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Abstract. Best cancer treatment should reduce the density of tumor in a minimum time
with few side e�ects, considering the input limitations. In this paper, a tracking controller
was designed to achieve the mentioned objectives, simultaneously. An Ordinary Di�erential
Equations (ODEs) based mathematical model of a human body under chemovirotherapy
was selected, which included the uninfected and infected tumor cells, free viruses, immune
cells, and a chemotherapeutic drug. Stability analysis was employed to determine the
sensible equilibrium points. For tracking purposes, a servo controller based on the Entire
Eigenstructure Assignment (EESA) approach was applied to the model, continuously and
discretely. By regulating the command input properties, an optimal treatment duration
with limited drug dosage and virus dosage was determined. The results indicated that the
discrete controller performed smoother than the continuous controller. Thus, an optimal
discrete treatment schedule with optimum duration of drug and virus delivery was proposed.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Cancer is one of the most prominent life-threatening
diseases. More than three-quarters of the 20.4 million
premature deaths are related to Noncommunicable
Diseases (NCDs), and cancer is the cause of 30%
of NCDs deaths [1]. Cancer patients struggle with
physical, emotional, and �nancial impacts of the illness

*. Corresponding author. Tel.: +98 21 66165545;
Fax: +98 21 66000021
E-mail addresses: mobaraki.mobina@mech.sharif.edu (M.
Mobaraki); hamedmoradi@sharif.edu (H. Moradi)

doi: 10.24200/sci.2022.57853.5445

[2]. Then, selecting the best treatment can improve
human health and reduce the �nancial concerns [3].

Chemotherapy is one of the adjuvant treatments
that can eradicate the tumors after the surgery. Long-
term and high-dose drug intake can result in drug
resistance and toxicity, respectively. Therefore, opti-
mal drug schedule is vital to chemotherapy. In [4],
an experiment on 905 colon cancer patients was con-
ducted to examine the e�ectiveness of drug frequency
(semimonthly and monthly) and treatment duration
(24 and 36 weeks). They reported that the drug's
high frequency reduced the toxicity, with no impact on
treatment duration. They also revealed that long-term
treatment would reduce drug dosage.

Virotherapy is another cancer treatment with
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great tolerance in patients. It employs oncolytic viruses
to infect and lyse tumor cells. The viruses stimulate the
immune cells against tumor cells and colonize multiple
distant tumor sites.

The emergence of chemovirotherapy, which is
the combination of chemotherapy and virotherapy,
can enhance the survival probability by reducing the
drug dosage and increasing the tumor infection rate
[5]. Research on chemovirotherapy reported that the
kind of oncolytic viruses, cancer type targeted, drug
combination used, treatment duration, drug frequency,
and dosage would play the most important role in
combination therapy [6]. Although most studies on
chemovirotherapy are conducted in a preclinical area
[7,8], recent experimental and theoretical research ex-
hibits interesting results [9{11].

Developing mathematical models to predict the
tumor behavior can be time and cost e�cient in com-
parison with experimental tests. The existing models
can be classi�ed from the viewpoint of cancer hallmarks
[12]. Moreover, a review of existing non-spatial mathe-
matical models was conducted in [13]. Several models
were developed to explain the dynamics of chemother-
apy [14{18] and virotherapy [19{22]. Malinzi et al. [23]
in 2017 suggested the parabolic nonlinear Partial Dif-
ferential Equations (PDEs) that demonstrate the dy-
namics of tumor cells under chemovirotherapy. Their
model simulated the uninfected and infected tumor
cells, a free virus, and chemotherapeutic drug. They
reported chemovirotherapy to be more e�ective than
chemotherapy or virotherapy alone. They improved
their model by adding immune cells and evaluateing
the e�ect of drug fusion [11].

To determine the optimal treatment schedule, the
optimal control approach was de�ned [24]. There are
3 di�erent optimal approaches to solving the prepared
models: analytical, approximation, and heuristic solu-
tions [25]. Other methods like the ones in [26] used
the stochastic model to maximize the probability of
successfully treating cancer with no toxicity.

