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This article addresses the state estimation problem for dynamic systems with linear models wherein 

covariance matrices of the process and measurement noise are unknown and one step delay randomly 

occurs in the measurements. Due to network congestion, limited bandwidth during transmission of 

sensor data to the central processing unit the probability of measurements getting randomly delayed is 

high and this phenomenon is ignored for conventional adaptive Kalman filters. A new algorithm for 

Adaptive Kalman filter with one step randomly delayed measurements is proposed here wherein the 

randomly delayed measurements are modelled using Bernoulli’s distribution. The adaptation algorithm 

has been mathematically derived for such situations following the variational Bayesian approach and 

subsequently a recursive algorithm for variational Bayesian adaptive delayed Kalman filter is 

formulated. Monte Carlo simulation demonstrates the excellence of the proposed filter over the 

conventional Kalman filter for the estimation problem addressed in this work. The comparative study 

with the competing maximum likelihood estimation variant also reveals the superiority of the proposed 

filter. To exemplify the effectiveness of the proposed algorithm for real world applications validation 

with the real measurement data has been carried out for offline harmonics estimation which ensures 

satisfactory estimation results. 

1. Introduction

Linear and nonlinear state estimation using discrete time 

models for dynamic systems using noise perturbed 

measurements has gained significant attention of the researchers 

since the introduction of Kalman Filter (KF). KF by Kalman [1] 

is the optimal linear quadratic state estimator for the linear 

Gaussian signal models. KF has been extensively employed in 

navigation, adaptive control, recently in State of Charge 

estimation of EV batteries, and many more engineering 

applications [2-4]. The major issue of the application of KF is 

the tuning of the filter as there are uncertainties in the signal 

models (process and measurement). The correctness of the 

estimates from KF becomes questionable when the knowledge 

of noise statistics remains incomplete to the designer. Accuracy 

of the KF primarily depends on the prior information of the 

noise statistics, which may not be known accurately in many 

practical applications as mentioned in Mohamed and Schwarz 

[5] and Mehra [6]. The use of inadequate noise statistics may 

produce unacceptable estimation performance and can cause 

even the divergence of filter. Adaptive KFs in Mehra [6] and 

Sage and Husa [7] have been developed for auto tuning of KF 

in face of unknown noise statistics.  

Adaptive filters can overcome limitation of the traditional 

KF with the uncertain noise covariance matrices by 

approximately estimating the unknown noise covariance 

matrices which subsequently improves estimation performance 

of the filter [6]. Classical adaptive methods are: Bayesian 

approach, Maximum Likelihood Estimation (MLE), 

correlation, and covariance matching. According to covariance 

matching method by Mehra [6] and Myers  and Tapley [8] the 

window estimated and theoretical innovation noise covariance 

matrices will be compared. But there is a lack of confidence 

about the convergence of the adapted covariance matrices and 

consequently the covariance matching technique are not 

preferred to estimate unknown noise covariance matrices. The 

MLE technique which estimates noise covariance matrices 

based on maximization of the probability density function of 

measurements is a better alternative to the covariance matching 

method. MLE approaches, on the other hand, needs a broad 
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window of data in order to obtain improved estimation, which 
may demand extra computation effort. Additionally, it has been 
observed that the performance of MLE based adaptation 
approach is satisfactory only when any of the process noise 
covariance is unknown or measurement noise covariance is 
available. In the situation when both are unknown, performance 
of MLE approach may not be satisfactory for all applications. 
Even the possibility of diverging may not be ruled out as would 
be demonstrated in this work. Amongst the Bayesian 
approaches of adaptation state augmentation method as in 
Maybeck [9], multiple model method as in Bar Shalom et al. 
[10], and particle methods are noteworthy. As an alternative to 
particle approaches Variational Bayesian (VB) methods have 
been developed to get approximate posterior estimates at 
significantly lower computing cost. In VB techniques, there are 
primarily two approaches viz. free form and fixed from 
posterior distribution. On each time step approximate joint pdfs 
of the state and covariance matrices of noise are estimated using 
VB approach in a recursive fashion.  

A few literature are available on VB based adaptive KF to 
estimate unknown noise statistics from Sarkka and 
Nummenmaa  [11], Ma et al. [12] and Huang et al. [13]. Sarkka 
and Nummenmaa [11] developed an adaptive KF  by proposing 
fixed point VB approach  (VB-AKF-R)  for the linear system 
with unknown Measurement Noise Covariance Matrix 
(MNCM) by modelling unknown matrix elements with Inverse-
Gamma distribution. However, for inaccurate process noise and 
delayed measurements, performance of Sarkka and 
Nummenmaa [11] will degrade since VB-AKF-R assumes that 
statistics of the process noise is known beforehand. A novel 
adaptive KF based on VB approach is proposed in Huang et al. 
[13] which can jointly estimate state and noise covariance 
matrices. In Huang et al. [13], Predicted Error Covariance 
Matrix (PECM) is adapted instead of process noise covariance 
Matrix (PNCM). But, Huang et al. [13] needs nominal 
covariance matrix at every time step. Later in Ma et al. [12], 
authors proposed an improved KF for unknown PNCM named 
as VBAKF-Q where directly PNCM is adapted by 
incorporating a new latent variable and performance of the 
VBAKF-Q over VBAKF-P is demonstrated. In Ma et al. [12] 
and Huang et al. [13] prior dynamics of the noises are modelled 
using Inverse Wishart (IW) distribution, which guarantees both 
prior and posterior distributions are of same functional form. A 
robust adaptive KF is proposed in Huang et al. [14], where 
heavy tailed noises are modelled using Student-t distribution 
and noise covariance matrices are adapted along with states. 
However, knowledge of the noise covariance matrix is 
considered to be known and measurements are non-delayed. 
Nevertheless, the works reported in [11-13]  and Huang et al. 
[14] have not considered the situation of random delay in the 
measurement signal which may limit their implementation in 
some specific real time engineering applications as iterated in 
the subsequent paragraphs. 

The estimation algorithms referred as above are formulated 
based on hypothesis that measurements are available 
immediately at the current instant without any delay. However, 
this does not hold good in many engineering applications like 
aerospace, communication, control applications and INS/GPS 

applications. Due to constrained bandwidth, long 
communication line, congestion in the network, transmission of 
data through wireless medium, measurements may get delayed 
randomly and this may not be avoidable in many applications 
as mentioned in Wang et al. [15]. Randomly delayed 
measurements have been addressed in applications viz., 
networks with multiple sensors in Schenato [16], multiplexed 
data networks in Shen et al. [17], GPS/INS navigation systems 
in Hermoso-Carazo and Linares-Pérez [18] and vision based 
tracking, power system dynamic state estimation with Phasor 
Measurement Unit (PMU) in Paul eta al. [19]. The problem of 
state estimation using randomly delayed measurements was 
initially addressed in Ray et al. [20]. Practical application of 
random delay can be found in Wang et al. [15] for GPS/INS 
navigation system, where measurements coming from sensors 
to filters are taken as one step randomly delayed (1-RD) due to 
limited communication bandwidth. Time-varying delay in 
underwater acoustic communication has been reported in Xu et 
al. [21] and Xu et al. [22] where authors propose respectively 
Huber M-estimation delay KF and maximum correntropy KF 
with delay for strap-down inertial navigation system/ultra-short 
baseline (SINS/USBL) integrated navigation system which can 
present reliable estimation performance in presence of 
measurement outlier. The same author Xu et al. [23] presents a 
novel robust KF with delay for cooperative localization of 
autonomous underwater vehicles which can consider time 
varying delay and outliers. These works demonstrate the 
plausibility of occurrence of delay in the navigation. In the field 
of vision measurements, processing time will be quite high and 
the possibility of measurements getting delayed (uncertain 
delay) is unavoidable. Wang et al. [24] proposed multivariate 
KF for integrated position and control of automated vehicle with 
uncertain delays in the measurements. When it comes to power 
system networks, synchronized bus voltages, currents and 
angles are to be transmitted from PMU to the regional load 
dispatch centre for control purpose. Paul et al. [19] addressed 
dynamic state estimation of the power system network 
considering interruptions and delays in the PMU measurement 
data. The main cause of delay is due to the latency in wireline 
which is proportional to length of the wire in communication 
network. If length of the communication line increases the 
latency probability of the measurements getting delayed will 
also increase. In such applications the estimators should be able 
to adapt random delay in the measurement. In case of satellite 
attitude estimation, IoT applications, Aircraft tracking and in 
limited bandwidth communication networks measurement 
delays and dropouts are inevitable. 

