )� 2tr(AHWTHT )

+ tr(HWHTHWTHT )	

� �tr(HTBH) + tr(�HT )

+ tr(�WT ) +  �: (19)

Figure 2. Flowchart of the SVD and REG algorithms.
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If �, �, and  are the Lagrangian coe�cients for
constraints W;H; � � 0; then, derivative of the
L(W;H; �) function with respect to W , H, and � will
be as follows:
�L
�H

= �+ 4HWHTHWT � 4AHWT � 2�BH;

�L
�W

= � � 2HT (A�HWHT )H;

�L
��

=  � tr(HTBH): (20)

Finally, using B = A � B and according to Karush-
Kuhn-Tucker (KKT) condition, i.e.,  � = 0, �irhir =
0, and �rswrs = 0, Eq. (21) will be derived as:

(4HWHTHWT )irhir � (4AHWT )irhir

�(2�AH)irhir + (2�B1H)irhir = 0;

2(HTHWHTH)rswrs � 2(HTAH)rswrs = 0;

tr(HTB1H)� � tr(HTAH)� = 0: (21)

Therefore, iterative updating rules for W , H, and � are
expressed as follows:

Hir := Hir
(2AHWT + �AH)ir

(2HWHTHWT + �B1H)ir
;

Wrs := Wrs
(HTAH)rs

(HT (HWHT )H)rs
;

� := �
tr(HTAH)
tr(HTB1H)

: (22)

In order to establish the condition of
Pc
r=1Hir = 1 in

the optimization function, it is su�cient to have:

Hir =
HirPc
r=1Hir

: (23)

3.3. Convergence analysis and calculated
upper bound of �

In order to prove the convergence shown in Eq. (22)
and (23), the following theorems are considered.

Theorem 1: JTpmtrinmf in Eq. (18) does not increase by
updating H via Eq. (22) while �xing other variables.

Theorem 2: JTpmtrinmf in Eqs. (18) does not increase
by updating W via Eq. (22) while �xing other
variables.

Theorem 3: JTpmtrinmf in Eq. (18) does not increase
by updating � via Eq. (22) while �xing other variables.

It is noted that for a brief report, the proof
of Theorem 1 was given in [37] and the proofs of
Theorems 2 and 3 were presented in [14].

The only thing that can be presented in the proofs
of Theorem 1 is the constraint on the � parameter for
convergence. If the main function is de�ned, the proof
of the �rst theorem is as follows:
F (H) = �2tr(AHWTHT ) + tr(HWHTHWTHT )

� �tr(HTBH): (24)

The �rst- and second-order derivatives are as follows:
�F
�Hij

=(4HWHTHWT� 4AHWT � 2�BH)ij ; (25)

@2F
@Hii

2 = (12HWWTHT � 4AWT � 2�BT )ii: (26)

In order for the second-order derivative function to be
positive, it is su�cient to de�ne the � parameter as
follows:

(12HWWTHT � 4AWT � 2�BT )ii >

0! � <
6(HWWTHT )ii � 2(AWT )ii

Bii
: (27)

Therefore, the parameter � is constrained by the
following boundaries:

0 < � < min
�

6(HWWTHT )ii � 2(AWT )ii
Bii

�
: (28)

Finally, according to Eqs. (22) and (28), the Tpmtrinmf
model is proposed in Algorithm 1.

3.4. Best community selector
In recent years, several model selection methods, such
as model selection based on modularity information
[38], model selection based on modularity density
information [19], and general modularity density infor-
mation [25], have been employed to recognize the best
community selection. According to the advantages of
general modularity density information in [25], in the
present paper, this criterion was used to select the best
community.

Figure 3 is a sample chart presenting the proposed
Hamtrinmf algorithm for a toy example. In this
method, �rst, the best candidates of c are found by
REG and SVG algorithms and then, several practicable
clusters are proposed for Tpmtrinmf model. At last, by
using general modularity density, the best clustering is
chosen.