Although various combination cancer therapies
have been investigated, designing the optimal schedule
is an open question due to high nonlinearity and
complexity in the models. Therefore, developing an
easy-to-solve mathematical model with sensible results
is necessary. Moreover, designing optimal approaches
to solve these models and satisfy the treatment objec-
tives can have a great impact on experimental cancer
treatments.

In this paper, a tracking controller based on
Entire Eigenstructure Assignment (EESA) method is
designed to reduce the density of the tumor with a min-
imum time duration, limited drug, and virus dosage.
A recently developed mathematical model of avascular
tumor cells by Malinzi et al. [27] is considered that
simulates the e�ect of immune cells. Then, the discrete

and continuous controllers are applied to the nonlinear
model. Finally, treatment duration, command tracking
properties, and sampling instant for discretizing are
discussed as e�ective factors, which contribute to the
smoothness of the closed-loop system response.

2. Mathematical model of cancer
chemovirotherapy

One of the most e�cient ways to simulate and predict
the tumor's behavior is to extract an optimal mathe-
matical model. The model nonlinearities result in a
complex solution. Deriving the optimal model that
comprises complexities and realities is still an open
question.

2.1. Model descriptions and assumptions
In this paper, Malinzi's model [27] is selected and it
consists of 6 states of avascular tumor cells. The model
simulates the infected and uninfected tumor cells, free
viruses, drug concentration, and immune cells under
chemovirotherapy treatment.

The model is divided into three parts: virother-
apy, immune cells, and chemotherapy. First, a fun-
damental model was proposed in [28] to represent the
infected and uninfected tumor cells in the presence of
virotherapy as:

dx
dt

= xF (x; y)� �yG(x; y); (1)

dy
dt

= �yG(x; y)� ay; (2)

where x and y represent the uninfected and infected
tumor cells, and F and G are the functions that
describe the growth properties of x and y, respectively.
� and ay are infectivities of the virus and the rate of
infected tumor cell death.

Free virus actions and virus burst size are essential
for the dynamics of virotherapy. A virus burst size is
a number of newly released viruses during the lysis of
an infected cell. Malinzi's model is based on Ordinary
Di�erential Equations (ODEs) [29], considering both
virus burst size (b) and free viruses (v).

dx
dt

= �x
�

1� x+ y
K

�
� �xv; (3)

dy
dt

= �xv � �y; (4)

dv
dt

= b�y � �xv � 
v: (5)

The tumor growth in Eqs. (3){(5) is modeled by
the logistic growth and K is the maximum tumor size.
x; y; �; 
; �, and � are the population of uninfected
and infected tumor cells, the rating of infected tumor
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cells, free virus death, the tumor growth rate, and the
inactivity of the virus, respectively.

Second, the e�ect of immune cells is simulated.
A model was presented [30] that demonstrated the
interaction between the tumor (T ) and immune cells
(E) as follows:
dE
dt

= s+
pET
g + T

�mET � dE; (6)

dT
dt

= aT (1� bT )� nET: (7)

In our selected model, Eqs. (3) and (4) consider
T as the summation of uninfected and infected tumor
cells. Eq. (6) indicates the relationship between the
immune cells and tumor cells, where s is the constant
input, pET

g+T represents the e�ect of tumor cells on
immune cells, and m and d are also the rates at
which the immune cells are killed by the tumor cells
and natural death of immune cells, respectively. In
addition, a; b, and n are tumor growth rate, tumor
decay rate, and lysis rate of tumor by immune cells,
respectively.

Third, the e�ect of drug concentration is consid-
ered. Drug infusion per day is assumed to be constant.
In our selected model, drug concentration reduces the
infected and uninfected tumor cells by the Michaelis-
Menten form. The change of free viruses, which reduce
the uninfected tumor cells and increase the free ones,
is based on Michaelis-Menten.