For linear and nonlinear systems, there is a paucity of 
research on 1-RD measurements. Modified KF has been 
presented for 1-RD measurements with and without 
augmentation technique in Larsen et al. [25] and Tiwari et al. 
[26]. Wang et al. [15] proposes Extended KF (EKF) and 
Unscented KF (UKF) for nonlinear systems with 1-RD 
observations and also extended for maximum two-step RD 
observations in Hermoso-Carazo and Linares- Pérez [27] using 
UKF. Wang et al. [15] proposes a general framework for 
Gaussian filters with maximum one-step randomly delayed 
observations. However, authors in [15,18,27] considered that 
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statistics of the noise is completely known which violates the 
practical situation. In Jia et al. [28], the authors proposed a 
Gaussian filter based on student-t distribution for wide 
measurement noise. Not only statistics of the noise, latency 
probability of the delayed measurements also may not be certain 
and which may be non-stationary in nature. Subsequently a 
related work has been reported in Jiang et al. [29] where a robust 
adaptive KF has been proposed to cope up with time varying 
latency probability for the delayed measurement along with 
measurement outlier. A novel Normal- Gamma-Beta mixture 
(NGBM) distribution is presented to model thicker tailed 
probability density function and Bernoulli’s distribution was 
invoked to take care of the random delay. Further similar 
estimators as referred above in Xu et al. [21] and Xu et al. [23] 
has been applied in navigation and localization in real time. 
Wang et al. [30] presented an adaptive KF for estimating an 
unknown latency probability using one step randomly delayed 
data, but noise statistics are presumed to be known. 

Based on literature survey it has been observed that the 
problem of the delayed measurements with unknown noise 
covariance matrices for the linear signal models has not been 
addressed so far. For this problem, there is a need to modify the 
existing algorithms to adapt unknown parameters of the noise 
as well as to suit for the delayed measurements. In the present 
work, the authors proposed a new adaptive delayed KF based 
on VB (VB-AKFRD-PR) and maximum likelihood estimation 
(MLE-AKFRD-QR) approach which can jointly estimate state 
and noise covariance matrices of the linear dynamic system 
approximately with 1-RD measurements. 

Motivated by the fact that knowledge of the PNCM and 
MNCM may not be known a priori and the occurrence of 
random delay in the measurement is probable in the networked 
control systems, this paper proposes an adaptive KF based on 
VB and MLE methods by considering maximum 1-RD in the 
measurement and knowledge of both the noise covariance 
matrices completely unknown. Initially random delay in the 
measurement is modelled using Bernoulli Random Variable 
(BRV). Afterwards, an augmented state space model is deduced 
by transforming summation of two Gaussian distributions with 
the help of BRV. Next, new VB algorithm is formulated to 
estimate pdf of the state along with PECM and MNCM. 
Contributions of this work is as follows: 

i. Derivation of new algorithm of adaptive KFs for linear
systems based on VB approach for joint estimation of
state and unknown noise covariance matrices in
presence of measurements suffered from one step
random delay;

ii. An exhaustive performance comparison of the
proposed VB-AKFRD-PR with MLE-AKFRD-QR
and delayed KF with nominal noise covariance
matrices. This includes the comparison of Root Mean
Square Error (RMSE), Average RMSE (ARMSE) and
Square Root of Normalized Frobenius Norm (SRNFN)
for target tracking problem with different latency
probability   for measurements;

iii. A rigorous simulation study for selection of significant
parameters of proposed VB-AKFRD-PR with the aim

of ensuring lower RMSE (for states) and SRNFN (for 
covariance matrices); 

iv. Validation of the proposed algorithm using harmonic
estimation problem with real measurement data.

Remaining sections are structured as: In Section 2, Hierarchical 
Gaussian form of the likelihood pdf of the measurement model 
is obtained using BRV. When there is a delay in the 
measurement, the BRV takes the value of  '1', when there is no 
delay in the measurement, it takes the value of '0'. Next, 
measurement likelihood pdf is obtained in exponential form. 
Subsequently, choice of the IW distribution parameters is 
presented. Following that, complete derivation of the posteriori 
pdfs of the state and noise covariance matrices is presented. 
Finally, Simulations and conclusions are given in Sections 3 and 
4 respectively. 

2. Main results
2.1. Problem statement 
A linear discrete time stochastic system is given by: 

d d x
k k 1 k 1 k 1− − −= +x A x ω ,

(1) 

d y
k k k k= +y H x ω , (2) 
d d
k k k k k 1 1 1(1 ) ; ,k 2γ γ −= − + ≥ =z y y z y  (3) 

where Eqs. (1) and (2) are called process and measurement 
model respectively and Eq. (3) is delayed measurement model 
which takes either present measurement or previous 
measurement depends on the value of BRV. k  represents 
discrete time step, n nx ×∈ , n my ×∈  and n mzd ×∈  
represents the state, measurement and delayed measurement 
vectors respectively. A  and H  are the state transition and 
observation matrices. ωx n∈ , ωy m∈ denotes Gaussian 
white process and measurement noise vectors and covariances 
of Q  and R . γ denotes the BRV which takes values either 0 or 
1. If 1γ =  then z yd

k k 1−=  that means current measurement is
delayed by one step, if 0γ = , z yd

k k=  means there is no delay 
in the current measurement. If probability of the delayed 
measurement is ρ , then 1 ρ− will be the probability of the 
non-delayed measurement, i.e., 

( )
( )

k k

k k

p 1

p 0 1

γ ρ

γ ρ

 = =


= = − (4) 
From Eq. (3), zd

k is dependent on the present state xd
k  as well 

as on previous state xd
k 1−  as yk  is dependent on xd

k  and yk 1−  

is dependent on xd
k 1− . pdf of the likelihood function is function 

of both current and previous states. From Eqs. (3) and (4), pdf 
of the likelihood function is: 

( ) ( )d d d d d d
k k k 1 ) k k k 1 kp , p | , , 1| γ− −= =z x x z x x

( )d d d
k k k k 1 k kp( 1) p | , , 0 p( 0 )γ γ γ−= + = =z x x .         (5)   

After substituting Eq. (4) in Eq. (5), we get: 

( ) ( )d d d d d d
k k k 1 k k k 1 k|p , p | , , 1γ− −= =z x x z x x

( )d d d
k k k k 1 k k( ) p | , , 0 (1 )ρ γ ρ−+ = −z x x . 

(6) 

Eqs. (2) and (3) yields: 
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( ) ( )
( ) ( )

d d d d d
k k k 1 k k 1 k k 1 k 1

d d d d d
k k k 1 k k k k k

p | , , 1 e

p | , , 0 e

γ

γ

− − − −

−

 −


= −

=

=

= Hz x x z x

z z xHx x
      (7) 

From Eqs. (5)-(7): 

( ) ( )d d d d dp , ek k k 1 k 1 k k 1 k 1 k| ρ=− − − −− xHz x x z  

    ( )d d
k k k k ke (1 )ρ+ − −z xH . 

