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Abstract: This article addresses the state estimation problem for dynamic systems with linear models wherein covariance 

matrices of the process and measurement noise are unknown and one step delay randomly occurs in the measurements. Due to 

network congestion, limited bandwidth during transmission of sensor data to the central processing unit the probability of 

measurements getting randomly delayed is high and this phenomenon is ignored for conventional adaptive Kalman filters. A new 

algorithm for Adaptive Kalman filter with one step randomly delayed measurements is proposed here wherein the randomly 

delayed measurements are modelled using Bernoulli’s distribution. The adaptation algorithm has been mathematically derived for 

such situations following the variational Bayesian approach and subsequently a recursive algorithm for variational Bayesian 

adaptive delayed Kalman filter is formulated. Monte Carlo simulation demonstrates the excellence of the proposed filter over the 

conventional Kalman filter for the estimation problem addressed in this work. The comparative study with the competing 

maximum likelihood estimation variant also reveals the superiority of the proposed filter. To exemplify the effectiveness of the 

proposed algorithm for real world applications validation with the real measurement data has been carried out for offline 

harmonics estimation which ensures satisfactory estimation results. 
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1. Introduction 

Linear and nonlinear state estimation using discrete time models for dynamic systems using noise perturbed measurements has 

gained significant attention of the researchers since the introduction of Kalman filter (KF). KF by R. E. Kalman [1] is the optimal 

linear quadratic state estimator for the linear Gaussian signal models. KF has been extensively employed in navigation, adaptive 

control, recently in State of Charge estimation of EV batteries, and many more engineering applications Dorostgan and Taban [2], 

Bayat, S., Pishkenari et al.[3], Sheikhbahaei et al. [4]. The major issue of the application of KF is the tuning of the filter as there 

are uncertainties in the signal models (process and measurement). The correctness of the estimates from KF becomes questionable 

when the knowledge of noise statistics remains incomplete to the designer. Accuracy of the KF primarily depends on the prior 

information of the noise statistics, which may not be known accurately in many practical applications as mentioned in Mohamed 

et al. [5] and Mehra [6]. The use of inadequate noise statistics may produce unacceptable estimation performance and can cause 

even the divergence of filter. Adaptive KFs in Mehra [6] and Sage et al. [7] have been developed for auto tuning of KF in face of 

unknown noise statistics. 

Adaptive filters can overcome limitation of the traditional KF with the uncertain noise covariance matrices by approximately 

estimating the unknown noise covariance matrices which subsequently improves estimation performance of the filter Mehra [6]. 

[6]. Classical adaptive methods are: Bayesian approach, maximum likelihood estimation (MLE), correlation, and covariance 

matching. According to covariance matching method by Mehra [6] and Myers et al. [8] the window estimated and theoretical 

innovation noise covariance matrices will be compared. But there is a lack of confidence about the convergence of the adapted 

covariance matrices and consequently the covariance matching technique are not preferred to estimate unknown noise covariance 

matrices. The MLE technique which estimates noise covariance matrices based on maximization of the probability density 

function of measurements is a better alternative to the covariance matching method. MLE approaches, on the other hand, needs a 

broad window of data in order to obtain improved estimation, which may demand extra computation effort. Additionally, it has 

been observed that the performance of MLE based adaptation approach is satisfactory only when any of the process noise 

covariance is unknown or measurement noise covariance is available. In the situation when both are unknown, performance of 

MLE approach may not be satisfactory for all applications. Even the possibility of diverging may not be ruled out as would be 

demonstrated in this work. Amongst the Bayesian approaches of adaptation state augmentation method as in Maybeck [9], 

multiple model method as in Bar Shalom et al. [10], and particle methods are noteworthy. As an alternative to particle approaches 

variational Bayesian (VB) methods have been developed to get approximate posterior estimates at significantly lower computing 

cost. In VB techniques, there are primarily two approaches viz. free form and fixed from posterior distribution. On each time 

step approximate joint pdfs of the state and covariance matrices of noise are estimated using VB approach in a recursive fashion. 

A few literature are available on VB based adaptive KF to estimate unknown noise statistics from Sarkka et al. [11], Ma et al. 

[12] and Huang et al. [13]. Authors in Sarkka et al. [11] developed an adaptive KF  by proposing fixed point VB approach  (VB-

AKF-R)  for the linear system with unknown measurement noise covariance matrix by modelling unknown matrix elements with 

Inverse-Gamma distribution. However, for inaccurate process noise and delayed measurements, performance of Sarkka et al. 
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[11] will degrade since VB-AKF-R assumes that statistics of the process noise is known beforehand. A novel adaptive KF based 

on VB approach is proposed in Huang et al. [13] which can jointly estimate state and noise covariance matrices. In Huang et al. 

