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Abstract. Apart from the widely used polymeric �bers, Quartz �ber is the one that
possesses various characteristics. Quartz polymeric �ber in combination with Cyanate
Ester resin produces a high-performance composite that has excellent properties and is
used primarily in military applications. The present investigation aims at developing a
model to predict the output characteristics of hole in the drilling of Quartz composite
laminate. Output parameters considered are thrust force, torque, exit delamination
factor, hole diameter, cylindricity, and surface roughness. Vacuum Assisted Resin Transfer
Molding (VARTM) process was adopted for laminate manufacturing. Full factorial design of
experiments was considered for the selected input parameters and experiments were carried
out. Further modeling was developed to predict the output parameters employing Back
Propagation Neural Network (BPNN) method and it was found that the optimal network
architecture was 3-45-15-10-6 with Mean Squared Error (MSE) of 0.0105. Experimental
results were analyzed and the inuence of input parameters in this drilling process was
studied. The testing data were consistent with the output parameters predicted from the
model and the obtained maximum error was 7.58%. Further, the model developed was
validated with a new batch of experiments and the values obtained were satisfactory with
maximum error of 7.17%.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Composite is a combination of one or more than one
constituent. It possesses various advantages in terms
of sti�ness, strength, and various other properties.
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Each application demands a speci�c property. In
recent years, composite has been widely used in various
applications. Composites are classi�ed broadly on the
basis of raw material used in reinforcement and matrix.
Based on the reinforcement, widely used composites are
Glass Fiber Reinforced Plastics (GFRP), Carbon Fiber
Reinforced Plastics (CFRP), and Aramid Fiber Rein-
forced Plastics (AFRP). These composites are used in
commercial, aerospace, and military applications and
their uses are widespread. Apart from these, there are
other �bers that can be used in composite structures.
One among them is quartz �ber. Quartz polymeric
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�ber is made from high-purity quartz crystal where
SiO2 content is more than 99.95%. Quartz possesses
various characteristics such as strength retainment
at high temperatures, low thermal expansion, good
thermal shock resistance, better chemical stability,
electromagnetic transparency, electric insulation, and
high temperature applications safely up to 1100�C.

Quartz polymer has an excellent combination of
structural and electromagnetic properties that can be
used as high-performance composite materials. It
is mainly suited for components where low electro-
magnetic interference characteristics are the prime
requirements along with good strength-to-weight ra-
tios. This material is primarily used for radome of
�ghter aircraft in military applications [1] because
of low electromagnetic characteristics compared to
other available polymeric �bers. In the fabrication
of composite components, basically two processes are
involved: primary operation and secondary operation.
Primary operations are generally automated processes
like �lament winding, Resin Transfer Molding (RTM),
and compression molding and the components using
any of these processes are considered in the shape close
to the �nal one; however, these components need to
be joined to other sub-systems and are generally done
by means of fasteners and rivets. To the same end,
component requires hole done by means of secondary
operation, namely drilling. It is observed that sec-
ondary operations like drilling have not been reported
on quartz polymeric composite. Furthermore com-
posites being anisotropic and heterogenous machining
is a challenging process compared to machining of
conventional metals.

Drilling process in composite can be assessed
based on these quality characteristics such as de-
lamination factor, hole size, cylindricity, and surface
roughness of the hole [2,3]. Among these, delamination
is deemed either major or severe form of damage in
the drilling of laminated composites. Other important
factors that should be considered in determining the
quality of hole are the hole size and roundness of
a hole along the length. In particular, the need
for drilling within speci�ed tolerance threshold with
suitable roundness along the length is an element
deemed important in the aerospace industry [2]. Hole
quality is severely impacted by delamination which
causes a considerable reduction in loading capacity
and the performances intended [2]. Delamination also
reduces the fatigue properties of the structure resulting
in the reduction of serviceable life of the composite
structure [4,5]. Delamination happens at the entry and
exit side in the drilling process of composites. Among
the two types of delamination, the one that occurs at
the drill exit, also known as push down delamination,
is more signi�cant in drilling of composites [6]. Re-
searchers [7,8] performed experiments on di�erent �ber

composites and reported that thrust force and torque
were the prime reasons for getting poor surface �nish
and machining induced defects. It was reported that
minimization of thrust force resulted in the reduction of
these induced defects due to the drilling process [9,10].