(8) 

Eq. (8) is the weighted summation of two Gaussian pdfs and 
cannot be used in Bayesian approach to estimate state and 
unknown parameters because which is not conjugated and 
unclosed. To overcome this issue, summation of two Gaussian 
pdfs are converted into exponential multiplication form using 
probability mass function (pmf) of the BRV. pmf of a BRV 

k( )γ  can be written as: 
k ( 1 )k

k k k kp( | ) (1 ) γγγ ρ ρ ρ −= − . (9) 
From Eqs. (8) and (9), Eq. (8) can be rewritten as: 

kd d d d d
k k k 1 k k 1 k k 1 k 1p( | , , ) e ( )

γ
ρ− − − − = −∫  z x x z H x

1 kd d
k k k k k k ke ( ) p( | )d

γ
γ ρ γ

−
 × − z H x . (10) 

Hierarchical Gaussian form of the likelihood pdf Eq. (10) is: 
kd d d d d

k k k 1 k k k 1 k 1k 1p ;( | , , ) ( ),
γ

γ Ν− − −− =  z x x z xH R
1 kd d

k kk k; ,( )
γ

Ν
−

 × z xH R , (11) 
kd d d d

k k k k k 1kk 1 1p( | , ; ,) ( )
γ

γ Ν − − − =  H Rz ξ z x  
1 kd d

k kk k; ,( )
γ

Ν
−

 × z xH R , (12) 
where, d d

k k 1
d
k ; − =  x xξ  is the augmented state vector.

2.2. Choices of prior information 
One step predicted pdf of the state d

kξ  and likelihood pdf are 
Gaussian and can be represented as: 

d d d d a
k k 1 k k|k 1 k|k 1

d d d d
k k k k k

ˆ ˆp( | ) ( ; , )
ˆp( | ) ( ; , )

Ν

Ν

− − −




=

=

ξ z ξ ξ Σ

z ξ z Hξ R (13) 
where d

k|k 1−ξ  and Σ a
k|k 1

ˆ
−  are predicted augmented state vector 

and corresponding error covariance matrix, i.e., 
d
k|k 1d

k|k 1 d
k 1|k 1

a k|k 1 k 1,k|k 1
k|k 1 T

k 1,k|k 1 k 1|k 1

ˆˆ
ˆ

ˆ ˆ
ˆ

ˆ ˆ

−
−

− −

− − −
−

− − − −

  
  =
   


 
 =
   

x
ξ

x

Σ Σ
Σ

Σ Σ



(14)
xd

k 1|k 1ˆ − − and Σk 1|k 1
ˆ

− −  are the estimated state and covariance 

matrix at time step k 1− .  xd
k 1ˆ − , Σk|k 1

ˆ
− , and Σk 1,k|k 1

ˆ
− −   are to

be calculated from standard KF: 
d d
k|k 1 k 1 k 1|k 1

T
k|k 1 k 1 k 1|k 1 k 1 k 1

T
k 1,k|k 1 k 1|k 1 k 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

− − − −

− − − − − −

− − − − −

 =

 = +


=

x A x

Σ A Σ A Q

Σ Σ A



(15) 
Σk|k 1
ˆ

−  from Eq. (15) is inaccurate because Qk|k 1−
 is 

inaccurate process noise covariance as it is assumed to be 

unknown. So, use of inaccurate Σk|k 1
ˆ

−
 gives wrong 

innovation which leads to wrong Kalman gain, eventually 
performance of the filter will degrade. 

Our main objective is to infer xd
k|kˆ  along with PECM, 

Σ a
k|k 1

ˆ
−  and MNCM, Rk . For this first unknown PECM and 

MNCM are need to be modelled with conjugate prior 
distribution. Because, conjugacy can guarantee the prior and 
posteriori distributions in the same functional form. The 
Gaussian unknown covariance matrix can be modelled using 
IW distribution, because IW distribution guarantee the priori 
and posteriori pdfs in the same functional form Huang et al. 
[13]. In this paper PECM and MNCM are modelled using IW 
distribution. 

A positive definite symmetric matrix 𝑊𝑊 with IW 
distribution of dimension 𝑛𝑛 × 𝑛𝑛 can be formulated as: 

IW(W , , )σ ψ =
/ 2 ( n 1 )

n / 2
n

W exp( 0.5tr( / W ))
2 ( / 2 )

σ σ

σ

ψ ψ
Γ σ

− + +
−

, 

where σ  denotes the Degree of Freedom (DOF) parameter, 
ψ  is inverse scale matrix, ⋅  represents determinant and 
tr( )⋅  represents trace operation, and n( )Γ ⋅  is n-variate 

Gamma function [13]. If IW(W , , )σ ψ , then 1WΕ − 
   

1( n 1)σ ψ −= − − , where ( n 1)σ > + . 

      First step is to model Σ a
k|k 1

ˆ
− and Rk  using IW 

distribution. Prior pdfs of Σ a
k|k 1

ˆ
−  and Rk  is given by: 

d d
k|k 1 1:k 1 k|k 1 k|k 1 k k
a

| 1
ˆ ˆp( | ) IW( ; f , ),− − − − −=Σ z Σ F  (16) 

d
k 1:k 1 k k|k 1 k|k 1

ˆˆp( | ) IW( ; g , ),− − −=R z R G       (17) 

where k|k 1f̂ − and Fk|k 1
ˆ

−  are DOF and inverse scale matrix of 

Σ zd
k|k 1 1:k 1
ap( | )− −  and k|k 1ĝ − and Gk|k 1

ˆ
−  are dof and inverse 

scale matrix of R zd
k 1:k 1p( | )− . 

Second step is to determine the prior information of 
Σ zd

k|k 1 1:k 1
ap( | )− − and R zd

k 1:k 1p( | )−  i.e., parameters k|k 1f̂ − , 

Fk|k 1
ˆ

− , k|k 1ĝ − , and Gk|k 1
ˆ

− . 

2.2.1. Prior choice of PECM 
To obtain prior knowledge of PECM, equate mean value of 
𝚺𝚺𝑘𝑘|𝑘𝑘−1
𝑎𝑎  and nominal PECM , Σ a

k|k 1−
 , i.e., 

k|k 1 a k|k 1 k 1,k|k 1
k|k 1 T

k|k 1 x k 1,k|k 1 k 1|k 1

ˆˆ ˆ
,ˆ ˆ ˆf 2n 1

− − − −
−

− − − − −

 
 = =
 − −  

F Σ Σ
Σ

Σ Σ



         (18) 

where Σk|k 1
ˆ

−
  is nothing but mean value of Σk|k 1

ˆ
− , i.e., 

T
k|k 1 k 1 k 1|k 1 k 1 k 1

ˆ ,− − − − − −= +Σ A Σ A Q

(19) 
where Qk 1−

  is the nominal PNCM. 
Set: 

k|k 1 xf̂ 2n 1τ− = + + , (20) 
where xn  is the dimension of state vector and τ  is a tuning 

parameter. After substituting k|k 1f̂ −  from Eq. (20) in Eq. (18) 
we get: 
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F Σ a
k|k 1 k|k 1

ˆ ˆτ− −= × . (21) 
2.2.2. Prior choice of MNCM 
To obtain prior parameters of R zd

k 1:k 1p( | )− , from 
Bayesian interface: 

d d
k 1:k 1 k k 1 k 1 1:k 1 k 1p( | ) p( | )p( | )d .− − − − −= ∫R z R R R z R  (22) 