2.2. Model equations
The selected model [27] is represented through Eqs. (8)
to (13):

dU
dt

= �U
�

1� U + I
K

�
� �UV
Ku + U

��UUET � �UUC
Kc + C

; (8)

dI
dt

=
�UV
KU+U

��I��IET I � �E�I � �IIC
Kc + C

; (9)

dV
dt

= b�I � �UV
KU + U

� 
V; (10)

dE�
dt

= �I � ��E� ; (11)

dET
dt

=
�T (U + I)
k + (U + I)

� �TET ; (12)

dC
dt

= g(t)�  C; (13)

U; I; V;EV ; ET , and C are the states representing
the uninfected and infected tumor cells density, free
viruses, virus immune cells, tumor immune cells,
and drug concentration, respectively. The unit of
U; I; V;EV , and ET includes cells per mm3 and C is
in Nanograms per mm3.

Eq. (8) describes the rate of changes in the
density of the uninfected tumor cell. The �rst two
parts are from Eq. (3) and represent the logistic
tumor growth and e�ect of free viruses on the density
reduction of uninfected tumor. This reduction is based
on Michaelis-Menten approach that is represented by
Ku. The third part demonstrates the role of tumor
immune cells in reducing U . The last part shows
how chemotherapeutic drug can be reduced based on
Michaelis-Menten method. The parameters in Eq. (8)
are described in Table 1.

Infecting tumor cells by viruses can increase the
density of infected tumor cells, which is simulated by
the �rst part of Eq. (9). The following parts discuss the
reduction of infected tumor cells a�ected by natural
death, tumor immune cells, virus immune cells, and
chemotherapeutic drug. The new parameters in Eq. (9)
are shown in Table 2.

Eq. (10) is inspired from Eq. (5) and represents
the free virus change rate. The parameter b represents
the virus burst size; thus, the �rst part belongs to the
virus proliferation. The remaining parts demonstrate
the free virus decay by the uninfected tumor cells and
virus lifespan. New parameters in this equation are
described in Table 3.

Table 1. Parameters of Eq. (8) and their description and values.

Symbol Description Value & units Ref.

K Tumor carrying capacity 106 cells per mm3 [41]

� Tumor growth rate 0.206 per day [41]

� Infected rate of tumor cells 0.001{0.1 per day [41]

�U Lysis rate of U by the drug 50 per day [31]

KU Michaelis-Menten constants 105 cells per mm3 [42]

Kc Michaelis-Menten constants 105 Nanograms per mm3 [42]

�U Lysis rate of U by ET 0.08 mm3 per cell per day Current research
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Table 2. Parameters of Eq. (9) and their description and values.

Symbol Description Value & units Ref.

� Infected tumor cells death 0.5115 per day [41]

�I lysis rate of I by the drug 60 per day [31]

�I lysis rate of I by ET 0.1 mm3 per cell per day Current research

� lysis rate of I by E� 0.2 mm3 per cell per day Current research

Table 3. Parameters of Eq. (10) and their description and values.

Symbol Description Value & units Ref.


 Rate of virus decay 0.01 per day [41]

b Virus burst size 0{1000 virions [43]

Table 4. Parameters of Eqs. (11) and (12) and their description and values.

Symbol Description Value & units Ref.

� E� production rate 0.7 per day [44]

�T ET production rate 0.5 cells per mm3 per day [45,46]

�� ; �T Immune decay rates 0.01 per day [45,46]

k Michaelis-Menten constants 105 cells per mm3 [42]

Eqs. (11) and (12) are derived from Eq. (6). The
e�ects of constant input (s) and tumor cells on immune
cells (m) are assumed to be insigni�cant. Table 4 shows
the new parameters in Eqs. (11) and (12).

Eq. (13) corresponds to the drug concentration.
The �rst part (g(t)) and the second part represent
the drug infusion into the body and drug decay.  
represents the rate of drug decay, which is 4.17 [31].

2.3. Equilibrium points of the model
Di�erent equilibrium points are calculated by changing
the initial conditions. Two equilibrium points as the
experimentally meaningful ones and their eigenvalues
are shown in Tables 5 and 6, respectively. In the �rst
one, changes to the states are at zero and Eqs. (8)
to (13) are solved by the fourth-order Runge-Kutta
method using MATLAB. In the second one, the open-
loop system is simulated and the values of the steady
states are determined. States in the open-loop system
converge to a stable equilibrium point in a steady-state
condition. x1; x2; x3; x4; x5, and x6 are U; I; V;EV ; ET ,
and C in Eqs. (14){(19), respectively.