[13], Predicted Error Covariance matrix (PECM) is adapted instead of process noise covariance Matrix (PNCM). But, Huang et 

al. [13] needs nominal covariance matrix at every time step. Later in Ma et al. [12], authors proposed an improved KF for 

unknown PNCM named as VBAKF-Q where directly PNCM is adapted by incorporating a new latent variable and performance 

of the VBAKF-Q over VBAKF-P is demonstrated. In Ma et al. [12] and Huang et al. [13] prior dynamics of the noises are 

modelled using Inverse Wishart (IW) distribution, which guarantees both prior and posterior distributions are of same functional 

form. A robust adaptive KF is proposed in Huang et al. [14], where heavy tailed noises are modelled using Student-t distribution 

and noise covariance matrices are adapted along with states. However, knowledge of the noise covariance matrix is considered 

to be known and measurements are non-delayed. Nevertheless, the works reported in Sarkka et al. [11], Ma et al. [12], Huang et 

al. [13]  and Huang et al. [14] have not considered the situation of random delay in the measurement signal which may limit their 

implementation in some specific real time engineering applications as iterated in the subsequent paragraphs. 

The estimation algorithms referred as above are formulated based on hypothesis that measurements are available immediately 

at the current instant without any delay. However, this does not hold good in many engineering applications like aerospace, 

communication, control applications and INS/GPS applications. Due to constrained bandwidth, long communication line, 

congestion in the network, transmission of data through wireless medium, measurements may get delayed randomly and this may 

not be avoidable in many applications as mentioned in Wang et al. [15]. Randomly delayed measurements have been addressed 

in applications viz., networks with multiple sensors in Schenato [16], multiplexed data networks in Shen [17], GPS/INS 

navigation systems in Hermoso-Carazo et al. [18] and vision based tracking, power system dynamic state estimation with Phasor 

Measurement Unit (PMU) in Paul eta al. [19]. The problem of state estimation using randomly delayed measurements was 

initially addressed in Ray et al. [20]. Practical application of random delay can be found in Wang et al. [15] for GPS/INS 

navigation system, where measurements coming from sensors to filters are taken as one step randomly delayed (1-RD) due to 

limited communication bandwidth. Time-varying delay in underwater acoustic communication has been reported in Xu et al. 

[21] and Xu et al. [22] where authors propose respectively Huber M-estimation delay KF and maximum correntropy KF with 

delay for strap-down inertial navigation system/ultra-short baseline (SINS/USBL) integrated navigation system which can 

present reliable estimation performance in presence of measurement outlier. The same author Xu et al. [23] presents a novel 

robust KF with delay for cooperative localization of autonomous underwater vehicles which can consider time varying delay and 

outliers. These works demonstrate the plausibility of occurrence of delay in the navigation. In the field of vision measurements, 

processing time will be quite high and the possibility of measurements getting delayed (uncertain delay) is unavoidable. Authors 

Wang et al. [24] proposed multivariate KF for integrated position and control of automated vehicle with uncertain delays in the 

measurements. When it comes to power system networks, synchronized bus voltages, currents and angles are to be transmitted 

from PMU to the regional load dispatch centre for control purpose. Paul eta al. [19] addressed dynamic state estimation of the 

power system network considering interruptions and delays in the PMU measurement data. The main cause of delay is due to the 

latency in wireline which is proportional to length of the wire in communication network. If length of the communication line 

increases the latency probability of the measurements getting delayed will also increase. In such applications the estimators 

should be able to adapt random delay in the measurement. In case of satellite attitude estimation, IoT applications, Aircraft 

tracking and in limited bandwidth communication networks measurement delays and dropouts are inevitable. 

For linear and nonlinear systems, there is a paucity of research on 1-RD measurements. Modified KF has been presented for 

1-RD measurements with and without augmentation technique in Larsen et al. [25] and Tiwari et al. [26]. Wang et al. [15] 

proposes Extended KF and Unscented KF (UKF) for nonlinear systems with 1-RD observations and also extended for maximum 

two-step RD observations in Hermoso-Carazo and Linares-Perez [27] using UKF. Wang et al. [15] proposes a general 

framework for Gaussian filters with maximum one-step randomly delayed observations. However, authors in Wang et al. [15], 

Hermoso-Carazo et al. [18] and Hermoso-Carazo and Linares-Perez [27] considered that statistics of the noise is completely 

known which violates the practical situation. In Jia et al. [28], the authors proposed a Gaussian filter based on student-t 

distribution for wide measurement noise. Not only statistics of the noise, latency probability of the delayed measurements also 

may not be certain and which may be non-stationary in nature. Subsequently a related work has been reported in Jiang et al. [29] 

where a robust adaptive KF has been proposed to cope up with time varying latency probability for the delayed measurement 

along with measurement outlier. A novel Normal- Gamma-Beta mixture (NGBM) distribution is presented to model thicker 

tailed probability density function and Bernoulli’s distribution was invoked to take care of the random delay. Further similar 

estimators as referred above in Xu et al. [21] and Xu et al. [23] has been applied in navigation and localization in real time. 