R zd
k 1:k 1p( | )− is the posterior pdf of the Rk 1− . Posterior pdf 

R Rk k 1p( | )−  follows IW distribution as prior pdf 

R zd
k 1 1:k 2p( | )− −  is modelled with IW distribution, 

R z R Gd
k 1:k 1 k 1 k 1|k 1 k 1|k 1

ˆˆp( | ) IW( ; g , )− − − − − −= . (23) 
Prior parameters of the R zd

k 1 1:k 1p( | )− − is: 

k|k 1 k 1|k 1 z z

k|k 1 k 1|k 1

ˆ ˆg ( g n 1) n 1
ˆ ˆ

θ

θ
− − −

− − −

= − − + +


=G G (24) 
where (0,1]θ ∈  is forgetting factor, which denotes the 
degree of variation in MNCM. For stationary MNCM, 1θ = . 
As mentioned above prior and posterior pdfs of the Rk  
follows IW distribution, so initial pdf of the Rk  can be 

represented with IW distribution, R R G0 0 0|0 0|0
ˆˆp( ) IW( ; g , )= . 

In order to get the prior knowledge of  MNCM, equate mean 
value of R0  and initial nominal MNCM, Rk

 , i.e., 

0|0
0

0|0 z

ˆ

ĝ n 1
=

− −

G
R , 

(25) 
where zn  is dimension of measurement vector and 𝑹𝑹�0 is the 
algorithm parameter of the proposed VB-AKFRD-PR. 

2.3. Concept behind VB approach 
The main objective of the present work is to estimate the 
state along with unknown elements (parameters) of the 
covariance matrices. Let the joint posterior pdf of states and 
the parameters be χ Zk k 1:kp( , | )ϒ   at time step k  given by 

χ Zk k 1:kp( , | )ϒ  where, χk is the state, is corresponding 
error covariance and kϒ  represents unknown parameters to 
be estimated. In present work, ϒ  represents unknown 
process and measurement noise covariance matrices. As state 
and noise covariance matrices are coupled, the joint posterior 
pdf χ Zk k 1:kp( , | )ϒ  is very difficult to obtain analytically. 
Therefore, in this paper we approximate the joint pdf 

χ Zk k 1:kp( , | )ϒ  using free form factored with the help of 
VB approach as χ Zk k 1:k x k kp( , | ) q ( )q ( )ϒϒ χ ϒ≈ where, 

x kq ( )χ  and kq ( )ϒ ϒ are the approximate pdfs. We assume 
that the state vector follows the Gaussian distribution, 

x k k k kˆq ( ) ( | , )Ν=χ χ χ Σ  and parameters follows IW 
distribution, k k k kˆq ( ) ( | v , )ϒ ϒ Ν ϒ= V . The factorized pdfs 

x kq ( )χ  and kq ( )ϒ ϒ  will be calculated using minimizing 
the Kullback-Leibler (KL) divergence. 
      KL divergence [13] is close to relative entropy 
introduced to measure the statistical distance between true 
and approximate distributions. 

k k k k 1:kKL q ( )q ( )|| p( , | )χ ϒχ ϒ χ ϒ  Ζ  

      k k
k k k k

k k 1:k

q ( )q ( )
q ( )q ( )ln d d

p( , | )
χ ϒ

χ ϒ

χ ϒ
χ ϒ χ ϒ

χ ϒ
 

= ∫  
 Ζ

. 

We get the following expressions after minimizing KL 
divergence with respect to probability densities: 

( )k kk k k 1:k 1
q ( ) exp log p( , , | )q ( )d ,χ ϒ ϒϒ ϒ ϒ

−
∝χ Z χ Z  

( )k kk k k 1:k 1
q ( ) exp log p( , , | )q ( )d .ϒ ϒϒ ϒ

−
∝ χZ χ Z χ χ  

x kq ( )χ  and kq ( )ϒ ϒ will be obtained by fixed point 
iterations. At each time step x kq ( )χ  and kq ( )ϒ ϒ  will be 
updated for fixed number of VB loop iterations. Ideally 
accuracy of VB method depends on number of VB loop 
iterations, however, for the case studies presented in this 
work it has been observed that within 3 to 4 VB loop 
iterations convergence criteria is achieved. 

2.4. Formulation of posterior pdfs using VB approach 
As mentioned in the previous subsection, objective of the 
proposed VB-AKFRD-PR is to estimate d

kξ , a
k|k 1−Σ , and  

𝝃𝝃𝑘𝑘𝑑𝑑, 𝚺𝚺𝑘𝑘|𝑘𝑘−1
𝑎𝑎 , and kR  by computing joint pdf 

d a d
k k|k 1 k 1:kp( , , | )−ξ Σ R z . pdf d a d

k k|k 1 k 1:kp( , , | )−ξ Σ R z  cannot be 
solved analytically. So, instead of calculating true joint 

d a d
k k|k 1 k 1:kp( , , | )−ξ Σ R z  approximated individual pdfs can be 

obtained with the help of VB approach using free form 
factored approximation as shown below: 

( ) ( ) ( ) ( )d a d d d d a d
k k|k 1 k 1:k k k|k 1 kp , , | q q q− −≈ξ Σ R z ξ Σ R (26) 

where 𝑞𝑞𝑑𝑑(∙) denotes approximate pdf of true pdf 𝑝𝑝(∙). 
      Pdfs d d

kq ( )ξ , d a
k|k 1q ( ),−Σ  and d

kq ( )R  can be found by 
minimizing KL divergence between free from factored 
approximate pdf d d d a d

k k|k 1 kq ( )q ( )q ( )−ξ Σ R  and true joint 

pdf d a d
k k|k 1 k 1:kp( , , | )−ξ Σ R z  as shown: 

{ }d d d a d
k k|k 1 kq ( ),q ( ),q ( ) arg min KLD− =ξ Σ R

( )d d d a d d a d
k k|k 1 k k k|k 1 k 1:kq ( )q ( )q ( )|| p( , , | ) ,− −ξ Σ R ξ Σ R z  

(27) 

where, ( )dKLD q ( )|| P( )⋅ ⋅  represents KL divergence

between dq ( )⋅  and P( )⋅ . Local optimal solution of  Eq. (27) 
is given by: 

d d
k , 1:k

k
log q ( ) log p( ) c ,φ φΞ

φ Ε Ξ−  = + z  (28) 

where, Ε  denotes expectation operation. Ξ  represents the 
elements of the parameters needs to be estimated and φ

indicates an arbitrary element of Ξ , and φΞ −  denotes all 
elements of Ξ  except φ . cφ  represents some constant. Since 
parameters of the principle interest are coupled according to 
Sarkka and Nummenmaa [11] and Huang et al. [13], fixed 
point VB approach with certain number of VB iterations is 
used in this work, where the problem converges to Eq. (28). 
      The joint pdf d

k 1:kp( , )Ξ z  of models in Eqs. (1)-(13) and 
Eqs. (16)-(17) is: 

d d d d d a
k 1:k k k k k k 1 k|k 1p( , ) p( | , )p( | , )Ξ − −=z z x R ξ z Σ , 
a d d d
k|k 1 1:k 1 k 1:k 1 1:k 1p( | )p( | )p( )− − − −Σ z R z z . (29) 

Upon substituting Eqs. (12)-(13) and Eqs. (16)-(17) in Eq. 
(29) we get: 

d d d d k
k 1:k 1:k 1 k k 1 k 1 k 1p( , ) p( ) ( ; , )γΞ Ν− − − −=z z z H x R (30) 
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1d d d d ak
k k k k k k|k 1 k|k 1