4. Experiments, results, and analysis

In this section, various real-world and arti�cial test net-
works are introduced �rst. Then, evaluation matrices
are discussed to evaluate the performance and capabili-
ties of the proposed method compared to othercommu-
nity detection approaches. Finally, the computational
complexities of the Hamtrinmf and Mtrinmf methods
are compared.
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Algorithm 1. Tpmtrinmf model.

Figure 3. Flowchart of Hamtrinmf method.

4.1. Datasets
In this paper, nine real-world and two arti�cial bench-
mark networks are selected and used to evaluate
di�erent community detection methods. The real-
world datasets include the Zachary karate club network

(Karate) [39], Jazz network (Jazz) [40], Political books
network (Political books) [41], Lusseau's bottlenose
dolphins social network (Dolphins) [42], and American
college football network (Football) [43] as small real-
world networks, while the Political blogosphere net-
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Table 1. Real-world networks information.

Networks n m �c

Karate [39] 34 78 2

Jazz [40] 198 2742 4

Political books [41] 105 441 3

Dolphins [42] 62 159 4

Football [43] 115 613 12

Polblogs [21] 1490 16718 2

Cora [21] 2708 5429 7

Citeseer [21] 3312 4732 6

Pubmed [21] 19717 44338 3

work (Polblogs), Cora citation network (Cora), Cite-
seer digital library networks (Citeseer), and Pubmed
citation network (Pubmed) stand for large real-world
networks [21]. The information on real-world networks
is listed in Table 1. As mentioned before, c denotes the
number of ground-truth communities. In addition, two
arti�cial networks named Girvan-Newman (GN) and
Lancichinetti-Fortunato-Radicchi (LFR) are presented
in the following:

� LFR: The LFR networks were introduced by Lanci-
chinetti et al. [44]. This network has some essential
characteristics of networks, such as power-law distri-
bution of node degrees and community size. In order
to evaluate community detection methods on this
network, the parameters of generated LFR network
are de�ned as follows. The number of nodes is 700.
The network's average degree and maximum degree
are 20 and 50, respectively. The power-law exponent
for degree distributions is �3, and the power-law
distribution of community size is �1. Note that the
community size ranges from 20 to 60 nodes. Finally,
the mixing parameter � varies between 0.1 and 0.9.

� GN: The GN network was proposed by Girvan-
Newman [25]. This network consists of 128 nodes
and four non-overlapping communities, with 32
nodes in each community. The average degree of
each node is equal to Zin + Zout = 16, where Zin
and Zout denote the internal and external degrees of
the nodes, respectively.

4.2. Assessment standards
In this paper, Normalized Mutual Information (NMI)
and modularity information (Q) are applied to assess
the accuracy of di�erent community detection meth-
ods. The NMI information is extensively applied in
networks to compare the similarity between the ground
truth partition labels and partition labels. The NMI
information is de�ned as Eq. (29):

NMI(C;C 0) =

�2
jCjP
i=1

jC0jP
j=1

nCi\C0j log
�
nCi\C0jn
nCinC0j

�
jCjP
i=1

nCi log
�nCi
n

�
+
jC0jP
j=1

nC0j log
�nC0j

n

� ; (29)

where nCi denotes the number of members in partitions
Ci and jCj is the number of partitions in C. If NMI
equals one, the partition labels are equivalent to the
ground-truth partition labels.