Many researchers have studied the e�ect of var-
ious input parameters in the drilling process on the
output quality characteristics in CFRP and GFRP
composites. There are researchers who have worked
on modeling of drilling of widely used glass and carbon
polymeric composites. Vijayan et al. [11] investigated
CFRP laminates with carbide twist drill varying the
drilling parameters and analyzed the hole quality
characteristics. Further optimization of machining
parameters was done and tool life was predicted. This
work revealed that feed rate during drilling had a major
impact on thrust force, exit delamination, and mea-
sured hole diameter. Anarghya et al. [12] performed
studies to reduce the delamination on drilling of AFRP
with solid carbide minimizing thrust force and torque.
Furthermore, the prediction model using Multilayer
Perception Neural Network optimized by Genetic Al-
gorithm (MLPNN-GA) and Response Surface Method
(RSM) was developed and compared. This study
demonstrated that the principal factor that a�ects the
thrust force was drill point angle and argued that
low feed and drill bit with low point angle facilitated
reducing delamination. Lee et al. [13] studied the
drilling characteristics of CFRP and hybrid C-AFRP
for delamination and tool wear with low-point angle
carbide drill and suggested that thrust force shall be
minimized with low feed rate and proper tool geometry.
Kalita et al. [14] performed an extensive experimental
investigation into GFRP and developed an empirical
model for delamination factor. Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) tech-
niques were employed to derive the optimum input
parameters for minimum delamination. Further, this
work concluded that feed rate was an important factor
and delamination increased with the increase in feed
rate. Ali et al. [15] performed research on drilling of
pure GFRP composites and added GFRP composites
to study the e�ect of input parameters on delamination
using Taguchi method. RSM modeling was done for
delamination. Further, the work concluded that the
e�ect of feed rate on damage during drilling was more
signi�cant than the cutting speed e�ect and optimum
input parameters were obtained for material removal
rate and delamination. Ahmet et al. [16] investigated
delamination in CFRP composites due to drilling and
concluded that the best outcomes for thrust force and
delamination were attained with low feed rate and drill
bit with low point angle. Ramesh et al. [17] developed
response surface models for di�erent quality charac-
teristics with respect to input parameters employing
di�erent drill geometries and studied the e�ect of the
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Table 1. Summary of literature and analyzed parameters in drilling polymeric composites.

Ref. Workpiece
material

Analysed parameters

[11] CFRP Hole diameter, circularity, delamination

[12] AFRP Thrust force, Torque

[13] CFRP & C-AFRP Thrust force, Tool wear

[14] GFRP Delamination

[15] GFRP Delamination

[16] CFRP Thrust force, delamination

[17] CFRP Thrust force, torque, surface roughness, ovality, delamination

process parameters. Table 1 shows the synopsis of the
explained literature in drilling of polymeric composites
and measured output responses.

Although numerous studies have investigated
drilling of composites, particularly in CFRP and
GFRP, none to date has investigated the e�ect of
cutting parameters on the drilling of quartz poly-
meric composites. Further to this, the neural net-
work modeling for the output characteristics has not
been applied in drilling of quartz composite material.
ANN provides e�ective process modeling in terms of
e�ciency, accuracy, and cost. The main important
feature of neural network modeling is its capability
to build a model where data generation is a di�cult,
expensive and time-taking process [18]. Furthermore,
it is reported that the models developed using ANN to
predict the parameters show substantial improvement
in experimental error [19].

The application of ANN was reported by several
researchers who have generated a model for di�erent
polymeric composite materials. Karnik et al. [18]
developed an ANN model in high-speed drilling of the
CFRP composite for the damages induced at the entry
of the hole considering the drilling process parameters.
Yang et al. [20] developed a neural model using back
propagation learning algorithm to predict the resid-
ual strength under compression after impact loading
of CFRP composites. In this work, �nite element
model results after validation were used to establish
a nonlinear relationship with the input parameters.
Guoqiang et al. [21] developed a neural network model
for predication of di�erent states of tool wear during
machining of composite materials. Qian and Xiaoliang
[22] developed a neural network model for expressing
output characteristics as a function of drilling input
parameters in CFRP composite. Further multiple
objective optimization of input parameters was done
with thrust force, delamination factor, and material
removal rate as objectives. Soepangkat et al. [23] ap-
plied an integrated approach to the prediction of multi-
performance characteristics and further optimized the