Upon comparing the stability levels of the two
equilibrium points, the real eigen values of the second
equilibrium point are negative, while �4 of the �rst
equilibrium point has a positive real value. Thus, based
on the Liapunov indirect method, the nonlinear system
is locally stable around the second equilibrium point.

In the next section, a linear controller in the
nonlinear system around the selected equilibrium point
is applied. Therefore, the designed controller is valid
when the treatment starts near the equilibrium point.

3. Design of the tracking controller for
continuous & discrete models

A tracking controller is applied based on EESA ap-
proach in the nonlinear model, continuously and dis-
cretely. An optimal drug and virus delivery schedule
is presented with a minimum treatment duration. Our
plant inputs are u1(t) and u2(t), which are the supply
of viruses and drug dosage from external sources. Dy-
namic equations of the plant are explained by Eqs. (14)
to (19) as follows:

dU
dt

= �U
�

1� U + I
K

�
� �UV
KU + U

��UUET � �IIC
Kc + C

; (14)

dI
dt

=
�UV

KU + U
��I��ET I��E�I� �IIC

Kc + C
; (15)

dV
dt

= b�I � �UV
KU + U

� 
V + u1(t); (16)
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Table 5. Two equilibrium points of the selected nonlinear model of the Chemovirotherapy.

1st equilibrium
point (obtained
from equations)

2nd equilibrium
point (open-

loop endpoints)
�1 �2 �3 �4 �5 �6 �1 �2 �3 �4 �5 �6

5233.45 0 0 0 2.49 11.99 4357 3.13 6.61e4 219 2.09 11.99

A
=

2 6 6 6 6 6 6 6 6 6 4�0
:0

01
07

�0
:0

01
�0
:0

02
51

1
0

�4
18
:6

76
4
�2
:6

16
1

0
�0
:7

67
3

0:
00

25
11

0
0

0
0

25
5:

75
�0
:0

12
51

0
0

0
0

0:
7

0
�0
:0

1
�0
:0

1
0

0:
00

00
04

5
0:

00
00

04
5

0
0

0
0

0
0

0
0

0
�4
:1

7

3 7 7 7 7 7 7 7 7 7 5

A
=

2 6 6 6 6 6 6 6 6 6 40:
00

04
3

�0
:0

00
89

75
�0
:0

02
1

0
�3

48
:5

7
�2
:1

78
0:

03
06

�4
4:

53
0:

00
21

�0
:6

26
�0
:3

12
9
�0
:0

01
87

�0
:0

30
6

22
5:

75
�0
:0

12
1

0
0

0
0

0:
7

0
�0
:0

1
0

0
0:

00
00

04
5

0:
00

00
04

5
0

0
�0
:0

1
0

0
0

0
0

0
�4
:1

7

3 7 7 7 7 7 7 7 7 7 5

B =

2666666664
0 0
0 0
1 0
0 0
0 0
0 1

3777777775
C =

h
1 1 0 0 0 0

i
B =

2666666664
0 0
0 0
1 0
0 0
0 0
0 1

3777777775
C =

h
1 1 0 0 0 0

i
dEV
dt

= �I � �V EV ; (17)

dET
dt

=
�T (U + I)
k + (U + I)

� �TET ; (18)

dC
dt

= u2(t)�  C: (19)

3.1. Design of continuous controller
In this section, a tracking continuous controller is
designed based on the EESA method. This control
method is suitable for linear, time-invariant, multi-
inputs systems. In this approach, the control gain (k)

assigns both the spectrum of closed-loop eigenvalues
and their associated set of eigenvectors, leading to the
desired time response characteristics.

The relation between closed-loop eigenvalues (�)
and eigenvectors (�) is shown in the following equation,
in which A and B represent the state-space matrices:

[A+Bk] �i = �i�i; (20)

Eq. (20) can be re-written into the following equation,
where q is the ratio of eigenvectors:�

A� �iI B
� �vi
qi

�
=0 for i=0; 1; :::; n: (21)
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Table 6. Eigenvalues of the equilibrium points shown in Table 5.

