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Abstract. A Multi-objective Optimization Problem (MOP) is a simultaneous optimiza-
tion of more than one real-valued con
icting objective function subject to some constraints.
Most MOP algorithms try to provide a set of Pareto optimal solutions that are equally good
in terms of the objective functions. The set can be in�nite, and hence, the analysis and
choice task of one or several solutions among the equally good solutions is hard for a
Decision Maker (DM). In this paper, a new scalarization approach is proposed to select
a Pareto optimal solution for convex MOPs such that the relative importance assigned to
its objective functions is very close together. In addition, two decision-making methods
are developed to analyze convex and non-convex MOPs based on evaluating a set of
Pareto optimal solutions and the relative importance of the objective functions. These
methods support the DM to rank the solutions and obtain one or several of them for real
implementation without having any familiarity with MOPs.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Single-objective optimization can be described as opti-
mizing a problem by using a single objective function
[1{3]. In contrast, optimizing some objective functions
subject to a number of constraints is required in many
practical problems (see [4{8]). These problems are
called Multi-Objective Optimization Problems (MOPs)
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and are formulated as follows:

min f(x) = (f1(x); f2(x); :::; fp(x))T ; (1)

s.t.:

x 2 X=fx 2 Rnj gj(x) � 0 for j=1; :::;m g ;
where X � Rn is a feasible set in the decision space
Rn and f :X ! Rp consists of the p objective functions
fi : X ! R for all i = 1; :::; p, (p � 2). In addition, Y =
f(X) = ff(x) j x 2 X g is a feasible objective set in the
objective space Rp. Problem (1) is stated as a convex
MOP if all the objective functions and feasible set are
convex. MOPs usually present a set of solutions that
cannot be enhanced in each objective function without
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degrading at least one of the other objective functions.
These solutions are named Pareto optimal solutions,
and their images under f are named non-dominated
points. The goal of solving MOPs is obtaining a set
of all non-dominated points called the Pareto front. It
should be noted that since the Pareto front may have
an in�nite number of points, particularly for continuous
MOPs, it is impossible to compute it completely in
practice, and hence, a discrete approximation of the
Pareto front with a �nite size is considered.

There are some di�erent methods to solve MOPs
in the literature. Miettinen categorized multi-objective
optimization methods into four groups assuming the
existence or nonexistence of a Decision Maker (DM)
during the solving process: no preference, a priori,
interactive, and a posteriori methods [9]. Note that the
DM is an expert in the domain of these problems who
can provide preference information to choose a �nal so-
lution in MOPs. In no preference methods, such as the
global criterion and multi-objective proximal bundle
method [10], the preference information from the DM
is not considered, and the MOP is solved for obtaining
a Pareto optimal solution. They are reasonable for
situations where there are not any special expectations
of solution for DM. In a priori methods, the DM is
initially requested to identify her/his preference infor-
mation, and then, the information is used to formulate
a parametric Single-objective Optimization Problem
(SOP). Lastly, the SOP is solved in a straightforward
way without any interactions with the DM to �nd
a solution. The lexicographic ordering [11] and goal
programming [12] belong to this group. In interactive
methods, the solving process is iterative, and the DM
determines the preference information and interacts
with the method at iterations as long as an attained
solution is acceptable from the viewpoint of the DM.
In addition, the DM can gain some familiarity with
the problem at each iteration and can correct one's
preferences. The reference point [13] and (interactive
weighted) Tchebyche� procedure [14] are examples of
these methods.

A posteriori method �rst generates an approxima-
tion of the Pareto front without paying attention to the
DM's preference information. Then, the DM examines
all points and selects the best one among them by
considering their mind priorities. Some algorithms
of this class for continuous MOPs are the normal
boundary intersection [15], normal constraint [16],
directed search domain [17], non-dominated sorting
genetic algorithm-II [18], and S-metric selection evo-
lutionary multi-objective algorithm [19]. Also, there
are algorithms to obtain non-dominated points for
discrete MOPs (see [20{24]). Note that in many real-
life MOPs and particularly in combinatorial MOPs,
these approximations can obtain many points such
that none of them can be said to be better than

the others in the absence of mind priorities of the
DM. In addition, the size of an approximation of
the Pareto front grows proportionally to the number
of objective functions. On the other hand, from a
practical viewpoint, one or some particular solution
corresponding to this approximation has to be selected
for industrial implementation. Therefore, choosing
among the equally good solutions may be a challenging
problem for the DM. Hence, a decision-making support
tool becomes very e�ective to assist the DM to choose
a preferred solution among all these solutions. There
are di�erent decision-making techniques to select one
or several solutions among a set of solutions obtained
by a posteriori methods. A review of some decision-
making algorithms is described as follows.