drilling process of AFRP composite. Fajar et al. [24]
investigated the e�ect of the process parameters on
surface roughness and delamination in the end-milling
process of CFRP composite and further developed a
network model using back propagation method for the
outputs. Vineela et al. [25] predicted the ultimate
tensile strength of hybrid short-�ber composites made
of glass and carbon using arti�cial neural network
method. Moreover, the model predicted by ANN was
compared with regression analysis and further ana-
lyzed. Mishra et al. [26] established an ANN predictive
model for estimating the residual tensile strength with
a hole in Unidirectional Glass Fiber-Reinforced Plastic
(UD-GFRP) composite laminates for the input process
parameters. Soepangkat et al. [27] adopted an inte-
grated approach using back propagation neural method
and Particle Swarm Optimization (PSO) for modeling
and optimizing multiple characteristics of drilling a
hole in the CFRP composite laminates. Table 2 shows
the synopsis of the explained literature on the neural
network modeling of polymeric composites.

Various studies have modeled drilling of various
composite materials, particularly in CFRP and GFRP
composites. Nevertheless, there is no investigation on
quartz polymeric composite drilling to demonstrate a
predictive correlation between the output characteris-
tics and input variables. The present work aims to
establish a relation among the drilling process input
variables, namely spindle speed, feed, and point angle
on six output parameters, namely thrust force, torque,
delamination factor at exit, hole diameter, cylindricity,
and surface roughness using Arti�cial Neural Network
(ANN) method on a quartz polymeric composite.

2. Materials and methods

The Quartz composite sample used in this study was
4 mm thick. Quartz reinforcement is available in yarn
form. Source of quartz yarn is from M/s Saint Gobain,
France and the matrix material cyanate ester resin is
from M/s Toray Advanced Composites, USA. Yarn
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Table 2. Summary of literature in neural network modeling of polymeric composites.

Ref. Workpiece material Model developed for parameters

[18] CFRP Delamination

[20] CFRP Residual strength

[21] CFRP Tool wear

[22] CFRP Thrust force and delamination

[23] AFRP Thrust force, torque, delamination, surface roughness, roundness

[24] CFRP Delamination, surface roughness

[25] CFRP & GFRP Tensile strength

[26] GFRP Residual tensile strength

[27] CFRP Thrust force, torque, delamination

Figure 1. Woven fabric with quartz yarn.

is woven into fabric of 2 � 2 twill weave with 300
GSM, as shown in Figure 1. Quartz composite laminate
was fabricated by Vacuum Assisted Resin Transfer
Moulding (VARTM) method.

In the VARTM process, mold with bottom and
top portions is taken and woven quartz fabric of
predetermined size is placed on the cavity. The cavity
of the mold determines the thickness of the composite.
Thirteen layers of reinforcement are cut into 300 mm
� 300 mm and placed in the mold cavity, as shown
in Figure 2. Preheated cyanate ester resin at 40�C
with viscosity of 100-150 cP suitable for this process
is injected under vacuum of 700 mm of Hg. After
resin injection, the laminate is cured at 180�C. The
thickness of the laminate after curing is 4 mm. Fiber
volume fraction (Vf ) for the cured laminate is measured
at 55%. Also, degree of cure by Digital Scanning
Calorimetry (DSC) and through transmission Non-
Destructive Evaluation (NDE) was done to ascertain
the quality of laminate. Workpiece Specimen of 100
mm � 100 mm is cut from the realized laminate for
the drilling experiments.

Drilling tests were examined through BFW Gau-

Figure 2. Quartz fabric in mold.

rav BMV 35 TC 20 Vertical Machining Center (VMC)
CNC machine. A schematic diagram of the experimen-
tal setup is shown in Figure 3. Specimen was assembled
to machine table with the use of �xture. Feed (f), drill
bit point angle (�), and speed (N) are input parameters
and their respective levels are tabulated in Table 3.