Equilibrium
point

Eigen value Eigen vector

First
�
�4:17 �1:2758 �0:009 0:4959

�0:0054 + 0:043i �0:0054� 0:043i

�
266666666666666664

0 0:02 0:0055 �1 0:5315 0:4628

0 �0:0054 0:0021 0 0 0

0 1 1 0 0 0

1 0:031 0:0031 0 0 0

0 0 0 0 �0:0001 0

0 0 0 0 0 0:8471

377777777777777775
Second

�
�4:17 �44:537 �0:0097 + 0:0041i

�0:0097�0:0041i �0:0049+0:043i �0:0049�0:043i

�
266666666666666664

0 0:0661 + 0:3173i 0:0661� 0:3173i

0:1935 0:0002i �0:0002i

�0:9811 0:9460 0:9460

�0:003 0::0037� 0:0002i 0:0031 + 0:0002i

0 0 0

0 0 0

0:0007� 0:0057i 0:0007 + 0:0057i 0:4628

0 0 0:0003

1 1 �0:0134

0:0028� 0:0015i 0:0028 + 0:0015i �0:0001

0 0 0

0 0 0:8863

377777777777777775
To satisfy Eq. (21),

�
viT qiT

�T must lie in the null
space of matrix S, while:

S(�i) =
�
A� �iI B

�
for i = 0; 1; :::; n: (22)

By deriving the null space of the matrix S, the value
of qi is determined. Thus, the control gain can be
calculated via Eq. (23) as follows:

k =
�
q1 q2 ::: qn

� �
v1 v2 ::: vn

��1 : (23)

The selected eigenvectors must be linearly in-
dependent; thus, the inverse matrix exists. In this
method, the shape of a mode is determined by eigen-
vector and its time-domain characteristic is speci�ed
by eigenvalues.

Eqs. (20){(23) show the regulator controller,
which mainly stabilizes an unstable open-loop system.
However, in this paper, a trajectory controller is desired

and it makes the output vector (w) track the reference
input vector (r) as follows:

lim
t!1w(t) = r: (24)

A new signal z is de�ned, which shows the di�erence be-
tween the output and the command desired input. The
new composite system can be governed by Eq. (25),
where A;B, and C are the matrices in the state space
equation of the system as follows:�

_x
_z

�
=
�
A 0
�C 0

� �
x
z

�
+
�
B
0

�
u+

�
0
I

�
r: (25)

The �rst row in Eq. (25) is derived from the �rst
equation of state space and the second one can be
obtained by di�erentiating z. Therefore, the new state-
space matrices are de�ned as follows:
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A0=
�
A 0
�C 0

�
; B0=

�
B
0

�
; C 0=

�
C 0

�
: (26)

By solving Eq. (26), x and z converge to zero. Thus, the
output vector tracks the command input and Eq. (24)
is satis�ed [32].

3.2. Design of discrete control
In this section, a discrete tracking controller is de-
signed, which is more feasible than the continuous
one. Continuous state-space matrices are converted
into the discrete ones. Then, the discrete EESA control
method is designed and applied to the continuous
system using Zero-Order Hold (ZOH) approach. ZOH
assumes that the input vector (u(t)) only changes at
equally spaced sampling instants. The �rst discrete
state-space equation is:
x((k + 1)T ) = G(T )x(kT ) +H(T )u(kT ); (27)

where the new state-space matrices G and H are
dependent on sampling period T at time k. The
input vector is assumed constant over the time interval
between kT and (k + 1)T . Thus, the solution to the
continuous system is:

x((k + 1)T ) = eATx(kT ) +
TZ

0

eATBu(kT )d�: (28)

By comparing Eq. (28) with the continuous time
response, G and H are:

G(T ) = eAT ; H(T ) =

0@ TZ
0

eAT d�

1AB: (29)

Under the condition where A is not singular, H can be
simpli�ed to:
H = A�1(eAT � 1)B: (30)

Therefore, the EESA method is employed using
the discrete state-space matrices G and H to design
a discrete controller. Ogata [33] elaborated on more
details of Eqs. (27) to (30). It is also desired to apply
the controller to the continuous system using ZOH
approach.