The Analytic Hierarchy Process (AHP) intro-
duced by Saaty [25] needs a decision tree with the
goal at the top level, criteria and sub-criteria at the
middle levels, and the solutions at the bottom. In
AHP, the DM makes pairwise comparisons of criteria
subject to the goal and determines the relative weight
of objective functions by di�erent methods such as
row sum, column sum, arithmetic mean, geometric
mean, and square sum methods. Finally, pairwise
comparisons of solutions with criteria are done, and the
DM selects the best solution according to the highest
rank between solutions. The elimination and choice
translating reality (ELECTRE) method presented by
Benayoun et al. [26] uses dominant relationships
between solutions. It is based on outranking re-
lationships and uses thresholds of indi�erence and
preference for pairwise comparisons among the solu-
tions. Srinivasan and Shocker [27] developed a linear
programming technique for multidimensional analysis
of preference (LINMAP) in which a solution with a
minimum distance from an ideal point is selected as
the best solution. Hwang and Yoon [28] proposed a
Technique to Order Preferences by Similarity to an
Ideal Solution (TOPSIS). According to this technique,
a non-dominated point is chosen that has the smallest
Euclidean distance from an ideal point and also the
largest Euclidean distance from a nadir point. Afshari
et al. [29] suggested a Simple Additive Weight (SAW)
method, which considers a weighted sum of normalized
values of objective functions for each Pareto optimal
solution and selects a solution with the greater value.
Note that the DM decides the weight corresponding to
each objective function. Guisado et al. [30] presented
Shannon's entropy method to calculate normalized
weights or relative importance of each objective func-
tion by considering all solutions. According to this
method, whatever dispersion in the index is greater,
the index is more important. It calculates a weighted
sum of each normalized solution and selects a so-
lution with a maximum value as the ultimate solu-
tion. Opricovic and Tzeng [31] introduced the VIKOR
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(vlsekriterijumska optimizacija i kompromisno resenje,
which in Serbian means multi-criteria optimization and
compromise solution) method, which is based on a
particular measure of closeness to the ideal solution.
A weight vector of criteria is considered as input that
can be determined by the DM or methods like AHP.
It uses the concept of compromise programming and
determines a compromise solution accepted by the
DM. Fernando et al. [32] proposed a simple method
named FUCA, which is a French acronym for \Faire
Un Choix Ad�equat" (make an adequate choice). This
method is based on individual rankings of objective
functions. For each objective function, the rank \one"
is assigned to its best value and the rank \n" to
the worst one. Note that n is the number of points
of approximation of the Pareto front. Besides, this
algorithm computes a weighted sum of ranks for each
solution in which weights represent preferences and
selects a �nal solution with the smallest values of this
sum. Yoon and Hwang [33] proposed the multiplicative
exponent weighting (MEW) method, in which a prod-
uct of the weighted exponent of a normalized value of
objective functions for each solution is calculated, and
a recommended solution is considered with the largest
value.

Malakooti and Raman [34] applied the unsu-
pervised learning clustering arti�cial neural network
with variable weights to a group of solutions. This
method uses a feed-forward arti�cial neural network to
select the best solution for each cluster. Furthermore,
Malakooti and Yang [35] proposed clustering solutions
into di�erent groups such that di�erent methods can be
applied for analyzing and selecting each group. They
provided theories and procedures for clustering based
on similar features among solutions, ideal solutions or
most representative solutions, and other preferential
information given by the DM. Taboada et al. [36]
reduced the size of the Pareto optimal solutions by two
methods. In the �rst method, the objective functions
are ranked non-numerically, scaled, and combined into
a single objective function using randomly generated
weight sets. Then, the DM can select a solution
that re
ects his objective functions priorities. In
the second method, the k-means algorithm is applied
to cluster the data based on clustering techniques
used in data mining. It �nds k groups of similar
solutions, and the DM chooses k solutions without
any objective function preference information. Cheikh
et al. [37] and Zio and Bazzo [38] partitioned Pareto
optimal solutions into k clusters in which each cluster
contains solutions with similar properties. In these
methods, the nearest solution to the ideal point is
chosen in each cluster. In addition, a fuzzy scor-
ing procedure is applied for ranking solutions in the
Zio and Bazzo method. Deb and Goel [39] use a
clustering method in which each solution belongs to

a separate cluster. Next, the distance between all
pairs of clusters is calculated by �nding a centroid
of each cluster and calculating the Euclidean distance
between the centroids. Besides, two clusters having
a minimum distance are merged together into a bigger
cluster. This step is continued until the desired number
of clusters is obtained. For the remaining clusters,
a solution closest to the centroid of the cluster is
retained, and all other solutions from each cluster are
deleted.

In this work, a new scalarization approach is
introduced to �nd a Pareto optimal solution for con-
vex MOPs such that the relative importance of each
objective function is likeness. It uses the fact that
whatever the relative importance assigned to the ob-
jective functions are closer together, the product of
their component is greater. Note that some decision-
making approaches require interactions with the DM,
such as SAW, TOPSIS, VIKOR, AHP, and MEW.
Therefore, these methods depend on DM to provide
inputs, preference information, and �nal outputs, and
hence, di�erent DMs may obtain other solutions and
cause errors. Some approaches, such as AHP and
clustering methods, cannot get an acceptable solution
without having information about problems and a set
of solutions and need to analyze the solutions. Some
approaches di�er in expressing the preferences. For
example, AHP considers weighed factors independently
of solutions, while Shannon's entropy method calcu-
lates weighs by considering all solutions. In this paper,
two decision-making methods are proposed to help the
DM to �nd the most preferred solutions from a set of
non-dominated points without having any familiarity
with the problem. Hence, these methods are user-
friendly because they do not require any input from
the user. The �rst method ranks a set of Pareto
optimal solutions or non-dominated points obtained
for a convex MOP, and another method ranks a
set of non-dominated points obtained for non-convex
MOPs. Both methods use concepts of the weighted
sum scalarization method to assign a weighted vector
to each non-dominated point. These methods cal-
culate weights by considering all solutions or some
solutions and solving linear programming. Finally,
the results of these methods on several examples are
presented.