ˆ( ; , ) ( ; , )γΝ Ν−
− −×z H x R ξ ξ Σ  

d
k|k 1 k|k 1 k|k 1 k k|k 1 k|k 1

ˆ ˆˆ ˆIW( ; f , )IW( ; g , )− − − − −Σ F R G . 
After expanding Eq. (30), we get: 

d d d a d d T
k 1:k k k|k 1 k|k 1 k k|k 1

ˆ ˆp( , ) 0.5( ) ( )Ξ − − −= − − −z ξ ξ Σ ξ ξ

         d d T 1 d d
k k k k k k k k0.5(1 )( ) ( )ρ −− − − −z H x R z H x  

d d T 1 d d
k k k 1 k 1 k 1 k k 1 k 10.5 ( ) ( )ρ −

− − − − −− − −z H x R z H x  

 k|k 1 k|k 1
1

z k k0.5( n )loĝ 1 g 0.5( )− −
−− + −+ R RG  

k| k|k1
a

x 1k0 f̂ 2.5( 2n )log− −+ +− Σ

 ( )1
k|k 1

a
k|k 1

ˆ (0.5tr )− −
−− ΣF . (31) 

      From Eq. (31), elements to be estimated are: a
k|k 1−Σ , kR

and d
kξ . As explained above according to VB approach 

elements of Ξ  has to be calculated individually in an 
iterative manner. Unlike MLE method in the proposed 
algorithm estimated a

k|k 1−Σ  and kR  will be used in the same 
current step. 

2.4.1. Estimation of predicted error covariance 
PECM cab be estimated using Eq. (31) in Eq.  (28) by taking: 

d ,( j 1 ) a
k|k 1log q ( )+

− =Σ

 d d a d d T
k k|k 1 k|k 1 k k|k 1

ˆ ˆ0.5( ) ( )− − −− − −ξ ξ Σ ξ ξ

 k| k|k1
a

x 1k0 f̂ 2.5( 2n )log− −+ +− Σ

( )a
k|k 1

1
k|k 1

ˆ (0.5 )tr c−
−−− + ΣF Σ . (32) 

        k|k 1
a

x k|k 1f̂0 2.5( 2n )log− −− += + Σ

  ( )a
k|k 1

1
k|k 1

ˆ (0.5 )tr c−
−−− + ΣF Σ ,  (33) 

where d ,( j 1 )q + (.) is the approximated pdf of p(.) at  (i+1)th  
VB iteration. d , j

kA  is given by: 
d , j j d d d d T
k k k|k 1 k k|k 1

ˆ ˆ( )( )Ε − −
 = − − A ξ ξ ξ ξ , (34) 

( )( )d , j a ,( j ) d ,( j ) d d ,( j ) d T
k k|k k k|k 1 k k|k 1

ˆ ˆ ˆ ˆˆ .− −= + − −A Σ ξ ξ ξ ξ  (35) 

Eq. (33) can be updated with IW distribution as follows: 
( ) ( ),d ( j 1 ) ( j 1 )

k|k 1 k|k
d ,( j 1 )

1
a

k k
ˆ ˆIW ; f ,q +

− −
+ +=Σ Σ F  (36) 

where: 
( j 1 ) ( j 1 )

k k|k 1

( j 1 ) ( j 1 ) d , j
k k|k 1 k

ˆ ˆf f 1
ˆ ˆ

+ +
−

+ +
−

= +

=



 +



F F A (37) 

2.4.2. Estimation of measurement noise covariance 
Similar to Section 2.4.1, the unknown MNCM can be 
calculated by setting  kθ = R . Upon substituting Eq. (31) in 
Eq. (28) we get: 

d ,( j 1 ) d d T
k k k k klog q ( ) 0.5(1 )( )ρ+ = − −R z H x
1 d d d d T

k k k k k k k 1 k 1( ) 0.5 ( )ρ−
− −− − −R z H x z H x

1 d d
k 1 k 1 k 1 k 1 k|k 1z( ) 0.5 ˆn )1( g−
− − − −−− + +−R z H x  

      k
1

k1k |k
ˆlog 0.5tr( )−

−−R RG  
      k|kz 1 k0.5 ˆn l gg( o1)− +− + R

      ( )k
d ,( j

|
) 1

k k 1 k
ˆ0.5tr ( ) c−

−− + + RB RG   ,    (38) 

where: 
d ,( j ) j d d d d T
k k k k k k k( )( )Ε  = − − B z H x z H x (39) 

d ,( j ) d d ,( j ) d d ,( j ) T
k k k k|k k k k|kˆ ˆ( )( )= − −B z H x z H x

      ( j ) T
k k|k k

ˆ+H Σ H .     

(40) 

 Eq. (37) can be updated using IW distribution by taking 
𝑔𝑔�𝑘𝑘

(𝒿𝒿+1) as dof parameter with scale matrix 𝑮𝑮�𝑘𝑘
(𝒿𝒿+1). 

( j 1 ) ( j 1 )
k k k

d ,( j 1 )
k

ˆˆIW( ; g , )q ( ) ++ +=R R G , 
where: 

( j 1 ) ( j 1 )
k k|k 1

( j 1 ) ( j 1 ) d ,( j )
k k|k 1 k

ˆ ˆg g 1
ˆ ˆ

+ +
−

+ +
−

= +

 = +

G G B

(41) 

2.4.3. Estimation of posterior state 
Posterior pdf of the state can be calculated by using updated 
𝑞𝑞𝑑𝑑,(𝒿𝒿+1)�𝚺𝚺𝑘𝑘|𝑘𝑘−1

𝑎𝑎 � and 𝑞𝑞𝑑𝑑,(𝒿𝒿+1)(𝑹𝑹𝑘𝑘). Let  ∅ = 𝝃𝝃𝑘𝑘𝑑𝑑, substituting 
Eq. (31) in Eq. (28) we get: 

d ,( j 1 ) d d d T
k k k k 1 k 1log q ( ) 0.5 ( )ρ+

− −= − −ξ z H x
( j 1 ) 1 d d

k 1 k k 1 k 1 k( ) 0.5(1 )Ε ρ+ −
− − −  − − − R z H x  

d d T ( j 1 ) 1 d d
k k k k k k k( ) ( )Ε + − − − z H x R z H x

d d ( j 1 ) a
k k|k 1 k|k 1

ˆ0.5( )Ε +
− − − −  ξ ξ Σ

d d T
k k|k 1

ˆ( ) c−− + ξξ ξ , (42) 

d ,( j 1 ) d d d T
k k k 1 k|k 1log q ( ) 0.5( )+

− −= − −ξ z H ξ

( j 1 ) 1 d d
k 1 k k 1 k|k 1

ˆ ( )Ε + −
− − −

  −  
R z H ξ  

d d ( j 1 ) a d d T
k k|k 1 k|k 1 k k|k 1

ˆ ˆ0.5( ) ( ) c ,Ε +
− − − − − − +  ξξ ξ Σ ξ ξ (43) 

where, 
d

d k
k d

k

 
=  
 

z
z

z
, k n m

k
n m k

×

×

 
=  
 

H 0
H

0 H
and

k
m m

k( j 1 )
k

k 1
m m

k

ˆ

ˆ
ˆ

1

ρ

ρ

×
+

−
×

 
 
 =  
 
 − 

R
0

R
R

0

 . 