The numerical results are shown in Table 7. There
are some optimization approaches to �nding the desired
closed-loop poles such as [34] in which the cost function
maximizes the H-in�nity norm of the unstructured
stability and the robustness norm of the closed-loop
model. However, this study �nds the desired poles
based on experience, as suggested in [33]. We use
the command \place" in MATLAB to �nd the control

gain based on the EESA method. The optimization
algorithm in [34] was employed to create a suitable
eign structure of the model and choose the optimal
eign vector. It minimizes the sensitivity of the assigned
poles to perturbations in the system and gain matrices
as well as the upper bounds on the norm of the feedback
matrix and on the transient response and maximizes a
lower bound on the stability margin.

4. Tracking control simulations and results

In this section, a 6-state chemovirotherapy model is
used. The equations are linearized around the second
equilibrium point, as given in Table 5. Continuous and
discrete controllers were designed and applied to the
nonlinear model using EESA method. In experimental
studies, virotherapy is a successful treatment, provided
that the overall tumor masses are low and stabilized [7].
This condition is met when the initial condition is close
to the stabilized equilibrium point.

The average value of parameters in equations
is selected so that the parametric uncertainties can
be disregarded. The 4th-order Runge-Kutta uses
an iterative method in MATLAB for simulating the
closed-loop system.

4.1. Simulations of the continuous controller
and results

It is desired to reduce the tumor densities as soon as
possible with limited control inputs. As in tracking
problems, the system output is desired to track the
command input. Therefore, selecting an appropriate
command input can satisfy the demands. Figure 1
shows the block diagram.

In order to determine an appropriate command
input, it was assumed that the command input would
have three main attributes: the slope, Sampling Step
Interval (SSI), and the shape of the command input.
Achieving optimal values for the attributes results in
an optimal command input. First, di�erent command
inputs with di�erent slopes were compared. The proper
slope for the command input was selected to produce
less 
uctuations in the trajectories. In other words,
the cost function is the error between a trajectory and
the command input and the best value of the slope is
de�ned to minimize the cost function.

The optimal SSI and optimal shape were deter-
mined using the same method. In this paper, the com-
mand input is a stair function with a negative slope.
Results are compared with the exponential command

Figure 1. The block diagram of the closed-loop control system.
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Table 7. Numerical values of the state metrics, their desired poles, kernel metrics, and gain vectors.

State-space matrices A0 =

2666666666666666664

0:00043 �0:0008975 �0:00021 � �348:57 �2:178 0

0:0306 �44:53 0:0021 �0:626 �0:3129 �0:00187 0

�0:0306 225:75 �0:0121 0 0 0 0

0 0:7 0 �0:01 0 0 0

0:0000045 0:0000045 0 0 �0:01 0 0

0 0 0 0 0 �4:17 0

�1 �1 0 0 0 0 0

3777777777777777775

B0 =

2666666666666666664

0 0

0 0

1 0

0 0

0 0

0 1

0 0

3777777777777777775
C0 =

�
1 1 0 0 0 0 0

�

G =

266666666666664

0:9995 �0:0104 �0:0021 0:0032 �346:8013 �0:5141

6:8596e� 4 1:0477e� 5 4:5232e� 5 �0:0139 �0:2398 �35307e� 4

0:1202 5:0132 0:9981 �3:07 �21:893 �0:0498

4:6758e� 4 0:0156 3:1454e� 5 0:9805 �0:0844 1:9239e� 4

4:4802e� 6 7:7227e� 8 �4:5038e� 9 �5:6575e� 8 0:9893 �1:7892e� 6

0 0 0 0 0 0:0155

377777777777775

H =

266666666666664

�0:001 �0:399

4:5156e� 5 �2:76e� 4

0:999 �0:0209

1:5515e� 5 �8:0381e� 5

�1:4705e� 9 �7:4302e� 7

0 0:2361

377777777777775
Assigned poles

�
�4 �45 �0:01 + 0:004i �0:01� 0:004i �0:005 + 0:05i �0:005� 0:05i �1

�

Kernel matrix for Ah

2666666666666666664
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Figure 2. The e�ect of command input slope on tumor
density reduction in the continuous model.