Wang et al. [30] presented an adaptive KF for estimating an unknown latency probability using one step randomly delayed data, 

but noise statistics are presumed to be known. 

Based on literature survey it has been observed that the problem of the delayed measurements with unknown noise 

covariance matrices for the linear signal models has not been addressed so far. For this problem, there is a need to modify the 

existing algorithms to adapt unknown parameters of the noise as well as to suit for the delayed measurements. In the present 

work, the authors proposed a new adaptive delayed KF based on VB (VB-AKFRD-PR) and maximum likelihood estimation 
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(MLE-AKFRD-QR) approach which can jointly estimate state and noise covariance matrices of the linear dynamic system 

approximately with 1-RD measurements. 

Motivated by the fact that knowledge of the Process Noise Covariance Matrix (PNCM) and Measurement Noise Covariance 

Matrix (MNCM) may not be known a priori and the occurrence of random delay in the measurement is probable in the 

networked control systems, this paper proposes an adaptive KF based on VB and MLE methods by considering maximum 1-RD 

in the measurement and knowledge of both the noise covariance matrices completely unknown. Initially random delay in the 

measurement is modelled using Bernoulli random variable (BRV). Afterwards, an augmented state space model is deduced by 

transforming summation of two Gaussian distributions with the help of BRV. Next, new VB algorithm is formulated to estimate 

pdf of the state along with PECM and MNCM. 

Contributions of this work is as follows: 

i. Derivation of new algorithm of adaptive Kalman filters for linear systems based on VB approach for joint 

estimation of state and unknown noise covariance matrices in presence of measurements suffered from one step 

random delay. 

ii. An exhaustive performance comparison of the proposed VB-AKFRD-PR with MLE-AKFRD-QR and delayed 

Kalman filter with nominal noise covariance matrices. This includes the comparison of Root Mean Square Error 

(RMSE), Average RMSE (ARMSE) and Square Root of Normalized Frobenius Norm (SRNFN) for target tracking 

problem with different latency probability ( )  for measurements. 

iii. A rigorous simulation study for selection of significant parameters of proposed VB-AKFRD-PR with the aim of 

ensuring lower RMSE (for states) and SRNFN (for covariance matrices). 

iv. Validation of the proposed algorithm using harmonic estimation problem with real measurement data. 

Remaining sections are structured as: In section 2, Hierarchical Gaussian form of the likelihood pdf of the measurement 

model is obtained using BRV. When there is a delay in the measurement, the BRV takes the value of '1', when there is no delay 

in the measurement, it takes the value of '0'.  Next, measurement likelihood pdf is obtained in exponential form. Subsequently, 

choice of the inverse Wishart distribution parameters is presented. Following that, complete derivation of the posteriori pdfs of 

the state and noise covariance matrices is presented. Finally, Simulations and conclusions are given in section 3 and 4 

respectively. 

2. Main results 

2.1 Problem Statement 

A linear discrete time stochastic system is given by 

 

 d d x

k k 1 k 1 k 1   x A x ω  (1) 

 d y

k k k k y H x ω  (2) 

 d d

k k k k k 1 1 1(1 ) k 2; .      z y y z y  (3) 

Where Equations (1), (2) are called process and measurement model respectively and (3) is delayed measurement model 

which takes either present measurement or previous measurement depends on the value of BRV. k  represents discrete time step, 
n nx  , n m

y
  and n m

z
d   represents the state, measurement and delayed measurement vectors respectively. A  and H  

are the state transition and observation matrices. ωx n , ωy m denotes Gaussian white process and measurement noise 

vectors and covariances of Q  and R .  denotes the Bernoulli random variable which takes values either 0 or 1. If 1   then 

z y
d
k k 1  that means current measurement is delayed by one step, if 0  , z y

d
k k  means there is no delay in the current 

measurement. If probability of the delayed measurement is  , then 1  will be the probability of the non-delayed 

measurement, i.e., 
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From Equation (3), z
d
k is dependent on the present state x

d
k  as well as on previous state x

d
k 1  as yk  is dependent on x

d
k  and 

yk 1  is dependent on x
d
k 1 . pdf of the likelihood function is function of both current and previous states. 