According to IW distribution, 1
kΕ −  R  and a

k|k 1Ε −  Σ  are
given by: 

( )( j 1 11
k

) ( j 1 )
k z kĝ ) ˆ( n 1Ε +

−
− +− −  = GR , 

(44) 

( )( j 1 ) ( j 1 )
k x k

1( j 1 ) a
k|k 1

ˆ ˆf 1( )2nΕ +
−

+ +
−

  = − − FΣ . 
(45) 

Eq. (42) can be represented as: 
d ,( j 1 ) d ( j 1 ) d d ( j 1 ) d d

k k k 1 k kq ( ) p ( | )p ( | )+ + +
−∝ξ ξ z z ξ  (46) 

where: 
( j 1 ) d d d d a ,( j 1 )

k k 1 k k|k 1 k|k 1
ˆ ˆp ( | ) ( ; , )Ν+ +

− − −=ξ z ξ ξ Σ , (47) 
( j 1 ) d d d d ( j 1 )

k k k k k k
ˆp ( | ) ( ; , )Ν+ +=z ξ z H ξ R . (48) 

Modified a ,( j 1 )
k|k 1

ˆ +
−Σ  and ( j 1 )

k
ˆ +R  are given by: 

{ } 1
a ,( j 1 ) ( j 1 ) a 1
k|k 1 k|k 1

ˆ Ε
−

+ + −
− − =  Σ Σ

    
( j 1 ) ( j 1 )
k|k 1 k 1,k|k 1

T( j 1 ) ( j 1 )
k 1,k|k 1 k 1|k 1

ˆ ˆ

ˆ ˆ

+ +
− − −

+ +
− − − −

 
 =
  

Σ Σ

Σ Σ
, (49) 
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{ } 1
( j 1 ) ( j 1 ) 1
k k

ˆ Ε
−

+ + − =  R R . (50) 

    From Eq. (48), k 1,k|k 1
ˆ

− −Σ  is from Eq. (15) and k 1|k 1
ˆ

− −Σ  is 
calculated at previous time step i.e., at (k-1)th step. So, Eq. 
(48) can be modified as: 

( j 1 )
k|k 1 k 1,k|k 1a ,( j 1 )

k|k 1 T
k 1,k|k 1 k 1|k 1

ˆ ˆ
ˆ

ˆ ˆ

+
− − −+

−
− − − −

 
=  
  

Σ Σ
Σ

Σ Σ
. (51) 

    According to (46) posterior pdf d ,( j 1 ) d
kq ( )+ ξ  can be 

updated as Gaussian pdf 
a,( j 1)d ,( j 1) d d dˆ ˆq ( ) ( ; , ),k k k|k k|kΝ ++ =ξ ξ ξ Σ (52) 

where d
k|kξ  the posterior is augmented state and a ,( j 1 )

k|k
ˆ +Σ   is 

corresponding error covariance matrix, which are given by 
d ,( j 1 )
k|k 1d ,( j 1 )

k|k 1 d ,( j 1 )
k 1|k

( j 1 ) ( j 1 )
k|k 1 k 1,k|k 1a ,( j 1 )

k|k 1 T( j 1 ) ( j 1 )
k 1,k|k 1 k 1|k 1

ˆˆ
ˆ

ˆ ˆ
ˆ

ˆ ˆ

+
−+

− +
−

+ +
− − −+

− + +
− − − −

  
  =
   


 
 =
   

x
ξ

x

Σ Σ
Σ

Σ Σ (53) 

     Parameters in Eq. (52) will be obtained from standard KF 
with modified parameters d

kz , kH ( j 1 )
k

+R , and ( j 1 )
k

+R  as 
shown below: 

d ,( j 1 ) d ( j 1 ) d d
k|k k|k 1 u k k|k 1

ˆˆ ˆ ( )+ +
− −= + −x x K z z , (54) 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )
k|k k|k 1 u k|k 1 u

ˆ ˆ ˆ+ + + + +
− −= − zzΣ Σ K Σ K , (55) 

1d( j 1 ) ,( j 1 ) ,( j 1 )
u k|k 1 k|k 1

ˆ ˆ −+ + +
− −

 =  
x z zzK Σ Σ , 

(56) 

,( j 1 ) ( j 1 ) ( j 1 )
k|k 1 k k k

ˆˆˆ + + +
− = + +zzΣ Δ R R , 

(57) 

where, 
( j 1 )
k m m( j 1 )

k
m m k 1

ˆˆ
ˆ

+
×+

× −

 
=  
  

R 0
R

0 R
. 

d ,( j 1 ) d ( j 1 ) d d
k 1|k k 1|k 1 s k k|k 1

ˆˆ ˆ ( )+ +
− − − −= + −x x K z z , (58) 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )
k 1|k k|k 1 s k|k 1 s

ˆ ˆ ˆ+ + + + +
− − −= − zzΣ Σ K Σ K , (59) 

where, 
1d( j 1 ) ,( j 1 ) ,( j 1 )

s k 1,k|k 1 k|k 1
ˆ ˆ −+ + +

− − −
 =  

x z zzK Σ Σ , 
(60) 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )
k 1,k|k k 1,k|k 1 s k|k 1 u

ˆ ˆ ˆ+ + + + +
− − − −= − zzΣ Σ K Σ K , (61) 

where 
d d
k|k 1 k k|k 1

ˆˆ( )− −=z H ξ , (62) 

( )Ta,( j 1 )
k k k|k 1 k

ˆ +
−=Δ H Σ H , 

(63) 

( )Td ,( j 1 ) ( j 1 )
k|k 1 k|k 1 k 1,k|k 1 k

ˆ ˆ ˆ+ +
− − − −

 =  
x zΣ Σ Σ H , 

(64) 

( )Td ,( j 1 ) T
k 1|k 1 k 1,k|k 1 k 1|k 1 k

ˆ ˆ ˆ+
− − − − − −

 =  
x zΣ Σ Σ H . 

(65) 

    After running VB loop for N  iterations, the posterior pdfs 
of the N  iteration will be approximated as: 

d d d ,( N ) d d d ,( N ) a ,( N )
k k k k|k k|k

ˆ ˆq ( ) q ( ) ( ; , )Ν= =ξ ξ ξ ξ Σ  

       d d a
k k|k k|k

ˆ( ; , )Ν= ξ ξ Σ , (66) 
 d a d ,( N ) a

k|k 1 k|k 1q ( ) q ( )− −=Σ Σ  

 = a ( N ) ( N )
k|k 1 k k

ˆ ˆIW( ; f , )−Σ F , (67) 

d d ,( N ) ( N ) ( N
k k

)
k k k

ˆˆIWq ( ) q ( ( ; g ,) )= = R GR R  

k k k
ˆˆIW( ; g , )= R G .   (68)

    For the proposed VB-AKFRD-PR, Eqs. (14)-(15), (18)-
(21), and (24)-(25) will represent time-update equations and 
Eqs. (35)-(37), (40)-(41), (44)-(45), (48)-(49), and (52)-(67) 
are for measurement-update. Algorithm 1 shows the 
Implementation steps of the proposed algorithm. 
       Note: Estimation accuracy and computation burden of 
VB method depends on number of VB loop iterations, 
Accuracy may be improved by increasing the number of vb 
loop iterations but at the same time computation cost also 
increases. For high dimensional systems more number of VB 
iterations are required to get the better accuracy of the 
estimation.  In theoretical study or simulation sufficient less 
number N<10 of iterations may lead to local convergence, 
however in practical application sufficient large number of 
VB iterations may be required to get the more accurate 
estimates. Nevertheless, it has been observed through 
simulation that 4 to 5 VB loop iterations are sufficient for the 
convergence. 