Figure 3. The e�ect of command input slope on drug
and virus usage in the continuous model: (a) 1000 days
and (b) 500 days.

input and it is demonstrated that the stair function is
of better selection. The steeper slope the command
input, the shorter the treatment duration and the
lower the drug dosage, but the higher the virus dosage.
An optimal command input slope is determined that
compromises the demands. In Figures 2 and 3, two
command input slopes are compared.

The patient's age contributes to the treatment
duration [35,36]. Elderly's immune system is not as
strong as the young's; therefore, preserving the number
of healthy cells is more important than reducing the
tumor densities. Hence, the steeper slope is devoted to
the young.

These treatment durations are within the al-
lowable interval [37]. This may take longer than

Figure 4. The e�ect of sampling step interval on tumor
density reduction in the continuous model.

Figure 5. The e�ect of sampling step interval on virus
dosage (u1) in the continuous control system.

Figure 6. The e�ect of sampling step interval on drug
dosage (u2) in the continuous control system.

other cancer treatments since the immune cells in the
virotherapy need a longer time to reduce the tumor
density [38,39]. Treatment taking more than 1000
days makes the drug dosage out of range. Thus, 1000
days is the optimal treatment duration for the elderly
with the maximum drug dosage of approximately 1200
Nanograms per mm3 per day and virus dosage of 230
virions per mm3 per day.

The SSI plays an important role in the tracking
e�ciency. Figures 4, 5, and 6 show constant treatment
duration of 1000 days as well as the e�ect of SSI on
output and inputs of the plant.

SSI does not a�ect the maximum virus dosage,
but can reduce maximum drug dosage by 540
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Figure 7. The e�ect of command input slope on tumor
density reduction in the continuous model.

Nanograms per mm3 per day, as it increases from 100 to
500. Figure 4 shows that SSI = 500 gives the output a
greater chance to follow the command input. However,
it experiences more 
uctuations than other SSIs. As
a result, SSI = 200 would be the best choice as it
causes the number of tumors declines more smoothly.
The smoother trajectory refers to the one that has less
error than the desired command input.

Figures 7 and 8 evaluate the e�ect of command
input. The stair function as the desired command input
leads to less 
uctuation in the output of the closed-loop
system with less control inputs of the plant.

4.2. Simulations of the discrete controller and
results

Eq. (29) shows that G and H are dependent on not
only the continuous state space matrices but also T .

Patients may undergo chemotherapy in cycles,
which is a periodic treatment schedule followed by a
resting period. One of the common schedules utilized
is to give chemotherapy with a constant dosage every
day during a week and to stop the treatment for 3 weeks

Figure 8. The e�ect of command input slope on drug
and virus usage in the continuous model.

to allow the patient's body to be recovered. This one-
month treatment is considered a cycle.

The referenced study [5] found that adenovirus
and measles viruses were used in the combination of
chemotherapy and virotherapy. Table 8 represents a
summary of these 2 types of viruses and suitable T for
them.

The e�ect of T on output and inputs of the plant
is evaluated in Figures 9 and 10. T less than 1 does
not have an experimental meaning, owing to the level
of tolerance in the human body. The negative values
for the virus in Figure 10 con�rm the impossibility of
injecting the drug and virus every day. In Figure 9, as
T increases from 1 up to 20, the tracking behavior be-
comes more smooth with fewer 
uctuations. However,
at T = 25, 
uctuations begin to increase insofar as
T = 44 at which the dynamic system becomes unstable.
As a theoretical clari�cation of the unstable system, the

Table 8. Chemovirotherapy description with two di�erent types of viruses.

Type of virus Combination [47] Drug dosage [47] Treatment duration [47] T [39]

Adenovirus Ad5/3MDR1E1

Doxorubicin:
initially: 10 ng/ml

weekly increase: 10 ng/ml
Max dose: 150 ng/ml

cisplatin:
initially: 10 ng/ml

weekly increase: 5 ng/ml
Max dose: 40 ng/ml

After 96 h, 10% �xed

�Single shot
�Triple-hit

course
�Every 4

weeks(up to
6 courses)

Type of virus Combination [48] Drug dosage [48] Treatment duration [48] T [39]

Measles MeV(CD46)

Concentration-dependent inhibition of
cell proliferation between 10 nM � 1
�M for doxorubicin, 1-100 nM for

taxol and 25 nM -2.5 �M for
gemcitabine is found

After 72 h,
40% �xed

�Single shot
�Two-hit course
�Every 4

weeks (up to
6 courses)
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Figure 9. The e�ect of sampling instant on tumor
density reduction in the discrete model.