From Equations (3)-(4), pdf of the likelihood function is 



4 
 

 

      d d d d d d d d d

k k k 1 ) k k k 1 k k k k k 1 k kp , p | , , 1 p( 1) p | , , 0 p( 0 )|           z x x z x x z x x  (5) 

After substituting Equation (4) in (5), we get 
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From Equation (5)-(7) 

      d d d d d d d
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Equation (8) is the weighted summation of two Gaussian pdfs and cannot be used in Bayesian approach to estimate state and 

unknown parameters because which is not conjugated and unclosed. To overcome this issue, summation of two Gaussian pdfs 

are converted into exponential multiplication form using probability mass function (pmf) of the BRV. 

pmf of a BRV k( )  can be written as 
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k k k kp( | ) (1 )
    

   (9) 

From (8)-(9), Equation (8) can be rewritten as 
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Hierarchical Gaussian form of the likelihood pdf (10) is 
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where, d d

k k 1

d

k ; 
   x xξ  is the augmented state vector. 

2.2 Choices of prior information 

One step predicted pdf of the state 
d

kξ  and likelihood pdf are Gaussian and can be represented as 
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Where d

k|k 1ξ  and Σ a

k|k 1
ˆ

  are predicted augmented state vector and corresponding error covariance matrix, i.e., 
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x
d

k 1|k 1
ˆ

   and Σk 1|k 1
ˆ

    are the estimated state and covariance matrix at time step k 1 .  x
d

k 1
ˆ

 , Σk|k 1
ˆ

 , and Σk 1,k|k 1
ˆ

    are to be 

calculated from standard KF 
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Σk|k 1
ˆ

  from (15) is inaccurate because Qk|k 1  is inaccurate process noise covariance as it is assumed to be unknown. So, use 

of inaccurate Σk|k 1

ˆ
  gives wrong innovation which leads to wrong Kalman gain, eventually performance of the filter will 

degrade. 

Our main objective is to infer x
d

k|k
ˆ  along with predicted error covariance matrix(PECM), Σ a

k|k 1
ˆ

  and measurement noise 

covariance matrix(MNCM), Rk
. For this first unknown PECM and MNCM are need to be modelled with conjugate prior 

distribution. Because, conjugacy can guarantee the prior and posteriori distributions in the same functional form. The Gaussian 

unknown covariance matrix can be modelled using inverse Wishart distribution(IW), because IW distribution guarantee the 

priori and posteriori pdfs in the same functional form Huang et al. [13]. In this paper PECM and MNCM are modelled using IW 

distribution. 

A positive definite symmetric matrix 𝑊 with IW distribution of dimension 𝑛 × 𝑛 can be formulated as IW(W , , )    

/ 2 ( n 1 )

n / 2

n

W exp( 0.5tr( / W ))

2 ( / 2 )

 



 

 

  


, where   denotes the degree of freedom(dof) parameter,   is inverse scale matrix,   

represents determinant and tr( )  represents trace operation, and n( )   is n-variate Gamma function[13]. If IW(W , , )  , then 

1 1W ( n 1)         , where ( n 1)   .  

First step is to model Σ a

k|k 1
ˆ

 and Rk  using IW distribution. Prior pdfs of Σ a

k|k 1
ˆ

  and Rk  is given by  

 Σ z Σ F
d d

k|k 1 1:k 1 k|k 1 k|k 1 k|k

a

1
ˆ ˆp( | ) IW( ; f , )      (16) 

 R z R G
d
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Where k|k 1f̂   and Fk|k 1
ˆ

  are dof and inverse scale matrix of Σ z
d

k|k 1 1:k 1

ap( | )   and 
k|k 1ĝ 

 and Gk|k 1
ˆ

  are dof and inverse scale 

matrix of R z
d

k 1:k 1p( | ) . 

Second step is to determine the prior information of Σ z
d

k|k 1 1:k 1

ap( | )  and R z
d

k 1:k 1p( | )  i.e. parameters k|k 1f̂  , Fk|k 1
ˆ

 , 
k|k 1ĝ 

 

and Gk|k 1
ˆ

 . 

2.2.1 Prior choice of predicted error covariance matrix: 

To obtain prior knowledge of predicted error covariance matrix, equate mean value of 𝚺𝑘|𝑘−1
𝑎  and nominal PECM , Σ a

k|k 1 , i.e., 

 
F Σ Σ

Σ
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k|k 1 a k|k 1 k 1,k|k 1
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T
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where Σk|k 1

ˆ
  is nothing but mean value of Σk|k 1

ˆ
 , i.e., 

 Σ A Σ A Q
T

k|k 1 k 1 k 1|k 1 k 1 k 1
ˆ

        (19)  

Where Qk 1  is the nominal PNCM. 