A Full Factorial Design (FFD) of experiment was
performed with the input parameters. A total of 27
tests were conducted and each test was performed
thrice. The average of the result is considered and
reported. Spindle speed, point angle, and feed are
considered as machine inputs. Tungsten Carbide (TC)
\k20 grade twist drill bit" was utilized for carrying out
experiments. Drills have a diameter of 5 mm and helix
angle of 30�. Range of each parameter was �nalized
after performing trial experiments. All the experiments
were performed without the use of coolant.

Table 3. Input parameters.

Parameters Level 1 Level 2 Level 3
Spindle speed, N (rpm) 500 1000 1500
Feed, f (mm.rev�1) 0.05 0.10 0.15
Point angle, � (�) 85 118 135
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Figure 3. Schematic diagram of the experimental setup.

2.1. Measurement plan
2.1.1. Thrust force and torque
\Kistler 9257B Piezoelectric Dynamometer" was uti-
lized for measuring torque (T ) and thrust force (Fz)
during the experiments. Dynamometer output is
connected to a Kistler charge ampli�er 5070, thereby
signal is ampli�ed commensurate to the load applied
and further, the signal is digitized with A/D convertor.
Digitized signal is transmitted to a notebook installed
with DynoWare software to store the torque and
thrust force graphs. Torque and thrust forces were
continuously observed, as shown in Figure 4, and the
test results were noted.

Figure 4. Experimental test setup on machine.

2.1.2. Exit delamination factor
The damages were evaluated in quantitative terms after
the drill test. Two mechanisms of delamination occur
in composites. One is peel-up delamination at entry
of the hole and the other one is delamination at the
exit of the drilled hole. E�ect of damage induced at
the exit is more severe than the one at entry [6]. In
this study, delamination factor at exit is considered.
Delamination factor was estimated using the image of
lower surface of each specimen scanned by an optical
microscope. The image scanned using \OGP Flash
200" is stored as a bitmap image and, then, imported to
image processing software namely \Image-J" to analyze
the image. Delamination factor (Fd) is estimated using
Eq. (1):

Fd =
Dmax

Do
; (1)

where Dmax is the maximum diameter of the hole
drilled with delaminated zone and D0 is the nominal
diameter of the drill [28]. Figure 5 explains the scheme
for measuring the delamination factor.

Figure 5. Scheme for measurement of delamination
factor.
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Figure 6. Steps involved in the development of arti�cial neural network model.

2.1.3. Hole diameter and cylindricity
Hole diameters (D) and cylindricity (�) were analyzed
using \DEA Global advantage Co-ordinate Measuring
Machine (CMM)" with a ruby probe of 1 mm diameter.

2.1.4. Surface roughness
Surface roughness (Ra) was estimated using \Zeiss
Surfcom-1900SD" surface measuring device along the
hole wall surface parallel to the drill direction at six
di�erent locations, and the average of six measurements
along the hole wall was considered.

2.2. Back Propagation Neural Network
(BPNN) model

ANN plays a vital role in predicting the solution
to problems in various engineering �elds. Various
learning strategies are applied in the ANN to produce a
desired output. One such strategy for learning is Back
Propagation Neural Network (BPNN) method.

This method is chosen due to the reason that this
scheme has multiple merits over the other available
networks, and other applications have used successfully
this method [29,30]. In BPNN neural networks, there
are two steps involved with respect to training the

neural network. The �rst one is forward feed and the
next one is back propagation. Figure 6 explains the
step involved in the development of ANN model.

3. ANN training

Figure 7 describes the multi-layer ANN architecture
developed for the current problem. The architecture
has an input layer that comprises three neurons for
feed, cutting speed, point angle of cutting tool and
six neurons in the output layer for drilling output
characteristics namely Thrust force (Fz), torque (T ),
delamination factor at exit (Fd), hole diameter (D),
cylindricity (�), and surface roughness (Ra).

In the architecture model, the activation value
(Zj) to the jth neuron is given as [27].

Zj =

 
i=iX
i=1

(uij � xi)
!

+ uoj ; (2)

where i is the number of input neurons in the input
layer, j the number of neurons in the �rst hidden layer,
uoj the bias for the �rst hidden layer, uij the weight
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Figure 7. Developed arti�cial neural network architecture for the present investigation.

on the ith input neuron to the jth neuron on the �rst
hidden layer and xi the ith input neuron value.