4.3. Results and comparative analysis
4.3.1. Experimental results of the proposed algorithm

for determining c
In order to specify the number of communities (c), the
proposed algorithm for determining c candidates with
length K is executed on nine real-world networks, as
well as the GN arti�cial network. Singular and REG
values for the ten networks are shown in Figure 4, and
REGRS set of each network (as represented in Eq. (16))
is plotted versus REG values in Figure 5. According
to Eq. (17) and Figure 5, K is equal to the index of
maximum value of REGRS . By considering the Karate
network in Figure 5, the maximum value was observed
for K = 2; therefore, there are two candidates for
c. According to Eq. (14) and Figure 4, the set of c
will be f2; 4g for the Karate network. Similarly, there
are c 2 f2; 11; 12g for Football network, c 2 f2; 4g
for Jazz network, c 2 f2; 3; 4g for Dolphins network,
c 2 f2; 4; 6; 7; 9; 17g for Citeseer network, c 2 f2; 3g
for Polblogs network, c 2 f2; 4; 6; 7g for Cora network,
c 2 f2; 3; 4g for Pubmed network, c 2 f3g for Polbooks
network, and �nally c 2 f2; 4g for GN network. By
comparing the number of ground-true communities c in
Table 1 with a set of c candidates of the ten networks,
it is observed that for each network, �c exists in the
proposed set of candidates obtained from Eqs (14) and
(17). For example, for the Karate network, �c = 2 and,
therefore, �c 2 c = f2; 4g. Consequently, the proposed
algorithm for determining c candidates can �nd the
right candidate q.

4.3.2. Performance comparison between Tpmtrinmf
and Mtrinmf models

In this subsection, the e�ciency improvement of the
Tpmtrinmf model (by self-tuning � parameter) is
compared to that of the Mtrinmf model in three
parts. At �rst, it is shown that the proposed model is
independent of the initial value of � in modularity in-
dex. Then, the performance improvement is illustrated
based on the Tpmtrinmf model with respect to the
Mtrinmf model. Afterward, it has been shown that the
Tpmtrinmf algorithm could self-tune the � parameter.

One of the advantages of the Tpmtrinmf model
is veri�ed by the self-tuning � parameter. Therefore,
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Figure 4. Singular and REG values of nine real networks and the GN arti�cial network. The set of c candidates is
speci�ed for each diagram on the network.

Figures 6 and 7 indicate the modularity information
(Q) for di�erent values of � and NMI for the two com-
pared community detection models, respectively. Ten
independent experiments with random initializations
and the same inputs were executed for comparison.
The nonlinear behaviors of the Mtrinmf model for
di�erent initial values of the � parameter for various
datasets are shown in Figure 6. As seen, the behavior
of the graphs shows three regimes for all types of
networks: increasing, increasing with one extremum,
and decreasing with one extremum. In other words, al-
most no constant graph is observed for Mtrinmf model.
This observation is representative of the dependency of
the Mtrinmf performance on the correct choice of the
initial � value. On the other hand, it is clear from
Figure 6 that the Tpmtrinmf model not only improves
the modularity information average with respect to
Mtrinmf model, but also is less sensitive to initial
values of �. That is, the modularity average is almost
independent of the initial values of �. Therefore, an
arbitrary initial value for � can be selected with no
worries about its convergence to the actual value.

According to Figure 7, since the Tpmtrinmf
model uses only the modularity index, it cannot be
independent of di�erent initial values of �, which is
not the case in the proposed Tpmtrinmf model.

In Figure 8, the time evolution of � for the two
mentioned methods is indicated for the LFR arti�cial
networks with � = 0:3 and seven real networks.
According to Figure 8, the �nal values of � indicate
that the proposed algorithm can powerfully handle
various � initializations.

4.3.3. Performance analysis of Hamtrinmf method
In this section, the comparative results of the proposed
Hamtrinmf method will be examined on real-world
and arti�cial networks. The proposed method will
be compared with other NMF-based methods, such
as triNMF [32], Mtrinmf [25], MHGNMFsq [16],
and DANMF [36]. The Mtrinmf model indicates
that modularity information enhancement makes the
Mtrinmf model perform better than the Trinmf model.
So, the Mtrinmf method eliminates the requirement
to set the candidate number of communities (c) by
employing general QD. The MHGNMF sq model
improves the NMF-based community detection by
the structure similarity and topological connection
information (hyperlaplacian matrix), and the DANMF
model proposes a novel Deep Autoencoder approach
to improve performance. Moreover, our method will
be compared with other methods such as modularity-
specialized Modularity-specialized label propagation
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Figure 5. Identifying the values of K from REGRS set for the ten networks.