Set 

 k|k 1 xf̂ 2n 1     (20) 

where xn  is the dimension of state vector and   is a tuning parameter. After substituting k|k 1f̂   from (20) in (18) we get 

 F Σ
a

k|k 1 k|k 1
ˆ ˆ    (21)  

2.2.2 Prior choice of measurement noise covariance matrix: 

To obtain prior parameters of R z
d

k 1:k 1p( | ) , from Bayesian interface 

 R z R R R z R
d d

k 1:k 1 k k 1 k 1 1:k 1 k 1p( | ) p( | )p( | )d       (22) 
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R z
d

k 1:k 1p( | ) is the posterior pdf of the Rk 1
. Posterior pdf R Rk k 1p( | )  follows IW distribution as prior pdf  

R z
d

k 1 1:k 2p( | )   is modelled with inverse Wishart distribution, 

 R z R G
d

k 1:k 1 k 1 k 1|k 1 k 1|k 1
ˆˆp( | ) IW( ;g , )       (23) 

Prior parameters of the R z
d

k 1 1:k 1p( | )  is 
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Where (0,1]   is forgetting factor, which denotes the degree of variation in MNCM. For stationary MNCM, 1  . As 

mentioned above prior and posterior pdfs of the Rk  follows IW distribution, so initial pdf of the Rk  can be represented with IW 

distribution, R R G0 0 0|0 0|0
ˆˆp( ) IW( ;g , ) . In order to get the prior knowledge of  MNCM, equate mean value of R0  and initial 

nominal MNCM, Rk , i.e., 

 
G

R
0|0

0

0|0 z

ˆ

ĝ n 1


 
 (25) 

Where zn  is dimension of measurement vector and �̃�0 is the algorithm parameter of the proposed VB-AKFRD-PR. 

2.3 Concept behind Variational Bayesian approach 

The main objective of the present work is to estimate the state along with unknown elements (parameters) of the covariance 

matrices. Let the joint posterior pdf of states and the parameters be χ Zk k 1:kp( , | )   at time step k  given by χ Zk k 1:kp( , | )  

where, χk is the state, is corresponding error covariance and k  represents unknown parameters to be estimated. In present 

work,   represents unknown process and measurement noise covariance matrices. As state and noise covariance matrices are 

coupled, the joint posterior pdf χ Zk k 1:kp( , | )  is very difficult to obtain analytically. Therefore, in this paper we approximate 

the joint pdf χ Zk k 1:kp( , | )  using free form factored with the help of VB approach as χ Zk k 1:k x k kp( , | ) q ( )q ( )   where, 

x kq ( )  and kq ( )  are the approximate pdfs. We assume that the state vector follows the Gaussian distribution, 

x k k k k
ˆq ( ) ( | , )χ χ χ Σ  and parameters follows inverse wishart distribution, k k k k

ˆq ( ) ( | v , )    V . The factorized pdfs 

x kq ( )  and kq ( )   will be calculated using minimizing the Kullback-Leibler (KL) divergence.  

 KL divergence Huang et al. [13] is close to relative entropy introduced to measure the statistical distance between true and 

approximate distributions. 

k k

k k k k 1:k k k k k

k k 1:k

q ( )q ( )
KL q ( )q ( )|| p( , | ) q ( )q ( )ln d d

p( , | )
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We get the following expressions after minimizing KL divergence w.r.t probability densities: 

 k kk k k 1:k 1
q ( ) exp log p( , , | )q ( )d    


χ Z χ Z  

 k kk k k 1:k 1
q ( ) exp log p( , , | )q ( )d  


 χZ χ Z χ χ  

x kq ( )  and kq ( )  will be obtained by fixed point iterations. At each time step x kq ( )  and kq ( )   will be updated for fixed 

number of VB loop iterations. Ideally accuracy of VB method depends on number of VB loop iterations, however, for the case 

studies presented in this work it has been observed that within 3 to 4 VB loop iterations convergence criteria is achieved. 

2.4 Formulation of posterior pdfs using VB approach 

As mentioned in the previous subsection, objective of the proposed VB-AKFRD-PR is to estimate 
d

kξ ,
a

k|k 1Σ , and  𝝃𝑘
𝑑, 𝚺𝑘|𝑘−1

𝑎 , 

and kR  by computing joint pdf d a d

k k|k 1 k 1:kp( , , | )ξ Σ R z . Pdf d a d

k k|k 1 k 1:kp( , , | )ξ Σ R z  cannot be solved analytically. So, instead of 

calculating true joint 
d a d

k k|k 1 k 1:kp( , , | )ξ Σ R z  approximated individual pdfs can be obtained with the help of VB approach using 

free form factored approximation as shown below 

 
d a d d d d a d

k k|k 1 k 1:k k k|k 1 kp( , , | ) q ( )q ( )q ( ) ξ Σ R z ξ Σ R  (26) 
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where 𝑞𝑑(∙) denotes approximate pdf of true pdf 𝑝(∙).  