For a hyperbolic tangent activation function, the
objective function (Oj) for the jth neuron in the hidden
layer 1 is given as:

Oj = tanh(Zj): (3)

Similarly, the activation value and objective function
for hidden layers 2 and 3 are derived by considering
the outputs of the preceding layer as input and using
the bias value of the respective layer with hyperbolic
tangent activation function.

BPNN employs a gradient search method and it
is based on the updating of weights to reduce the sum
of mean squared error to a minimum. The optimizer
uses squared gradients moving average for each weight.
The weights of the links [31] are updated as follows:

E
�
g2�

t = �E
�
g2�

t�1 + (1� �) g2
t ; (4)

ut = ut�1 �
 

��p
E[g2]t

� � gt! ; (5)

where E
�
g2�

t is the squared gradients moving average,
gt the gradient of the cost function with respect to the
weight u, � the learning rate, � the moving average
parameter, ut the updated weights of a particular
neuron in a layer and ut�1 the weights of a particular
neuron in a layer before updating.

Error (E) for one set of input values is calculated
[18] as follows:

E =
1
2

KX
K=1

(Dkp �Okp)2; (6)

where k is the number of neurons in the output layer,
Dkp the experimental target value of the pth pattern,
and Okp the predicted output value of the neural
network.

Mean Squared Error (MSE) for one epoch is

calculated [18] as follows:

MSE =
1
Np

NpX
p=1

kX
k=1

(Dkp �Okp)2; (7)

where Np is the number of training patterns in one
epoch and in the present case, Np is 21.

The activation value, objective function, weights
updating, error, and mean squared error are calculated
using Eqs. (2){(7). BPNN training process starts with
assigning small weights randomly to the neurons of the
links. The entire training data are then passed through
the model and the assigned weight gets updated after
the end of each epoch. This process is continued till
the summation of the squared error value for output
neurons is achieved minimum. Similarly, the neural
network training process starts with bias, randomly
assigned for each of the hidden layers.

BPNN learning process is iterative. The full data
set is repeatedly passed through the neural network
until the MSE value reaches an acceptable value. The
dataset is split into training and test data. Test data
is 10% of the total set including 3 numbers of input-
output pattern and the remaining data is for training
and validation, i.e., 90% of the data is for training
and validation including 24 numbers of input-output
pattern. Experimental and predicted outputs for all
the responses are given in Appendix A, Tables A.1 and
A.2. Further, the training and validation were carried
out using �rst 24 datasets from these two tables (S.No:
1-24 ), and the remaining 3 data sets (S.No. 25-27)
were utilized to test the trained model. Normalization
of data was done using standard scalar function.

Then, BPNN training with the normalized
datasets was carried out. Jupyter notebook was the
Interactive Development Environment (IDE) used for
developing the neural network in Python. Deep learn-
ing libraries like Keras & Tensor Flow were employed to
build and compile the model. The number of hidden
layers and neurons in those layers is paramount and
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Figure 8. (a) Mean squared error variation for the initial model with one hidden layer. (b) Mean squared error variation
for the initial model with three hidden layers.

their selection is critical for a successful training. Input
and output data size also inuences this selection. In
the present study, the criteria for the number of hidden
layers and neurons in those layers to determine the
architecture considered were 03 and 100, respectively.
Activation functions such as hyperbolic tangent, sig-
moid, log-sigmoid, ReLu, and LeakyReLu were consid-
ered and employed for developing the network during
the iterative process. In the current network training,
the goal was set to achieve MSE of 0.00001.

RMSprop was the optimizer employed to min-
imize the cost function, i.e., MSE. Lasso (L1 regu-
larization) and Ridge (L2 regularization) regression
were used to limit the over�tting phenomenon and
the value for both was �xed to 0.01 in the present
model. Learning rates in training are to be de�ned
and the high value makes the convergence process
faster, but may lead to non-convergence. More certain
and reliable results can be achieved using slow value
of learning rates [26]. Thus, in the present network
model, the learning rate was kept at 0.1 initially to
train the network faster in the high error scenario and
it was decreased gradually to 1.5e-4 depending on the
reduction of the error value.