Figure 6. The modularity information (Q) of the two compared methods versus various initial values of � for di�erent
networks.
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Figure 7. The NMI of two compared methods versus various initial values of � for GN and LFR networks.

Figure 8. Time evolution of the self-tuned � of Tpmtrinmf compared to constant � of Mtrinmf models.

algorithm (LPAm) [45], CNM [46], Infomap [10],
Louvain [47], and Low-rank Subspace based Network
Community Detection (LRSCD) methods [48]. The
LPA method obtains community detection based on
node label propagation power [8,9]. Accordingly,
Barber and Clark extended LPA and proposed the
LPAm by relating it to modularity information [45].
The CNM is a popular community detection method
based on fast greedy optimization to directly solve
modularity information [46]. The Louvain method of
community detection optimizes modularity locally on
all nodes to �nd small communities and group each
of them into one node [47]. Moreover, Infomap is
another community detection method based on ow

running dynamic by random walk [10], and LRSCD
is a community detection model based on a low-rank
decomposition strategy for decomposing each node
vector in a new space (the geometric space) [48].

In Table 2, the best experimental results of
compared methods are listed according to modularity
information (Q) on nine real-world networks. In
Figures 9 and 10, di�erent c estimations and the
comparative results based on NMI are presented for
GN and LFR arti�cial networks by di�erent methods.
In Figure 11, ten experimental results on GN and
LFR networks are shown for NMF-based community
detection models. Note that since the Louvain and
CNM methods perform similar community detection
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Table 2. Comparison of modularity information (Q) for di�erent methods and sets.
Method
Set

Hamtrinmf
Mtrinmf

[25]
Trinmf

[32]
MHGNMFsq

[16]
LRSCD

[48]
DANMF

[36]
Infomap

[10]
LPAm

[45]
CNM [46]/
Louvain [47]

Karate 0.419 0.419 0.330 0.419 0.419 0.408 0.403 0.397 0.383
Jazz 0.444 0.442 0.423 0.444 0.442 0.441 0.442 0.444 0.444
Political books 0.526 0.526 0.481 0.526 0.520 0.512 0.526 0.520 0.508
Dolphins 0.528 0.526 0.338 0.526 0.526 0.511 0.520 0.518 0.498
Football 0.605 0.603 0.508 0.605 0.603 0.596 0.603 0.603 0.556
Polblogs 0.42546 0.42522 0.42446 0.4252 0.4252 0.4252 0.423 0.4256 0.4256
Cora 0.701 0.688 0.601 0.6663 0.629 0.647 0.231 0.526 0.660
Citeseer 0.766 0.712 0.630 0.712 0.630 0.687 0.798 0.551 0.724
Pubmed 0.594 0. 581 0.567 0.581 0.473 0.581 0.726 0.44 0.751

Figure 9. (a) Comparing the performance of di�erent methods for GN networks based on NMI and (b) Number of
communities (c) of GN network.

Figure 10. (a) Comparing the performance of di�erent methods for LFR networks and (b) Di�erence between the
number of communities (c) and ground-truth (�c = 22) (Diffc = c� �c).

Figure 11. Performance comparison of di�erent models for GN networks (a) and for LFR networks (b).
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for all types of networks in Table 1, their results have
been merged in one column in Table 2. However,
the run times of these two methods are di�erent
and compared in the following. The results can be
summarized as follows:

� By referring to Table 2, the Hamtrinmf method
�nds the highest modularity information (Q) and
shows the best community detection based on NMF
methods;

� In the Pubmed network in Table 2, CNM and In-
fomap have better clustering than other NMF-based
methods. Due to the computational errors in large-
scale networks, NMF-based community detection
usually su�ers from clustering errors. However, the
Hamtrinmf performs better clustering than other
methods;