3. Simulations
3.1. Numerical simulations with aircraft tracking problem 
To demonstrate the efficacy of the proposed algorithm, 
following filters applied: Delayed KF with true noise covariance 
matrices (DKF-TNCM), nominal noise covariances (DKF-
NNCM)  and proposed adaptive KF based on MLE  method 
(MLE-AKFRD-QR) and VB approach (VB-AKFRD-PR) on a 
target tracking problem from Huang et al. [13]. The target 
moves along 2D Cartesian coordinates, target position is 
collected by a sensor. However, in this case study it is assumed 
that measurements have at the most one step random delay. 
Target having state, x y x y

k k k k kP P V V , =  X  where P

represents position, V represents velocity. 
State transition and observation matrices are given as follows: 

[ ]

2 s 2
k 1

2

k 2

T
−

  
=  
 

 =

I I
A

0 I

H I 0 (69) 
where sT  denotes sampling time, sT 1= s, and nI  represents n-
dimensional identity matrix. True noise covariance matrices are 
given by: 

3 2
s s

2 2

k 1 2
s

2 s 2

k

3 3

3
1 0

r
0 1

−

  
  
  =
  

 
 

  
= ∗  

  

T T
I I

Q
T

I T I

R
(70) 

In this work kQ  and kR  are assumed to be unknown and are 
needed to be adapted. True trajectories are generated by taking 
Q , and R , however, for the filtering part true values of Q  and 

R  are unknown and are initiated with Q and R , where 

k 4 ( 1)α α= =Q I  and 4
k 2 ( 1e )β β= =R I . 
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MATLAB simulations are carried out for 1000 Monte 
Carlo (MC) runs and for 400 s at each run. Different latency 
probability conditions ( 0.1,0.2,0.3,...,0.9ρ = ) are considered 
to see the performance of the applied filers. 

Note: Computational complexity of the proposed VB-
AKFRD-PR algorithm and DKF-NNCM at each step and 
overall complexity is given in Algorithms 1 and 2, where N  
represents number of VB loop iterations. Complexity of the 
proposed VB-AKFRD-PR is linearly proportional to N . 

However, as we can see from the simulations later, it is 
found that from Figure 1, three VB loop iterations is 
sufficient for convergence of VB loop, so 𝑁𝑁 is set to, N 3=  
and the proposed VB-AKFRD-PR displays superior 
performance compared to DKF-NNCM and RMSEs of 
state matches with the RMSEs of the conventional filter 
with ideal conditions. 

3.2. Performance indices 
In order to compare the performance of the applied filters,
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      Algorithm 2. Delayed KF with one step randomly delayed measurements. 

RMSE (for states) and SRNFN as in Huang et al. [13] (for 
noise covariance matrices) are taken as performance indices, 

where RMSE, ARMSE, and SRNFN are calculated using Eq. 
(71): 
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Figure 1. RMSE of velocity comparison with different values of 
number of VB loop iterations (N). 

( )

( )

P

M x,i x ,i 2 y ,i y ,i 2
k k k k

i 1

P

2T M x,i x ,i 2 y ,i y ,i 2
k k k k

k 1 i 1

RMSE

1 ˆ ˆ( P P ) ( P P )
M

ARMSE

1 ˆ ˆ( P P ) ( P P )
TM

=

= =

=

 − + −∑
 =

 − + −∑ ∑
 (71) 
where i

kP  and i
kP̂ are the true and estimated positions 

respectively at kth time-step in ith MC run. RMSE, ARMSE 
of the velocity can be calculated similarly according to Eq. 
(71). For evaluation of the estimation accuracy of the adapted 
PECM and MNCM, SRNFN is chosen, which can be defined 
as follows: 

2M i i
PECM k|k 1 k|k 12

i 1

1 ˆSRNFN
n M

Σ Σ− −
=

 
= − ∑ 
 

1/4

,  (72) 

i
k|k 1Σ̂ − is estimated PECM at ith MC run and i

k|k 1Σ −  is the 
PECM from DKF-TNCM. 
     True trajectories are generated by taking initial condition, 

[ ]T0 100 100 10 10=X using kQ  and kR whereas initial
state of all the competent filters are randomly generated with 
an assumed error covariance of 0|0

ˆ diagΣ =  

[ ]( )100 100 100 100 . Some of the parameters the proposed

filter are as follows: WL 50= , y xn 2,n 4, 1,N 3θ= = = = , 

0|0 yĝ k n 1= + + , k 3=  and 0|0 0
ˆ k=G R . 

3.2. Findings related to the choice of parameters of the 
proposed filter 
Selection of certain parameters like number of VB iterations 
(N), tuning parameter (τ ) and forgetting factor ( )θ  is very 
important for the better estimation performance of the 
proposed filter. Instead of assuming a random value for  N,

,τ  and ρ , it is good to get the optimum values of the 
parameters such that RMSE of the states will be less. To get 
the optimum value of N (value of 𝑁𝑁 at which RMSE of the 
state is low) 1000 MC runs carried out for each value of N, 
where  N  is varying from 1 to 20 for latency probability ρ =
0.5. Through simulations it is observed that the proposed 
filter converges at N=3. From Figure 1 we can see that 
RMSE is low when N 3≥ . Therefore, N  is set to be, N=3. 

Figure 2. RMSE of velocity comparison with different values of tau 
(𝜏𝜏). 

Figure 3. RMSE of velocity comparison with different values of rho 
(𝜌𝜌). 

Figure 4. SRNFN of PECM with respect to different number of VB 
iterations (N). 

     Figure 2 depicts the RMSE Comparison with different 
values of tuning parameter (τ ) varying fromτ =1 to 6 
according to Huang et al. [13] for latency probability ρ =0.5 
using 1000 MC. It has been observed that the proposed filter 
has consistent performance and lower RMSE when τ
=2,3,4,5,6 and for which RMSE of velocity is shown in 
Figure 2.  While performing simulations tuning parameter is 
selected to be 3τ = . Similarly, Figure 3 depicts the RMSE 
comparison of velocity with different values of forgetting 
factor, 0.9,0.92,0.94,0.96,0.98,1θ = . From Figure 3 it is 
clear that VB-AKFRD-PR filter has consistent and better 
estimation with θ =0.98 and 1.0. This is due to stationary 
MNCM. Figures 4 and 5 shows SRNFN of PECM and 
MNCM. From Figures 4 and 5 it can be observed that 
SRNFN of PECM and MNCM is low and consistent from 
N=3. Based on above observations, while executing 
simulations, values of the parameters are taken as, N=3 3τ =  
and 1.θ =  
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Figure 5. SRNFN of MNCM with respect to different number of 
VB iterations (N). 

Figure 6. RMSE comparison among applied filters. 

MATLAB simulation results shown for the latency 
probability 0.5ρ = . Figure 6 depicts the RMSE comparison 
of position and velocity among VB-AKFRD-PR, MLE-
AKFRD-QR [5], DKF-NNCM, and DKF-TNCM [15]. 
Performance of the MLE will degrade when both PNCM and 
MNCM are not known, same has been observed that MLE-
AKFRD-QR is diverging in most of the MC runs. From 
Figure 6, it can be comprehended that initially RMSEs of the 
proposed VB-AKFRD-PR is close to the RMSEs of DKF-
NNCM, but from 200 s coincides with the RMSEs of DKF-
TNCM. From Figure 6 it can be understood that VB-
AKFRD-PR has significantly lesser RMSEs compared to the 
other applied filters. SRNFN comparison between VB-
AKFRD-PR and DKFRD-NNCM is shown in Figure 7. 
ARMSEs at different latency probability conditions are 
shown in Table 1. At each probability condition it has been 
observed that ARMSEs of position and velocity of VB-
AKFRD-PR is much lesser than other filters. However, one 
can see that ARMSE difference between VB-AKFRD-PR 
and DKF-TNCM is also high, but this is due to the time taken 
by the proposed filter to adapt PECM and MNCM. Figure 8 
depicts ARMSE comparison of position and velocity with 
respect to latency probability. From Figure 8 one can that 
ARMSE of the proposed VB-AKFRD-PR is much less than 
the DKF-NNCM. 