Di�erent models were built by the varying num-
ber of layers and neurons using considered activation
functions. Figure 8(a) and (b) depict the initially
developed typical models where the MSE variation is
higher with one, three hidden layers and MSE values
of the validation data for those models are 0.0431 and
0.192 after epochs of 10000 and 6000, respectively. The
corresponding learning parameters for the models are
given in Table 4. Each model was trained by tuning
hyper parameters to reduce the prediction error. After
tuning the parameters with 45, 15, and 10 neurons in
�rst, second, and third hidden layers, satisfactory train-
ing was achieved and the same architecture was chosen.
MSE variation for the developed architecture is shown
in Figure 9. Table 5 shows the learning parameters
used for the developed model in this investigation. At
the end of the model training, the optimum MSE was
0.0105 after the epoch of 5000.

Table 4. Summary of learning parameters for the initial
models with di�erent hidden layers.

Parameters A B

Network architecture 3-5-6 3-40-20-10-6

Number of hidden layers 1 3

Activation function used Tanh Tanh

Pattern count for training 21 21

Pattern count for testing 3 3

Pattern count for validation 3 3

Sum of mean squared error 0.0277 0.0786

Epoch number 10000 6000

Learning factor 1.5e-4 1e-3

L1 regularisation 0.01 0.01

L2 regularisation 0.01 0.01

Table 5. Summary of learning parameters for the
developed model.

Parameters Values

Number of hidden layers 3

Activation function used Tanh

Pattern count for training 21

Pattern count for testing 3

Pattern count for validation 3

Sum of mean squared error 0.0105

Epoch number 5000

Learning factor 1.5e-4

L1 regularisation 0.01

L2 regularisation 0.01

4. Results and discussion

4.1. ANN testing
21 datasets used for training were initially employed
and the trained network architecture was examined.
The predicted values for output parameters were com-
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Figure 9. Mean squared error variation for the developed
neural network architecture.

pared with the corresponding experimental results for
each respective input dataset and the error percentage
was determined as per Eq. (8), which is given as:

Error% =
�
outputexp � outputpred

outputexp

�
� 100; (8)

where outputexp is the experimental value of all the six
output characteristics, and outputpred is the predicted
value of all the six output characteristics by the
network model.

The model found that values of all the six reported
output parameters showed a close match to the cor-
responding experimentally measured values. The bar
charts of the experimental and predicted values for all
the six output parameters of the training data are given
in Appendix B, Figure B.1. It can be noticed that the
absolute error was found to be less than 10% for all the
cases of six output parameters. Further, the model was
examined employing the concluding 3 datasets. The
comparison of all the six output parameters for the
testing data set between prediction and experimental
data is given in Figure B.2. in the form of a bar graph
and the error percentage is tabulated in Table 6. It is
noticed that the predicted values show a good match
with the experimentally determined values and the
maximum error among all the output characteristics
for testing patterns is found to be 7.58%.

The coe�cient of correlation (R-value), denoted
by All corr, between the predicted values and experi-
mental outputs was evaluated. If R value is close to 1,
then it indicates a better correlation between predicted
and actual values [18]. In the current investigation,
the overall R value for the entire training, validation,
testing data is between 0.9871 and 0.9958, which
indicates a good correlation. The overall performance
plot of the present model with R-value for the entire
dataset denoted by \All corr" is given in Figure 10.

Figure 10. Overall performance of the developed model for (a) Thrust force, (b) torque, (c) delamination factor, (d)
diameter, (e) cylindricity, and (f) surface roughness.



400 T. Ramalingam et al./Scientia Iranica, Transactions B: Mechanical Engineering 30 (2023) 391{408

Table 6. Error percentage of testing data compared to experimental values.