The remainder of this paper is organized as fol-
lows: Some basic de�nitions of MOPs used throughout
this paper are brie
y described in Section 2. After that,
a new scalarization approach is introduced in Section 3.
The �rst decision-making method is proposed to rank
a set of Pareto optimal solutions of convex MOP in
Section 4. Then, another decision making-method is
suggested for ranking a set of Pareto optimal solutions
of non-convex MOP in Section 5. Finally, Section 6
presents conclusions.
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2. Preliminaries

This section presents notations, de�nitions, and pre-
liminaries used during the paper in which Rp� =
fy 2 Rpj yi � 0 for i 2 f1; :::; pgg.
De�nition 1 [40]. Given points y1 and y2 2 Rp. y1

is said to dominate y2, and it is shown as y1� y2 if
y1
i � y2

i for all i = 1; 2; :::; p, and y1 6= y2. In addition,
y1 � y2 if and only if y1

i < y2
i for all i = 1; :::; p.

De�nition 2 [40]. A solution x̂ 2 X is called a
Pareto optimal solution of Problem (1) if there is no
feasible solution x 2 X such that f(x) dominates f(x̂).
If x̂ 2 X is a Pareto optimal solution, then f(x̂) is
called a non-dominated point. The set of all Pareto
optimal solutions of the MOP are denoted by XE , and
their images are called Pareto front and denoted by YN ,
respectively.

According to De�nition 2, the Pareto optimal
solutions do not allow improvement in one objective
function without deteriorating at least one other ob-
jective function. These trade-o�s among objective
functions can be measured by computing the increase
in objective function per unit decrease in objective
function fi. In some situations, these trade-o�s can
be unbounded. In order to eliminate Pareto op-
timal solutions that exhibit an unbounded tradeo�
in their objective values to other solutions, prop-
erly Pareto optimal solutions were introduced as fol-
lows.

De�nition 3 [40]. A Pareto optimal solution x̂ 2 X is
called a properly Pareto optimal solution in Geo�rion's
sense for Problem (1) if there exists a positive number
M such that for each x 2 X and i 2 f1; :::; pg with
fi(x)<fi(x̂), there exists at least an index j2f1; :::; pg
with fj(x̂) < fj(x) such that:

fi(x)� fi(x̂)
fj(x̂)� fj(x)

< M:

If x̂ 2 X is a properly Pareto optimal solution,
f(x̂) is called a properly non-dominated point.

De�nition 4 [41]. Let x̂ 2 X be a Pareto optimal
solution of Problem (1). The global trade-o� TGij (x̂) for
i and j 2 f1; :::; pg, with i 6= j, is de�ned as follows:

TGij (x̂) = sup
f(x)2Z<(f(x̂))

j

fi(x)� fi(x̂)
fj(x̂)� fj(x)

;

where Z<(f(x̂))
j =

�
x 2 Xjfj(x) < fj(x̂); fk (x̂) �

fk(x); k = 1; :::; p; k 6= j
	

.

De�nition 5. Let the individual minimum of fi(x)
over x 2 X be attained at xi for each i = 1; :::; p.

The ideal point of Problem (1) is de�ned as yI =�
f1(x1); f2(x2); :::; fp(xp)

�T .

De�nition 6. The nadir point of Problem (1) is
yN =

�
fN1 ; fN2 ; :::; fNp

�T where the component fNi is
determined by maxx2XEfi(x) for i 2 f1; :::; pg and
gives an upper bound on the Pareto front.

In the following theorem, Karush-Kuhn-Tucker
(KKT) optimality conditions for Problem (1) are dis-
cussed.

Theorem 1 (KKT su�cient optimality condi-
tion) [9]. Suppose that the objective functions fi :
X ! R, i = 1; ::; p and the constraint functions gj :
X!R, j = 1; :::;m are continuously di�erentiable and
convex at a point x̂ 2 X. Besides, there are � 2 Rp�
and � 2 Rm� such that:Xp

i=1
�irfi(x̂) +

Xm

j=1
�jrgj(x̂) = 0;

�jgj(x̂) = 0; j = 1; 2; :::;m;

� � 0; �� 0; (2)

then, x̂ is a Pareto optimal solution to Problem (1).

2.1. Weighted sum scalarization method
A scalarization approach is a common approach for
determining solutions of the MOP in which the
MOP is reformulated as a parametric SOP. Therefore,
this SOP can be solved by using standard single-
objective optimization techniques. The best-known
and simplest method of the scalarization approaches
is the weighted sum method suggested by Gass and
Saaty [42]. This method associates each objective
function with a weighting coe�cient determined by
the DM and optimizes the real-valued function of the
weighted sum of the objective functions. The scalar
weighted sum problem for the given weight vector
� = (�1; �2; :::; �p) 2 Rp� is written as follows:

min
Xp

i=1
�ifi(x); (3)

s.t.: x 2 X:
The weight �i, i = 1; :::; p can be interpreted

as the relative importance or worth of the objective
function fi when it is compared to the other objective
functions. It is usually supposed that weights are
normalized, that is,

Pp
i=1 �i = 1. In this method, each

Pareto optimal solution of a convex MOP can be found
by varying �; see [40]. The geometrical illustration of
this method is given in Figure 1 for a speci�ed weight
vector � and a bi-objective minimization problem.
Since YN+Rp� is a convex set in this �gure, the optimal
solution of the weighted sum problem is the intersection
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Figure 1. Feasible region of the bi-objective minimization
problem in objective space: A weighted objective function
appears as a linear curve.

Figure 2. Inability of the weighted sum method to �nd a
point ŷ of a non-convex bi-objective problem.

of the supporting hyperplanes of the Pareto front
at a point f(x̂) with the normal vector �, that is,
��(f(x) � f(x̂)) = 0 in which \." is the dot product. In
addition, the non-dominated point f(x̂) is obtained by
pushing the contour as far to the southwest as possible
until it just touches the boundary of Y .