3.3. Validation of the proposed algorithm using real data 

Proposed algorithm is validated using offline real data.  The 
phase current waveform of permanent magnet synchronous 
machine drive under vector control operation has been 
acquired to estimate the fundamental and harmonic 
magnitudes of the phase current.  

Figure 7. SRNFN comparison of PECM and MNCM between VB-
AKFRD-PR and DKFRD-NNCM. 

Figure 8. Latency probability vs ARMSE of position and velocity. 

3.4.1.Measurement model 

The phase current measurement equation with harmonics is 
given by:
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Table 1. ARMSE comparison of different filter with respect to latency probability 

Latency 
probability (𝛒𝛒) 

ARMSE ARMSE using 
DKFRD-TNCM DKFRD-NNCM VB-AKFRD-PR 

0.1 Position 17.2219 33.5811 21.8368 
Velocity 2.7483 4.9685 3.5781 

0.2 Position 12.8266 31.6200 17.5266 
Velocity 2.8365 4.9336 3.5075 

0.3 Position 9.4065 30.6536 14.8343 
Velocity 2.8846 4.9516 3.5870 

0.4 Position 8.9367 30.7826 13.2236 
Velocity 2.9610 4.9209 3.4670 

0.5 Position 9.5553 31.5679 13.3393 
Velocity 3.0072 4.9342 3.4751 

0.6 Position 11.3433 32.9426 14.6810 
Velocity 3.0273 4.9578 3.4850 

0.7 Position 14.0031 35.0376 17.1079 
Velocity 3.0424 4.9938 3.5058 

0.8 Position 17.1904 37.8733 20.3112 
Velocity 3.0352 5.0450 3.5329 

0.9 Position 21.0354 41.6455 24.3822 
Velocity 3.0195 5.1114 3.5637 

n

k n n k
h 1

z A sin( h kT )ω θ ζ
=

= + +∑ , 
(73) 

where kz  is the phase current obtained. Main objective 
is to estimate the amplitude of the fundamental phase current 
and harmonics. As frequency ω  is considered to be constant, 
then measurement equation becomes linear.  Eq. (73) can be 
represented in state space form as shown below: 

k

1 0
A

0 1

 
 =  
  



  



. (74) 

     State vector can be represented as, 
T

k 1 1 2 2 n nA cos( ) A cos( ) A cos( ) ,χ θ θ θ=     
and measurement model can be represented as: 

n

k k n k
h 1

g( ) ( h )sin( h kT )χ χ ω θ ζ
=

= + +∑ . 

     Amplitude of the fundamental phase current and 
harmonics can be calculated using the following expression: 

2 2
hA ( 2h ) ( 2h 1) ,χ χ= + −  

where, ℎ = 1 implies 1A i.e., fundamental amplitude. 
3.4.2. Simulation results 
The phase current signal shown in Eq. (73) consists of 
different harmonics. The principle objective of the proposed 
algorithm is to estimate the amplitude of the fundamental and 
harmonic components. In order to do so, proposed VB-
AKFRD-PR and MLE-AKFRD-QR are applied for 
amplitude estimation.  As true initial state is not available 
filter is initialized with (0 )χ  = [512 154 37 -4  10 -3 13  -2 
-11 29 8  -5 -10 12  1.5 -2 3 0.5 7 -5 -7 -2 -6 -2 1  -1 0.5] and 
[512.16  154.60   37.01   -4.08    9.83  -3.13   12.86   -2.5235  
-11.01   28.66    7.97   -4.90  -10.33   12.57    1.32   -1.95    
2.50    0.41   6.54   -5.00   -7.15   -1.42   -6.26   -1.37    2.25 
1.22   -1.12   -0.35] and the process noise is considered as 

xQ 0.1 eye( n )= ∗ , 0.05ρ = . Figure 9 represents estimated 
measurement using DKFRD-NNCM, proposed VB-
AKFRD-PR. From Figure 9 it is very clear that estimated 
measurement with proposed VB-AKFRD-PR is overlapping 
with real measurement whereas with DFRD-NNCM large 
deviation is there between estimated measurement and rea 

measurement and when it comes to MLE-AKFRD-PR is 
diverging can be seen from Figure 10. Estimated 
fundamental and harmonic amplitudes using VB-AKFRD-
PR are  represented in Figure 11, whereas estimated 
fundamental amplitude and harmonics using MLE-AKFRD-
QR are not shown as it is diverging. As estimated 
measurement with VB-AKFRD-PR is overlying with real 
current measurement, the proposed VB-AKFRD-PR can be 
suggested as a candidate for joint estimation of state and 
unknown noise covariance matrices of the linear systems 
with 1-RD measurements. The average amplitude of 
fundamental, 2nd, 3rd and 4th harmonics are found to be 
530.5141, 11.6430, 17.4813, and 16.2481.  

Figure. 9 Estimated measurement with different algorithms using 
real data. 

Figure. 10 Estimated measurement with MLE-AKFRD-QR using 
real data.
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Figure. 11 Estimated harmonic magnitudes with VB-AKFRD-PR using real data. 

4. Conclusion
In this paper a new algorithm for adaptive delayed Kalman 
Filter (KF) based on Variational Bayesian (VB) approach is 
formulated and demonstrated to present satisfactory 
estimation performance in face of challenging situations with 
1-RD measurements and unknown noise covariance 
matrices. The VB based design of adaptation algorithms has 
revealed its effectiveness towards estimating the states and 
unknown elements of noise covariance matrices which are 
modelled with the help of Inverse Wishart (IW) distribution. 
Findings during evaluation of the proposed adaptive delayed 
KF have been enumerated below: 

• The performance of the proposed filter is
satisfactory in terms of estimation accuracy and close to the 
conventional delayed KF in the ideal situation when the 
noise covariances are known and well-tuned. Root Mean 
Square Error (RMSE) and Average RMSE (ARMSE) 
(position and velocity) for the tracking problem of the 
proposed VB-AKFRD-PR filter almost retrace that of DKF-
TNCM as the estimates are settling at steady values. This 
indicates the reliability of the proposed VB-AKFRD-PR 
during the critical circumstances of state estimations; 

• It is obvious from the above findings that the
proposed VB-AKFRD-PR is superior compared to DKF-
NNCM with assumed values of unknown noise covariance 
matrices. This has been verified in terms of ARMSE and 
RMSE plots; 

• VB-AKFRD-PR outperforms its closed competitor
MLE-AKFRD-QR as illustrated by the RMSE plots and 
tabulation of ARMSE. VB-AKFRD-PR is capable of 
presenting acceptable estimation performance while the 
estimates of MLE-AKFRD-QR diverges; 

• The efficacy of VB-AKFRD-PR is demonstrated
with an offline harmonics estimation problem with real 
measurements. The validation with real data increases the 
confidence in the proposed estimation algorithms and also 
promotes the filter for practical implementation; 

• From the complexity analysis it has been verified
that the proposed VB-AKFRD-PR needs moderately high 
computation effort compared to DKF-NNCM and MLE-
AKFRD-QR which are unable to present satisfactory 
estimation performance. However, this is not a short coming 
of the proposed algorithms on availability of off the shelf 
computing facility. 

From the above observations authors recommend 
proposed VB-AKFRD-PR algorithm for state estimation of 
dynamic systems with linearized models with 1-RD 
measurements and unidentified noise covariance matrices. 
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