Pdfs 
d d

kq ( )ξ , d a

k|k 1q ( )Σ  and 
d

kq ( )R  can be found by minimizing KL divergence between free from factored approximate 

pdf d d d a d

k k|k 1 kq ( )q ( )q ( )ξ Σ R  and true joint pdf d a d

k k|k 1 k 1:kp( , , | )ξ Σ R z  as shown 

    d d d a d d d d a d d a d

k k|k 1 k k k|k 1 k k k|k 1 k 1:kq ( ),q ( ),q ( ) arg min KLD q ( )q ( )q ( )|| p( , , | )  ξ Σ R ξ Σ R ξ Σ R z  (27) 

where,  dKLD q ( )|| P( )   represents KL divergence between 
dq ( )  and P( ) . Local optimal solution of (27) is given by 

 d d

k , 1:k
k

log q ( ) log p( ) c 


  
   z  (28) 

where,   denotes expectation operation.   represents the elements of the parameters needs to be estimated and  indicates 

an arbitrary element of  , and    denotes all elements of   except  . c  represents some constant. Since parameters of the 

principle interest are coupled according to Sarkka et al. [11] and Huang et al. [13], fixed point VB approach with certain number 

of VB iterations is used in this work, where the problem converges to (28). 

The Joint pdf
d

k 1:kp( , ) z  of models in (1)-(13) and (16)-(17) is= 
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Upon substituting (12)-(13) and (16)-(17) in (29) we get 
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k 1:k 1:k 1 k k 1 k 1 k 1 k k k k

d d a

k 1k|k 1 k |k 1 k k|k k|| 1 k 1
ˆ ˆˆ ˆIW( ; f , )IW( ;g , )

p( , ) p( ) ( ; , ) ( ; , )

ˆ( ; , )

   

 



  

  





 

Σ F

z z z H x R z H

R G

x R

ξ ξ Σ
 (30) 

After expanding (30), we get 

d d d a d d T d d T 1 d d

k 1:k k k|k 1 k|k 1 k k|k 1 k k k k k k k k

d d T 1 d d 1

k k k 1 k 1 k 1 k k 1 k 1 z k|k 1 k|k 1

a

1k|k 1

k k

x k|k

ˆ ˆp

5 ĝ

( , ) 0.5( ) ( ) 0.5(1 )( ) ( )

0.5 ( ) ( ) 0. ( n )log 0.5( )

0.5( 2n )lo

1

f̂ 2 g

 

  





  

 

    







       

     

 

z ξ ξ Σ ξ ξ z H x R z H x

z H x R z H x R

Σ

G R

 1

k|k 1

a

k|k 1
ˆ ( )0.5tr  

 F Σ

 (31) 

From Equation (31), elements to be estimated are: a

k|k 1Σ , kR  and 
d

kξ . As explained above according to VB approach elements 

of   has to be calculated individually in an iterative manner. Unlike MLE method in the proposed algorithm estimated a

k|k 1Σ  

and kR  will be used in the same current step. 

2.4.1 Estimation of Predicted error covariance 

Predicted error covariance matrix cab be estimated using (31) in (28) by taking a

k|k 1  Σ  

 

d ,( j 1 ) a d d a d d T a

k|k 1 k k|k 1 k|k 1 k k|k 1 x k|k 1

k

k|k 1

1

k| 1

a

k|k 1

ˆ ˆlog q ( ) 0.5( ) ( ) 0.5( 2n )lo

.

ˆ g

0 5tr c

f 2

ˆ ( )









    



     

  Σ

Σ ξ ξ Σ ξ ξ

F

Σ

Σ
 

  a a

x k|k 11 k|k

1

k|k k|k 110.5( 2n lˆ ˆf 2 ( )) og 0.5tr c 



     ΣΣ F Σ  (33) 

Where 
d ,( j 1 )q ( )   is the approximated pdf of p( )  at th

( j 1 )  VB iteration. 
d , j

kA  is given by 

 
d , j j d d d d T

k k k|k 1 k k|k 1
ˆ ˆ( )( )  

   
 

A ξ ξ ξ ξ  (34) 

 d , j a,( j ) d ,( j ) d d ,( j ) d T

k k|k k k|k 1 k k|k 1
ˆ ˆ ˆ ˆˆ ( )( )    A Σ ξ ξ ξ ξ  (35) 

Equation (33) can be updated with IW distribution 

 d ( j 1 ) ( j 1 )

k|k 1 k| 1

d ,( j 1 ) a

k k k
ˆ ˆ( ) IW( ; f , )q 



 

Σ Σ F  (36) 

where 

 

( j 1 ) ( j 1 )

k k|k 1

( j 1 ) ( j 1 ) d , j

k k|k 1 k

ˆ ˆf f 1

ˆ ˆ

 



 








 

 F F A
 (37) 
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2.4.2 Estimation of measurement noise covariance 