It should be noted that an optimal solution of
the weighted sum problem with � 2 Rp� is a properly
Pareto optimal solution of the MOP, and any Pareto
optimal solution of a convex MOP can be found by the
weighted sum method and varying �. In addition, this
method misses non-dominated points on non-convex
parts of the Pareto front for non-convex MOPs; see
Figure 2. This is due to the fact that this method
is often implemented as a convex combination of the
objective functions, where the sum of all weights is
constant and negative weights are not allowed. A new
scalarization approach for convex MOPs.

As mentioned in the introduction, a discrete
approximation of optimal solutions is obtained by
solving an MOP in a posteriori method. Since the
size of this approximation is usually large, choosing
a solution among these solutions is di�cult. In
addition, it is important that a solution can be obtained
as a recommended solution that considers a relation
between the objective functions without exploring all
Pareto optimal solutions. For this purpose, a new
scalarization approach is presented for convex MOPs

in which the KKT su�cient optimality condition is
used. The optimal solution of the proposed SOP
is a Pareto optimal solution with the characteristic
that the relative importance of the objective functions
is very close together and, in particular, is equal.
This approach uses the fact that whatever n positive
numbers are closer together, their product is greater
(see Theorem 2 and Lemma 1).

Theorem 2 [43]. The product of n positive real
numbers with a constant sum is maximal when all the
numbers are equal.

Lemma 1. Let S is an arbitrary set of positive
real numbers with a constant sum �, i.e., S = fs =
(s1; s2; :::; sn) 2 Rn j Pn

i=1 si = � g. Then, whatever
�s =

Pn
i=1 jsi � �

n j is smaller, the product of its
component, i.e., 
s =

Qn
i=1 si is bigger for s 2 S.

Proof. It is obvious by considering Theorem 2.

Lemma 1 and the KKT su�cient optimality
condition have an important role in formulating this
scalarization approach. The Constraints 2 are used
in order to obtain a solution belonging to the Pareto
optimal set of the MOP. Hence, suppose that the
objective functions and constraint functions of the
MOP are convex and continuously di�erentiable on X
and consider the following SOP:

max
Yp

i=1
�i

s.t.:
Xp

i=1
�irfi(x) +

Xm

j=1
�jrgj(x) = 0;

�jgj(x) = 0; j = 1; 2; :::;m;

�j � 0; j = 1; 2; :::;m;Xp

i=1
�i = 1; (4)

where � � 0 and x 2 X. It is obvious that an optimal
solution (x; �; �) 2 Rn�Rp� � Rm� to Problem (4) is
a solution in that the weights �i, i = 1; :::; p, are
very close together, and x is a Pareto optimal solution
of the MOP. Since the maximum of the product of
�i, i = 1; :::; p is calculated, �i is always positive.
Problem (4) is a Multiplicative Programming Problem
(MPP) in which an objective function is a product
of several linear functions. Moreover, the MPP is
known as both a global optimization problem and
an NP-hard problem, even in special cases where its
objective function is the product of two linear functions
subject to linear constraints. Hence, Problem (4) can
be solved by algorithms presented for convex MPP,
such as an objective space cut and bound algorithm
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Figure 3. (a) The objective space of the bi-objective problem corresponding to Example 1 and (b) Pareto front of
Example 2 and obtained solutions of the Problem (6).

proposed by Shao and Ehrgott [44] that obtains an
"-optimal solution for Problem (4) with a speci�ed
approximation error " > 0. A technique is proposed
to solve this problem exactly. Since the function
ln(x) is a strictly increasing function, the objective
function of Problem (4) is replaced by

Pp
i=1 ln (�i).

In addition, changing variables zi = ln(�i), and as a
result �i = ezi is applied in this problem, and the
following SOP is obtained. It should be noted that
since 0 < �i < 1, i = 1; :::; p, zi < 0. Then, by this
logarithmic transformation, Problem (5) can be solved
for a globally optimum solution quicker and easier.

max
Xp

i=1
zi;

s.t.:
Xp

i=1
ezirfi(x) +

Xm

j=1
�jrgj(x) = 0;

�jgj(x) = 0; j = 1; 2; :::;m;

�j � 0; j = 1; 2; :::;m;Xp

i=1
ezi = 1;

zi � 0; i = 1; 2; :::; p;

x 2 X: (5)

Example 1. Consider the following bi-objective
optimization problem:

min f1(x) = x2
1 + x2;

min f2(x) = x2
2 + x1;

s.t.: � 5 � x1; x2 � 5:

According to Problem (5), Example 1 can be formu-
lated as follows:

max z1 + z2;

s.t.: ez1rf1(x) + ez2rf2(x) = 0;

pX
i=1

ezi = 1;

z1; z2 � 0; �5 � x1; x2 � 5: (6)

All implementations in this paper are done by
MATLAB 2016 on a laptop with Pentium 4 at 2.3 GHz
and 4 GB RAM run. (x1; x2; �1; �2) = (�0:5;�0:5;
0:50; 0:50) is an obtained solution to this problem. A
feasible objective set of the objective space is shown by
dots points calculated on a regular grid in Figure 3(a).

In addition, the Pareto front of Example 1 is
illustrated by a continuous curve shown by red dots
points, and a non-dominated point obtained by solving
Problem (5) is (�0:25;�0:25) shown by a star in
Figure 3(b). As seen in this �gure, the obtained
solution corresponds to a point on the Pareto front,
and the relative importance of each objective function
is equal.