S. no
Spindle
speed
(rpm)

Feed
rate

(mm.rev�1)

Point
angle
(�)

Error percentage of testing data (%)

T
h
ru

st
fo

rc
e

(F
z
)

T
or

qu
e

(T
)

D
el

am
in

at
io

n
fa

ct
or

(F
d
)

D
ia

m
et

er
(D

)

C
yl

in
d
ri

ci
ty

(�
)

S
u
rf

ac
e

ro
u
gh

n
es

s
(R

a
)

1 500 0.05 85 0.53 2.42 0.68 �0:01 6.39 0.31
2 1000 0.05 85 1.23 3.55 0.72 �0:08 7.58 �1:51
3 1500 0.10 135 �5:03 0.33 �0:43 �0:08 2.76 �1:13

4.2. Model veri�cation
Further, the developed model was validated with the
fresh set of experimental values where the four ab-
solutely di�erent new sets of experimental data are
considered. This kind of validation process is used
to check the viability of the developed neural network
model for the new data [30]. The related outputs and
error percentage are given in Table 7. It is noticed from
the table that the predicted output of the trained model
almost follows the experimentally obtained output and
the maximum error percentage is 7.17%, which is below
the acceptable limit [30].

4.3. E�ect of input parameters
E�ort was put in the current investigation to evaluate
the output characteristics of quartz composite laminate

with drilled holes. Scatter plots for experimental
values of all the output parameters are presented and
discussed in this section. Figure 11 shows the processed
image of exit location of drilled holes at constant speed
and feed for di�erent point angles. Regarding the point
angle e�ect on torque and thrust force, increase in point
angle raises the e�ect of chisel edge of drill bit, thus
producing more torque and thrust force. There is an
increase in delamination in the hole exit location due
to increase in thrust force, which is evident.

The temperature of the composite increases in
case of an increase in spindle speed [33], resulting
in thermal softening, thereby reducing the torque
and thrust force. Microscopic images are examined
for machined holes at a constant speed and a point
angle for di�erent feeds, as shown in Figure 12. It is

Table 7. Experimental and predicted outputs for model veri�cation.

Thrust force (Fz) Torque (T )

no
Spindle
speed
(rpm)

Feed
rate

(mm.rev�1)

Point
angle
(�)

Exp
(N)

Pred
(N)

Error
(%)

Exp
(Ncm)

Pred
(Ncm)

Error
(%)

1 750 0.125 85 83.04 82.43 0.73 30.45 29.71 2.43
2 750 0.075 118 58.64 57.92 1.23 24.19 24.51 �1:32
3 1250 0.075 118 54.11 55.70 �2:94 22.48 22.33 0.66
4 1250 0.125 135 90.57 87.23 3.69 35.65 34.56 3.06

Delamination factor (Fd) Diameter (D)

Exp Pred
Error
(%)

Exp
(mm)

Pred
(mm)

Error
(%)

1 750 0.125 85 1.215 1.208 0.58 5.028 5.028 0.00
2 750 0.075 118 1.149 1.153 �0:35 5.031 5.029 0.04
3 1250 0.075 118 1.110 1.109 0.09 5.045 5.049 �0:08
4 1250 0.125 135 1.215 1.217 �0:16 5.032 5.033 0.02

Cylindricity (�) Surface roughness (Ra)
Exp

(mm)
Pred
(mm)

Error
(%)

Exp
(�m)

Pred
(�m)

Error
(%)

1 750 0.125 85 0.011 0.0106 7.17 4.29 4.25 0.93
2 750 0.075 118 0.017 0.0165 5.24 3.69 3.67 0.54
3 1250 0.075 118 0.028 0.0267 3.44 4.28 4.33 �1:16
4 1250 0.125 135 0.023 0.0220 4.87 5.51 5.42 1.63
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Figure 11. Images at exit location of drilled holes at constant spindle speed (1500 rpm) and feed (0.15 mm.rev�1) for
di�erent point angles: (a) 85�, (b) 118�, and (c) 135�.

Figure 12. SEM images of machined holes at constant spindle speed (1500 rpm) and point angle (135�) for di�erent feeds
(mm.rev�1): (a) 0.05, (b) 0.10, (c) 0.15, and (d) magni�ed image of the damage region.

observed that as the feed rate rises, the uncut chip
thickness [34] increases, which increases the material
to machine, thereby more rubbing as well as greater
thrust force and torque. Due to increase in thrust
force, irregularities and the damage in the hole wall
tend to increase. The observed phenomenon of increase
in thrust and torque due to higher feed [27,32,35] is
shown in Figure 13(a) and (b).