Similar to section 2.4.1, the unknown MNCM can be calculated by setting  
k  R . Upon substituting (31) in (28) we get 

 

d ,( j 1 ) d d T 1 d d

k k k k k k k k k

d d T 1 d d

k k

k|k 1 k|

k k 1 k 1 k 1 k 1 k 1 1

1

k kk 1z

log q ( ) 0.5(1 )( ) ( )

0.5 ( ) ( )

0.5( n )log 0.5tr( )ˆĝ 1





 



    









   



 

 

 

x

G

R z H x R z H x

z H x R z H

R R

 

                                                       d ,( j ) 1

z k kk|k 1 k|k 1 k0.5( n )log 0.5 ˆĝ 1 tr ( ) c

      RR B RG  (38) 

where 

 d ,( j ) j d d d d T

k k k k k k k( )( )     B z H x z H x  (39) 

         d ,( j ) d d ,( j ) d d ,( j ) T ( j ) T

k k k k|k k k k|k k k|k k
ˆˆ ˆ( )( )   B z H x z H x H Σ H  (40) 

Equation (37) can be updated using inverse Wishart distribution by taking �̂�𝑘
(𝒿+1)

 as dof parameter with scale matrix �̂�𝑘
(𝒿+1)

. 

k

d ,( j 1 )

k

( j 1 ) ( j 1 )

k k
ˆˆIW( ;g , )q ( )    R GR  

where 

 

( j 1 ) ( j 1 )

k k|k 1

( j 1 ) ( j 1 ) d ,( j )

k k|k 1 k

ˆ ˆg g 1

ˆ ˆ

 



 









 



G G B
 (41) 

2.4.3 Estimation of posterior state 

Posterior pdf of the state can be calculated by using updated 𝑞𝑑,(𝒿+1)(𝚺𝑘|𝑘−1
𝑎 ) and 𝑞𝑑,(𝒿+1)(𝑹𝑘). Let  ∅ = 𝝃𝑘

𝑑, substituting (31) in 

(28) we get  

 

d ,( j 1 ) d d d T ( j 1 ) 1 d d

k k k k 1 k 1 k 1 k k 1 k 1

d d T ( j 1 ) 1 d d

k k k k k k k k

d d ( j 1 ) a d d T

k k|k 1 k|k 1 k k|k 1

log q ( ) 0.5 ( ) ( )

0.5(1 )( ) ( )

ˆ ˆ0.5( ) ( ) c

 

 



  

    

 



  

     

     

      ξ

ξ z H x R z H x

z H x R z H x

ξ ξ Σ ξ ξ

 (42) 

 

d ,( j 1 ) d d d T ( j 1 ) 1 d d

k k k 1 k|k 1 k 1 k k 1 k|k 1

d d ( j 1 ) a d d T

k k|k 1 k|k 1 k k|k 1

ˆ
log q ( ) 0.5( ) ( )

ˆ ˆ0.5( ) ( ) c





  

    



  

    
  

      ξ

ξ z H ξ R z H ξ

ξ ξ Σ ξ ξ

 (43) 

Where, 
d

d k
k d

k

 
  
 

z
z

z
, 

k n m

k

n m k





 
  
 

H 0
H

0 H
 and

k
m m

k( j 1 )

k

k 1
m m

k

ˆ

ˆ

ˆ

1












 
 
 


 
 
  

R
0

R
R

0

  

According to IW distribution, 1

k  
 R  and a

k|k 1 
 
 Σ  are given by 

  
1

( j 1 ) ( j 1 )

k z

1

kk ( ) ˆĝ n 1 


      GR  (44) 

  
1

( j( j 1 ) ( j 1 )

k x k

1 ) a

k|k 1
ˆ ˆf 2n )1( 

 


     FΣ  (45) 

Equation (42) can be represented as 

 
d ,( j 1 ) d ( j 1 ) d d ( j 1 ) d d

k k k 1 k kq ( ) p ( | )p ( | )  

ξ ξ z z ξ  (46) 

Where,  

 ( j 1 ) d d d d a,( j 1 )

k k 1 k k|k 1 k|k 1
ˆ ˆp ( | ) ( ; , ) 

  ξ z ξ ξ Σ  (48)  

 
( j 1 ) d d d d ( j 1 )

k k k k k k
ˆp ( | ) ( ; , ) z ξ z H ξ R  (47) 

Modified 
a,( j 1 )

k|k 1
ˆ 

Σ  and 
( j 1 )

k
ˆ 
R  are given by 

  
1

a,( j 1 ) ( j 1 ) a 1

k|k 1 k|k 1
ˆ 


  