Theorem 3. Assume (x�; ��; ��) be an optimal
solution of Problem (4), then x� is the optimal solution
of a following weighted sum problem:

min
Xp

i=1
��i fi(x);

s.t.: x 2 X: (7)

Proof. Since (x�; ��; ��) is the optimal solution to
Problem (7), we have the following:Xp

i=1
��irfi(x�) +

Xm

j=1
��jrgj(x�) = 0;

��j gj(x�) = 0; j = 1; 2; :::;m:



258 A. Dolatnezhadsomarin et al./Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 252{268

Therefore, x� is satis�ed with the KKT optimality
conditions of the weight sum Problem (7), and since
this problem is convex, x� is the optimal solution to
this problem. �

Theorem 4. Assume (x�; ��; ��) be an optimal solu-
tion of Problem (4), then the global trade-o� TGij (x�)
for all i and j 2 f1; :::; pg that i 6= j is calculated as
follows:

TGij (x�) � maxj��j
mini��i

:

Proof. Let (x�; ��; ��) be the optimal solution of
Problem (4), then x� is the optimal solution of Prob-
lem (7). Then,Xp

i=1
��i fi(x�) �

Xp

i=1
��i fi(x)

)Xp

i 6=j �
�
i (fi(x�)� fi(x)) + ��j

�
fj(x�)

�fj(x)
�
� 0;)Xp

i6=j �
�
i (fi(x�)� fi(x))

� ��j (fj(x)� fj(x�)) :
Let �� = mini 6=jf��i g, then ��

Pp
i 6=j (fi(x�)� fi(x)) �

��j (fj(x)� fj(x�)). Moreover, we have:

fi(x�)� fi(x)
fj(x)� fj(x�) �

Xp

i 6=j
fi(x�)� fi(x)
fj(x)� fj(x�) �

��j
��

� maxj 6=i��j
��

=
maxj 6=i��j
mini 6=j��i

� maxj��j
mini��i

:

As a result TGij (x�) � maxj��j
mini��i

= M . The vector
�� which corresponds to the optimal solution x� to
Problem (4) has a maximum value

Qp
i=1 �

�
i , or the

components of �� are very close together. It means
that maxi f��i g � mini f��i g has a minimum value. In
addition, the smallest lower bound for M occurs when
maxi f��i g � mini f��i g has a minimum value. Then,
it is possible to obtain the smallest lower bound for
TGij (x�) for all i and j 2 f1; :::; pg that i 6= j by having
the vector ��.

3. A method for ranking non-dominated
points of convex MOPs

The DM's preferences are important in MOPs, espe-
cially when the goal is to help the DM to �nd the most
preferred solutions and make a suitable decision. Many
algorithms are proposed for generating an approxima-
tion of the Pareto front, while the number of methods
presented for ranking obtained solutions is relatively
small. In addition, some information on an MOP is

needed in several decision-making methods, such as
obtaining the ideal or nadir points. We presented
a new decision-making method for ranking a set of
non-dominated points of a convex MOP without any
information about the problem. The proposed method
uses concepts of the weighted sum method and is based
on this method; whatever the relative importance of
the objective functions in a point is closer together,
the point is more important, or the product of weights
corresponding to the point is greater (see Theorem 2
and Lemma 1).

Suppose PF = fy1; y2; :::; yNg is an obtained
approximation of k non-dominated points of the convex
MOP that covers all regions in the actual Pareto front.
As mentioned before, there is a unique positive weight
�i, i = 1; 2:::; p, in the weighted sum problem for
each Pareto optimal solution. It should be noted
that there is not necessarily a unique positive weight
for each Pareto optimal solution for a discrete set of
piecewise linear points, and there may exist a set of
weights for each Pareto optimal solution. The goal
is to �nd a weight vector � corresponding to a non-
dominated point of the set PF whose corresponding
components � are very close together. In other words,
this vector has a maximum product of its components.
By considering the mechanism of the sum weighted
method, � is determined for each yk such that �:yk has
a minimum value in the set PF . Hence, the following
problem is solved:

min � � yk;
s.t.: � � yk � � � yj ; j = 1; 2; :::; N; j 6= k;Xp

i=1
�i = 1; �i � 0; i = 1; 2; :::; p: (8)

After solving the linear Problem (8), vector �k,
which is an optimal solution corresponding to yk is
obtained, and !k =

Qp
i=1 �

k
i is calculated. Now, a

set f!1; !2; :::; !Ng is sorted in ascending order, and
the set PF is ranked. Hence, a non-dominated point,
which its corresponding ! has greater value, is better.

Example 2. Consider the following convex bi-
objective problem:

min f(x) = (x1; x2);

s.t.: (x1 � 1)2 + (x2 � 1)2 � 1;

x1; x2 � 0:

Figure 4(a) shows an obtained approximation of
the Pareto front for Example 2. Then, the proposed
method for ranking the obtained approximations of
the Pareto front is applied, and a following ranking
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Figure 4. (a) The approximation of the Pareto front for Example 2 and (b) Ranking of the approximation of the Pareto
front by the proposed method for Example 2.

Figure 5. (a) The approximation of the Pareto front for Example 3 and (b) Ranking of the approximation of the Pareto
front by the proposed method for Example 3.

of the points displayed in this �gure is obtained. We
divided the obtained non-dominated points into four
groups. The points of this approximation are ranked
into four groups, which are indicated by symbols of
circle, triangle, square, and star, respectively. It
should be noted that the lower ranks include points
with more preference for selection. In addition, a
�nal solution (0.2929,0.2929) corresponding to a weight
vector (0.4904,0.5096) is obtained.