� In Figure 9, the Hamtrinmf and LPAm methods
outperform the Mtrinmf and Infomap approaches.
Moreover, since c must converge to �c = 4 on GN
network, the Hamtrinmf method has fewer detection
errors versus di�erent values of Zout than other
methods;

� In Figure 10, the Hamtrinmf method performs
better than the Mtrinmf approach. At � < 0:4,
the Infomap method outperforms other approaches.
However, the Hamtrinmf and LPAm methods out-
perform the Mtrinmf and Infomap methods for � >
0:5;

� In Figure 11, by assuming the correct value of c, the
Tpmtrinmf model improves the performance of the
Mtrinmf model and provides better clustering than
other NMF-based community detection models.

For comparison, the results of ten independent experi-
ments with random initializations and the same inputs
are shown in Figures 9 and 10.

4.4. Computational complexity analysis and
comparison

In this section, Hamtrinmf and Mtrinmf methods are
compared in terms of computational complexity. The
computational complexity analysis of the Hamtrinmf
method is conducted in three parts:

(i) Finding the complexity of determining a set of c
candidates with length K;

(ii) Evaluating the complexity of executing the
Tpmtrinmf model;

(iii) Computing the complexity of evaluation and
selection of the best community.

In the �rst part, the main computational complexity
includes two steps: (i) Estimating c candidates
using SVD and REG algorithms and (ii) Selecting
K largest values in the REG set. The complexity

orders of SVD and REG algorithms are O
�
n3�

[27] and O (2h), respectively. In addition, the
computational complexity is O (Kh). Since
h;K 00n, the total complexity of this part will be
O
�
n3� + O (2h) : + O (Kh) � O

�
n3�. In the second

part, the main computational complexity consists of
calculating the updating rules H, W , and �. At one
iteration, the complexity order of the updating rules H
and W matrices is O

�
cn2�+ O

�
c2n
�

+ O
�
c2
�

+ O (cn)
[25,48]. The updating rule for � parameter includes
numerator, denominator, and conditions. By ignoring
the calculated matrices such as B1H and HWHT ,
the complexity will be O (2nc) + O

�
n2� + O (4nc) for

all of them. Since c00n, the total computational
complexity of this part for It iteration is
O
�
Itcn2�+O

�
Itc2n

�
+O

�
Itc2

�
+O (Itcn)+O

�
Itn2��

O
�
It (c+ 1)n2�. In the third part, since the

modularity density is used to select the best
community, the complexity order of the community
selection stage will be O

�
(c+ 3)n2�.

Finally, by applying the number of c candidates
with length K, the total computational complexity
of the Hamtrinmf method is O

�
KIt (c+ 1)n2� +

O
�
K (c+ 3)n2� + O

�
n3�. Although Hamtrinmf and

Mtrinmf methods [25] are similar, they are di�erent in
choosing c candidates and selecting the best � param-
eter. By applying a di�erent number of c candidates
with length K 0 and K 00 and di�erent values of the �
parameter, the total complexity of Mtrinmf method is
O
�
K 00K 0Itcn2� + O

�
K 00K 0 (c+ 3)n2�. Karimi-Majd

et al. [49] assumed c 2 �2; 3; : : : ; n
3

	
, whereas each

cluster had more than three nodes. In addition, since
K 0 = n

3 and K 00K 0, the computational complexity of
the Hamtrinmf method is smaller than the Mtrinmf
method, implying that:

O
�
KIt (c+ 1)n2�+ O

�
K (c+ 3)n2�

+ O
�
n3� < O

�
Itcn3

3

�
< O

�
K 00K 0Itcn2�

+ O
�
K 00K 0 (c+ 3)n2� : (30)