Figure 10. The e�ect of sampling instant on drug and
virus usage in the discrete model.

output of the unstable system does not converge to the
desired command input. For clari�cation, the number
of cancer cells in the patient body will rise dramatically.

On the other hand, as shown in Figure 10, as
T increases from 1 to 10, 
uctuations in u1 and the
amount of u2 are reduced. However, a rise in the value
of T from 10 to 25 does not have much e�ect on the
plant inputs. Consequently, the best sampling instant
is 20 days, which means that patients should receive
drugs and viruses every 20 days.

4.3. Comparison between the continuous and
discrete controllers in simulations

Both of the controlled systems have been simulated in
a digital computer and have not been applied to an
analog system with nonlinear behavior. In the discrete
controller, the inputs of the plant are applied discretely,
which make the simulation more realistic.

Based on the results in Figures 11 and 12 and
their comparison in Table 9, the system behaves more
smoothly in the presence of a discrete controller.

Figure 11. Comparison of the trajectory of tumor
density in the continuous and discrete models.

Figure 12. Comparison of the amount of drug and virus
usage in the continuous and discrete models.

5. Conclusions

In this paper, a nonlinear mathematical model of the
human body under chemovirotherapy was considered.
This model simulates the infected and uninfected tu-
mor cells, free viruses, chemotherapeutic drugs, and
immune cells. Thus, in our simulations, the impact
of immune cells on cancer treatment is examined.
This model is linearized around a reasonable realistic
equilibrium point.

A linear tracking controller based on EESA
method was designed continuously and discretely. The
controller was applied to the nonlinear model based on
ZOH approach, showing the robustness of the controller
against the nonlinearities of the model. The objective
is to �nd a minimum treatment duration with a limited
number of control inputs. Regulation of the command
input characteristics provided us with the opportunity
to form agreement between the former and the desired
demands. The following results can be extracted:

X The steeper the command input, the shorter the
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Table 9. Comparison of the performance of the continuous and discrete systems.

Trajectory of tumor's density Drug usage Virus usage

Continuous

Fluctuations in the
beginning

Noticeable steady state
error

Increase with steeper slope Fluctuating value

Discrete
No 
uctuations in the

beginning
Small steady state error

Increase with more gradual
slope

Almost a constant
value

treatment duration, but the higher the drug dosage.
Therefore, by regulating these factors, the optimal
treatment can be investigated;

X The SSI of the command input vould a�ect the
behavior of the plant inputs. Larger SSI provided
the chance to the output to track the command
input more smoothly. However, in this case, the
tumor density was reduced. The optimal SSI
proposed in this paper was 200;

X As drug and virus are injected into the body from
time to time, the results of the discrete controller
are more reasonable and realistic. The discrete con-
troller behaves more smoothly and control inputs
of the plant experience less 
uctuation than the
continuous one. Within 1000 days, with the limited
drug and virus dosage, the discrete controller can
reduce the tumor densities by 3500 cells per mm3;

X The important factor that contributes to the dis-
cretization is sampling instant (T ). The optimal
sampling instant was suggested to be 20 days, since
smaller sampling instants would result in more

uctuations in drug and virus consumption pattern
and larger sampling instants bring about instability.

The initiation of this treatment was restricted to
the vicinity of equilibrium points. The controllers also
become unstable due to the cycles and schedulable
T as well as parameter uncertainties. Based on the
results, the linear controller cannot e�ciently converge
the steady state error to zero. To improve its e�ciency,
in the future work, robust nonlinear controllers [38,40]
can be applied to the model to make the results more
general. Moreover, some states cannot be measured in
the model, experimentally. Therefore, in the future, de-
signing appropriate observers can ensure more sensible
results.
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