Example 3. The 10-variable DTLZ2 problem has
a non-convex and continuous Pareto front and is
formulated as follows:

min f1(x) = cos
��

2
x1

�
(1+g(x)) ;

min f2(x) = sin
��

2
x1

�
(1+g(x)) ;

g(x) =
nX
i=2

(xi � 0:5)2;

s.t.: xi 2 [0; 1] ; 8i = 1; 2; :::; n:

The weighted sum method is not able to �nd non-
dominated points of this problem. To assign a weight
vector to each point of the approximation, the following
problem can be solved in which a weight vector � is
determined such that �:yk has a maximum value among
all points of approximation.

max � � yk

s.t.: � � yk � � � yj ; j = 1; 2; :::; k; j 6= k;Xp

i=1
�i = 1; �i � 0; i = 1; 2; :::; p: (9)

Then, the proposed method can be used for MOPs
in which the convexity of the Pareto front curve on the
setX is downward with this di�erence that Problem (9)
is solved. Hence, the method can be used in Example 3.
An approximation of the Pareto front is illustrated in
Figure 5(a), and the proposed method for ranking these
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Figure 6. (a) The approximation of the Pareto front for Example 4 and (b) Ranking of the approximation of the Pareto
front by the proposed method for Example 4.

Figure 7. (a) The downward concavity and (b) upward concavity of the Pareto front curve for a bi-objective optimization
problem.

approximations is applied and a ranking of the points is
obtained by partitioning the point into four groups as
Example 2. In addition, a �nal solution (0.7071,0.7071)
corresponding to a weight vector (0.5096,0.4904) is
obtained.

Example 4. Consider the following convex three-
objective problem:

min f(x) = (x1; x2; x3);

s.t.: (x1 � 1)2 + (x2 � 1)2 + (x3 � 1)2 � 1;

x1; x2; x3 � 0:

The feasible set and feasible objective space set
are as a sphere with center (1, 1, 1) and radius 1. The
Pareto front is convex, represented by a lower boundary
of a unit sphere, i.e.,

YN = XE = fx 2 R3 j 0 � xi � 1 ; 8i = 1; 2; 3 and

(x1 � 1)2 + (x2 � 1)2 + (x3 � 1)2 = 1g:
An approximation of the Pareto front for Example 4

is demonstrated in Figure 6(a). Then, the proposed
method for ranking the obtained approximations of
the Pareto front is applied, and a following ranking of
the points is obtained. We divided the obtained non-
dominated points into four groups; see Figure 6(b). In
addition, a �nal solution (0.4226,0.4226,0.4226) corre-
sponding to a weight vector (0.3570,0.2860,0.3570) is
obtained.

4. A method for ranking non-dominated
points of non-convex MOPs

As mentioned before, the weighted-sum method can-
not �nd non-dominated points that lie in non-convex
regions of the Pareto front, and it may duplicate points
with di�erent weight vectors. Consider three following
cases:

1. The concavity of the Pareto front curve is down-
ward, and hence, supporting (hyper) planes with
the normal vector � are located under the curve at
each point f(x) (see Figure 7(a));

2. The concavity of the Pareto front curve is upward,
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Figure 8. The Pareto front curve for a bi-objective problem with regions with upward and downward concavity.

and hence, supporting (hyper) planes with the
normal vector � are located above the curve at each
point f(x) (see Figure 7(b));

3. The Pareto front curve is composed of regions with
upward and downward concavity; see Figure 8. As
seen in this �gure, the concavity of regions R1, R2,
R3, and R4 is upward or downward.

Suppose PF = fy1; y2; :::; yNg is an obtained ap-
proximation of N non-dominated points of a nonlinear
MOP. The Pareto front curve may be composed of
regions with upward and downward concavity. There
is a positive weight in the weighted sum problem in
a neighborhood of each non-dominated point of the
nonlinear MOP (see Figure 8(b)).

For obtaining these neighborhoods of each non-
dominated point, indi�erent regions are considered
de�ned as follows.

De�nition 7 [45]. Let f̂ and f� be two di�erent
non-dominated points. By De�nition 2, f̂ belongs to
a region f� +

�
Rp � (�Rp� [ Rp�)

�
; in which Rp �

(�Rp� [ Rp�) is de�ned as follows:

(
[p

i1=1
Ri1) [ (

[p

i1;i2=1
Ri1;i2) [ � � �

[(
[p

i1;i2;:::;ip�1=1
Ri1;i2;:::;ip�1);

where ij 6= ik for j 6= k, and:

Ri1 = fw 2 Rpj wi1 > 0; wTi1�0 g with

Ti1 = f1; :::; pgnfi1g;
Ri1;i2 =fw 2 Rpj wi1 > 0; wi2 > 0; wTi1;i2�0 g with

Ti1;i2 = f1; :::; pgnfi1; i2g

...

Ri1;i2;:::;ip�1 = fw 2 Rpj wi1 > 0; wi2 > 0; : : : ;

wip�1 > 0; wTi1;i2;:::;ip�1�0 g with

Ti1;i2;:::;ip�1

= f1; :::; pgnfi1; i2; :::; ip�1g:
Note that wTi1;i2;:::;ip�1 shows elements of the

vector w, whose their index belongs to Ti1;i2;:::;ip�1 . In
addition, Ri1 ; Ri1;i2 ; :::; Ri1;i2;:::;ip�1 , are 2p� 2 convex
cones called indi�erent regions. Besides, following
indi�erent regions with respect to the non-dominated
points f� are de�ned as follows:

f� +Ri1 ; f
� +Ri1;i2 ; :::; f

� +Ri1;i2;:::;ip�1 :

By considering the de�nition of the indi�erent
regions, an approximation PF of the MOP with p
objective functions is partitioned into 2p � 2 clusters
by considering a non-dominated point such as f� from
PF . Figure 9 shows the partitioning of approximations
of the Pareto front into 2 and 6 clusters by considering
a non-dominated point f� for Example 2 and Example
4, respectively.