As stated, the spindle speed increase leads to
softening of matrix and reduction of the thrust force
induced, eventually decreasing the hole delamination

at the exit. Figure 13(c) also depicts the phenomenon
that the high point angle and feed would increase the
force induced in the process of drilling, due to which
delamination at the exit of the drilled hole increases
[14,27]. The observed phenomenon of experimental
values for diameter and cylindricity of the hole is
presented in Figure 13(d) and (e). Increase in the
spindle speed attenuates the rotational stability of drill,
which leads to more vibration and more increase in
the diameter and cylindricity of the hole. Increase in
feed rate results in lower cutting temperature and self-
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Figure 13. Scatter plots for the experimental values of output characteristics for (a) Thrust force (N), (b) torque (Ncm),
(c) delamination factor, (d) diameter (mm), (e) cylindricity (mm), and (f) surface roughness (�m).

induced vibration, leading the diameter to be closer
to the nominal one and yielding better cylindricity
[35,36]. Surface roughness values obtained increase
with increasing cutting speed and feed rate and the
observed phenomenon is shown in Figure 13(f). It
is emphasized that the prudent choice of the drilling
input variables results in minimum damage induced
due to drilling, leading to the improvement of com-
posite part performance. Predictive model using ANN
tool was developed to predict the output responses of
drilled holes for the selected input variables in quartz
polymeric composite laminate. The �ndings show good
agreement and are in line with the experimental investi-
gations. The reported results will help understand this
material behavior when drilling operation is performed.

5. Conclusions

The present investigation aimed to develop a predictive
model for estimation of torque, thrust force, and

delamination factor at the hole exit, hole diameter,
cylindricity, and surface roughness in the drilling of
Quartz Cyanate Ester polymeric composite laminate
specimen. To this end, experiments were performed as
per FFD and BPNN model was developed using exper-
imental data to compare the accuracy of predicted one
with the experimental results. The developed model
was further applied to a set of new experiments and the
predicted model was validated. The following �ndings
were drawn from the present research investigation.

� BPNN was employed to predict the output re-
sponses. Di�erent BPNN architectures were de-
veloped and studied. Among those, 3-45-15-10-6
con�guration (�rst, second, and third hidden layers
with 45, 15, and 10 neurons as well as 3 and 6
neurons in the input and output layers) was attained
as the best con�guration for the present case and the
mean square error of this developed architecture was
0.0105;
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� BPNN successfully predicted torque, thrust force,
delamination factor at exit, hole diameter, cylin-
dricity, and surface roughness. The results of the
developed neural network model were consistent
with the directly measured values;

� Using developed BPNN model, maximum error was
found to be 7.58% for the present case;

� New set of experimental studies was conducted for
validation. Maximum error using the developed
network model was found to be 7.17% for this case;

� Inuence of input process variables on the output
responses was studied. ANN- BPNN method was
e�ective and acceptable since the maximum error
between prediction and experiments was less than
10% in drilling of quartz polymeric composite.
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Nomenclature

GSM Grams per Square Meter
Vf Fiber volume fraction
DSC Digital Scanning Calorimetry
NDE Non-Destructive Evaluation
VARTM Vacuum Assisted Resin Transfer

Molding
N Spindle speed
f Feed
� Point angle
FFD Full Factorial Design
WC Tungsten carbide
Fd Delamination factor
Dmax Maximum diameter
D0 Nominal diameter
Ra Mean surface roughness
Fz Thrust force
T Torque
D Hole diameter
� Cylindricity
� Learning rate
� Moving average parameter
MSE Mean Squared Error
BPNN Back Propagation Neural Network
ANN Arti�cial Neural network
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Appendix A

Experimental and predicted outputs for all the re-
sponses are given in Tables A.1 and A.2.

Appendix B

The bar charts of the exprimental and predicted values
for all the six output parameters of the training data
are given in Figure B.1. Also, the comparison of all
the six output parameters for the testing data set
between prediction and experimental data is given in
Figure B.2.
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Figure B.1. Experimental and predicted output for training data for (a) Thrust force (N), (b) torque (Ncm), (c)
delamination factor, (d) diameter (mm), (e) cylindricity (mm), and (f) surface roughness (�m).

Figure B.2. Experimental and predicted output for testing data for (a) Thrust force (N), (b) torque (Ncm), (c)
delamination factor, (d) diameter (mm), (e) cylindricity (mm), and (f) surface roughness (�m).
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