To compare the run times of di�erent approaches,
the run times of �ve methods and models on nine
real-world and two synthetic networks were recorded,
as shown in Tables 3 and 4. It is clear from Ta-
ble 3 that the Louvain method is faster than other
methods. Mtrinmf, on the other hand, has a longer
execution time than others. Hence, from the run time
perspective, our algorithm is inferior to CNM and
Louvain, but better than Mtrinmf methods. The run
times in Table 4 show that Tpmtrinmg is quite close
to the MHGNMFsq, Mtrinmf, and Trinmf models
for a speci�c internal parameter, but is faster than
DANMF. However, according to the results of Tables 1
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Table 3. Comparison of run times (seconds) for di�erent methods and sets.
Method
Set

Karate Jazz Political books Dolphins Football Polblogs Cora Citeseer Pubmed GN LFR

Hamtrinmf 0.871 4.22 34.86 1.36 2.69 51.74 1208.1 1680.0 61241 1.628 87.07
Mtrinmf [25] 11.670 65.61 981.96 7.58 14.96 454.30 5891.3 21098.7 { 7.205 483.29
Infomap [10] 0.203 0.91 0.86 0.28 0.97 4.13 14.7 16.6 4030 0.449 5.10
LPAm [45] 0.428 2.18 0.98 0.71 2.08 13.12 66.8 76.2 5837 0.891 24.84
CNM [46] 0.118 0.80 0.63 0.18 0.67 2.56 9.3 11.7 1916 0.127 3.12
Louvain [47] 0.062 0.47 0.56 0.92 0.29 1.09 5.9 4.9 1001 0.051 1.82

Table 4. Comparison of run times (seconds) for di�erent models and sets.
Method
Set

Karate Jazz Political
books

Dolphins Football Polblogs Cora Citeseer Pubmed GN LFR

Tpmtrinmf 0.233 1.65 34.86 0.401 0.810 26.04 228.14 321.21 61241 0.361 23.17
MHGNMFsq [16] 0.225 1.28 27.16 0.368 0.705 21.12 189.10 245.32 28875 0.301 16.91
DANMF [36] 0.276 2.15 42.73 0.490 1.12 35.18 290.73 450.12 190890 0.440 34.99
Mtrinmf [25] 0.227 1.37 28.74 0.376 0.731 22.78 200.58 250.48 32510 0.313 20.07
Trinmf [32] 0.225 1.19 21.02 0.327 0.653 19.32 173.06 213.29 21653 0.290 15.15

to 4, one can conclude that our methods are more
adaptable, more exible, and less sensitive with better
performance than other methods by using the tuning
parameters approach and the algorithm of selecting the
best number of communities, while it is fast enough,
too.

The machine used for the present study is powered
with Intel Core i7-6770 CPU and 8 GB RAM with
64-bit Windows 10 and Python (version 3.5) as the
selected software.

5. Conclusions

This paper proposed a novel community detection
method based on Non-negative matrix Factorization
(NMF) called Hamtrinmf with an improved commu-
nity detection performance and reduced computational
complexity. First, the combination of Singular Value
Decomposition (SVD) and the Relative Eigenvalue
Gap (REG) was proposed to determine the set of
candidates for the number of communities (c) with
length K. Afterward, the Tuning parameter Mtrinmf
(Tpmtrinmf) model was applied for community detec-
tion as an extension to Modularized tri-factor NMF
(Mtrinmf) method using a self-tuning � parameter.
Finally, general modularity density was used to obtain
the best community in Hamtrinmf method. The
experiment results of real-world and arti�cial networks
demonstrated the e�ciency of the proposed method.
The computational complexity analysis proved that
the Hamtrinmf method was faster than the Mtrinmf
approach. In future works, the idea of self-tuning
parameters can be generalized for other NMF-based
community detection methods with the aim of both re-
ducing their computational complexity and improving
their performance. Moreover, it is possible to develop
extended hybrid methods employing the combination

of di�erent similarity matrices of a graph, such as
adjacency matrix, Laplacian matrix, etc., to improve
the estimation of c.
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