Afterward, the following steps are done for each
non-dominated point f� 2 PF :

Step 1: The nearest point to the point f� is selected
from each cluster and is considered as set A (see
Figure 10).

If there is an indi�erent region corresponding to
the point f� that does not contain any points, then
consider a point close enough to f� in that area and
add it to the set A. Figure 11 displays some points
of PF as circles for Examples 2 and 4, where at least
one of the corresponding indi�erent regions is empty.



262 A. Dolatnezhadsomarin et al./Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 252{268

Figure 9. Partitioning of the approximation of the Pareto for (a) Example 2 and (b) Example 4.

Figure 10. Illustration of the set A for (a) Example 2 and (b) Example 4.

Figure 11. Illustration of some points of PF with at least one empty indi�erent region for (a) Example 2 and (b)
Example 4.

Step 2: Two points, c and d, are selected from set A.
Consider vector b, perpendicular to the line passing
through c and d. Hyper plane H = fy 2 Rpj bT y =
� g with � = bT c is considered passing through c and
parallel to the normal vector b. Now, point y� 2

Rp is obtained so that y�i has a minimum value of
ith component among the set PF . In addition, y�
satis�es a constraint bT y � �. If bT f� � �, there is a
neighborhood of f� where the concavity of the curve
is downward. Otherwise, there is a neighborhood of
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Figure 12. Determine (a) the downwards concavity and (b) concavity upwards in a neighborhood of f�.

f� where the concavity of the curve is upward (see
Figure 12).

If the concavity of the curve is downward, solve
Problem (10); otherwise, solve Problem (11) de�ned
as follows:

max � � f�;
s.t.: � � y � � � f�; 8y 2 A;Xp

i=1
�i = 1; �i � 0; i = 1; 2; :::; p; (10)

and:

min � � f�;
s.t.: � � f� � � � y ; 8y 2 A;Xp

i=1
�i = 1; �i � 0; i = 1; 2; :::; p: (11)

Then, the weighted vector �� is obtained as an
optimal solution to Problem (10) or Problem (11) and
set ! =

Qp
i=1 �

�
i .

For each yk 2 PF; k 2 f1; 2; :::; Ng, an optimal
solution �l is obtained by solving Problem (10) or
Problem (11), and the value !k = �p

i=1�ki is calculated.
Then, a set f!1; !2; :::; !Ng is sorted in ascending
order, and the set PF is ranked. Hence, a non-
dominated point, which its corresponding ! has greater
value, is better. The proposed method is applied for
Examples 2, 3, and 4, and the �nal solutions obtained
by this method are similar to the method proposed
for ranking non-dominated points of convex MOPs (see
Figure 13).

Example 5. A following problem introduced by
Tanaka et al. [46] with a non-convex and disconnected
Pareto front is formulated as follows:

min f(x) = (x1; x2);

s.t.: x2
1 + x2

2 � 1 + 0:1 cos (16 arctan(x1=x2)) ;

(x1 � 0:5)2 + (x2 � 0:5)2 � 0:5;

0 � x1; x2 � �:
An approximation of the Pareto front with 80

points is illustrated in Figure 14(a). Then, the pro-
posed method for ranking the obtained approximations
of the Pareto front of a non-convex bi-objective prob-
lem is applied, and a ranking of points is obtained as
follows. We divided the obtained non-dominated points
into four groups with 20 points; see Figure 14(b). In ad-
dition, (0.1222,0.9712) is a �nal solution corresponding
to a weight vector (0.4983,0.5017) is obtained. Table 1
reports information about the ranking of 20 points of
the approximation in Rank 1 for Example 5.

It is worth mentioning that other criteria can be
used to rank points of approximations of the Pareto
front according to weighted vectors obtained in this
method. In the following, the SAW and TOPSIS are
explained, and �nal solutions to Examples 2 and 5
are obtained by these methods. In these methods, a
weighted vector is determined by the DM, while the
proposed methods obtain weighted vectors and do not
depend on the DM.

4.1. The SAW method
The SAW method, referred to as a scoring method, is
based on the concept of the weighted sum method. In
this method, the DM directly determines a weighted
vector W = (w1; w2; :::; wp) where wi is the relative
importance assigned to the ith objective function. The
main principle of the SAW method is obtaining a score
for each solution by getting a weighted sum of the
normalized objective values and selecting a solution
with the greater value as the �nal solution. The steps
of this method are as follows:
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Figure 13. Ranking of the approximations of the Pareto front by the proposed method for non-convex problems for
Examples 2, 3, and 4.

Table 1. Ranking of 20 points of the approximation in Rank 1 for Example 5.

k yk �k !k k yk �k !k
1 (0.1222,0.9712) (0.4983,0.5017) 0.2500 11 (0.1483,0.9481) (0.4532,0.5468) 0.2478
2 (0.9712,0.1222) (0.5017,0.4983) 0.2500 12 (0.9481,0.1483) (0.5468,0.4532) 0.2478
3 (0.9834,0.1099) (0.5023,0.4977) 0.2500 13 (0.7979,0.5159) (0.4532,0.5468) 0.2478
4 (0.1099,0.9834) (0.4977,0.5023) 0.2500 14 (0.5159,0.7979) (0.5468,0.4532) 0.2478
5 (0.0976,0.9956) (0.4853,0.5147) 0.2498 15 (0.7416,0.7416) (0.4517,0.5483) 0.2477
6 (0.9956,0.0976) (0.5147,0.4853) 0.2498 16 (0.7873,0.5294) (0.5588,0.4412) 0.2465
7 (0.1348,0.9593) (0.4850,0.5150) 0.2498 17 (0.5294,0.7873) (0.4412,0.5588) 0.2465
8 (0.9593,0.1348) (0.5150,0.4850) 0.2498 18 (1.0187,0.0719) (0.5761,0.4239) 0.2442
9 (0.0851,1.0074) (0.4614,0.5386) 0.2485 19 (0.0719,1.0187) (0.4239,0.5761) 0.2442
10 (1.0074,0.0851) (0.5386,0.4614) 0.2485 20 (0.9167,0.4545) (0.3811,0.6189) 0.2359

Step 1: Generate a decision matrix Y = [yij ]N�p by
using PF = fy1; y2; :::; yNg such that the ith row of
Y is yi.

Step 2: Generate a normalized decision matrix Y 0 =
[y0ij ]N�p in which y0ij = yij

mink=1;:::;N ykj :

Step 3: Generate the weighted normalized matrix

Y 00 = [y00ij ]N�p in which y00ij = wj � y0ij .
Step 4: Find the score of each point as Si =Pp
j=1 y

00
ij ; i = 1; :::; N:

Step 5: Rank points based on values of Si, i =
1; :::; N . Hence, a point with the largest value is a
recommended point, and its corresponding solution
in X is the �nal solution.
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Figure 14. (a) The approximation of the Pareto front for Example 5 and (b) Ranking of the approximation of the Pareto
front by the proposed method for Example 5.

Table 2. The �nal solutions of the proposed method, SAW and TOPSIS for Examples 2 and 5.

The proposed method SAW with W = (0:5; 0:5) TOPSIS with W = (0:5; 0:5)

The �nal
solution for
Example 2

(0.2929,0.2929)
(0.0000,0.9995) (0.2929,0.2929)

SAW with W = (0:25; 0:75) TOPSIS with W = (0:25; 0:75)

(0.9995,0.0000) (0.5693,0.0975)

The proposed method SAW with W = (0:5; 0:5) TOPSIS with W = (0:5; 0:5)

The �nal
solution for
Example 2

(0.1222,0.9712)
(0.0417,1.0384) (0.0417,1.0384)

SAW with W = (0:25; 0:75) TOPSIS with W = (0:25; 0:75)

(1.0384,0.04166) (1.0384,0.04166)

4.2. The TOPSIS method
The TOPSIS method selects a point with the smallest
Euclidean distance from an ideal point and the largest
Euclidean distance from a nadir point. Note that
the nadir point consists of the worst values for all
objectives in the set PF , while the ideal point combines
the best values for all objectives. Note that the DM
directly considers weights fw1; w2; :::; wpg of relative
importance for each objective function. This method
involves the following steps:

Step 1: Generate a decision matrix Y = [yij ]N�p as
the same as the SAW method.
Step 2: Generate a normalized decision matrix Y 0 =
[y0ij ]N�p in which:

y0ij =
yijqPN
k=1 y2

kj

; i = 1; :::; N; j = 1; :::; p:

Step 3: Generate a weighted normalized matrix Y 00
= [y00ij ]N�p in which y00ij = wj � y0ij .
Step 4: Obtain an ideal point yIdeal and nadir point
yNadir by the weighted normalized matrix.
Step 5: Compute the distance between each point
yk from the ideal and nadir points as follows:

d+
k =

rXp

j=1
(y00kj � yIdealj )2 and

d�k =
rXp

j=1
(y00kj � yNadirj )2 for k = 1; :::; N:

Step 6: Calculate the relative closeness of each point
to the ideal point as follows:

Ci =
d�i

d�i + d+
i

for i = 1; :::; N:

Step 7: Rank the points based on the value of C;
hence, the point having the largest C is the recom-
mended point, and its corresponding solution in X is
the �nal solution.

Figure 15 shows the �nal solutions obtained by
the proposed method, SAW, and TOPSIS for Exam-
ples 2 and 5. Note that W = (0:5; 0:5) and W =
(0:25; 0:75) are considered in SAW and TOPSIS. In
addition, Table 2 reports the �nal solutions for these
problems.

5. Conclusions

A posteriori method usually obtains many equally good
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Figure 15. Determine the �nal solutions of the proposed method, SAW, and TOPSIS for Examples 2 and 5.

non-dominated points of an Multi-Objective Optimiza-
tion Problem (MOP), and it is di�cult for the Decision
Maker (DM) to analyze all points and select the best
one. To help the DM, a new scalarization approach
was proposed in this paper to select a Pareto optimal
solution for convex MOPs such that the relative impor-
tance assigned to its objective functions is the same.
In addition, concepts of the weighted sum scalarization
method were used to present two other decision-making
approaches without any information about the MOP.
The �rst one was proposed for analysis approximations
of the Pareto front obtained for convex MOPs, and the
second approach was considered for approximations of
the Pareto front obtained for non-linear MOPs in the
general case. These methods assigned a weight vector
to each non-dominated point by considering all or some
points of approximation and ranked them based on
the product of the component of their weight vectors.

Note that whatever the product of the component of
a weight vector is greater, the component of its weight
vector is very close together. Accordingly, a point with
a maximum value of this product is a preferred point
among the other points.
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