 
   Σ Σ  
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( j 1 ) ( j 1 )

k|k 1 k 1,k|k 1

T( j 1 ) ( j 1 )

k 1,k|k 1 k 1|k 1

ˆ ˆ

ˆ ˆ

 

  

 

   

 
 
 
 

Σ Σ

Σ Σ
 (48) 

  
1

( j 1 ) ( j 1 ) 1

k k
ˆ 


     R R  (49) 

From (48), k 1,k|k 1
ˆ

 Σ  is from (15) and  k 1|k 1
ˆ

 Σ  is calculated at previous time step i.e. at 
th( k 1)  step. So, (48) can be modified 

as 

 

( j 1 )

k|k 1 k 1,k|k 1a,( j 1 )

k|k 1 T

k 1,k|k 1 k 1|k 1

ˆ ˆ
ˆ

ˆ ˆ



  



   

 
  
  

Σ Σ
Σ

Σ Σ
 (50) 

According to (46) posterior pdf 
d ,( j 1 ) d

kq ( )
ξ  can be updated as Gaussian pdf 

 d ,( j 1 ) d d d a,( j 1 )

k k k|k k|k
ˆ ˆq ( ) ( ; , ) ξ ξ ξ Σ  (51) 

Where d

k|kξ  the posterior is augmented state and a,( j 1 )

k|k
ˆ 
Σ   is corresponding error covariance matrix, which are given by 

 

d ,( j 1 )

k|k 1d ,( j 1 )

k|k 1 d ,( j 1 )

k 1|k

( j 1 ) ( j 1 )

k|k 1 k 1,k|k 1a,( j 1 )

k|k 1 T( j 1 ) ( j 1 )

k 1,k|k 1 k 1|k 1

ˆ
ˆ

ˆ

ˆ ˆ
ˆ

ˆ ˆ





 



 

  


 

   

  
  
   


 
 
   

x
ξ

x

Σ Σ
Σ

Σ Σ

 (52)  

Parameters in (52) will be obtained from standard KF with modified parameters 
d

kz ,
kH

( j 1 )

k


R , and 

( j 1 )

k


R  as shown below 

 
d ,( j 1 ) d ( j 1 ) d d

k|k k|k 1 u k k|k 1
ˆˆ ˆ ( ) 

   x x K z z  (53) 

 
T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k|k k|k 1 u k|k 1 u
ˆ ˆ ˆ    

   zz
Σ Σ K Σ K  (54) 

 
1d( j 1 ) ,( j 1 ) ,( j 1 )

u k|k 1 k|k 1
ˆ ˆ


  

 
 
 

x z zz
K Σ Σ  (55) 

 
,( j 1 ) ( j 1 ) ( j 1 )

k|k 1 k k k

ˆˆˆ   

   zz
Σ Δ R R   (56) 

Where, 
( j 1 )

k m m( j 1 )

k

m m k 1

ˆ
ˆ

ˆ





 

 
  
  

R 0
R

0 R
 

 
d ,( j 1 ) d ( j 1 ) d d

k 1|k k 1|k 1 s k k|k 1
ˆˆ ˆ ( ) 

     x x K z z  (57) 

 
T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k 1|k k|k 1 s k|k 1 s
ˆ ˆ ˆ    

    zz
Σ Σ K Σ K  (58) 

where 

 
1d( j 1 ) ,( j 1 ) ,( j 1 )

s k 1,k|k 1 k|k 1
ˆ ˆ


  

  
 
 

x z zz
K Σ Σ  (59) 

 
T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k 1,k|k k 1,k|k 1 s k|k 1 u
ˆ ˆ ˆ    

     zz
Σ Σ K Σ K  (60) 

Where 

 d d

k|k 1 k k|k 1
ˆˆ( ) z H ξ  (61) 

  
T

a,( j 1 )

k k k|k 1 k
ˆ 

Δ H Σ H  (62) 

  
Td ,( j 1 ) ( j 1 )

k|k 1 k|k 1 k 1,k|k 1 k
ˆ ˆ ˆ 

   
 
 

x z
Σ Σ Σ H  (63)  

  
Td ,( j 1 ) T

k 1|k 1 k 1,k|k 1 k 1|k 1 k
ˆ ˆ ˆ

     
 
 

x z
Σ Σ Σ H  (64) 

After running VB loop for N  iterations, the posterior pdfs of the N  iteration will be approximated as 

 

 d d d ,( N ) d d d ,( N ) a,( N ) d d a

k k k k|k k|k k k|k k|k
ˆ ˆˆq ( ) q ( ) ( ; , ) ( ; , )   ξ ξ ξ ξ Σ ξ ξ Σ  (65) 

 k

d a d ,( (N ) a a

k|k k

N ) ( N )

|k 1 k1 k 1 k|q )( ) q ( ) ˆ ˆIW( ; f ,   FΣ Σ Σ  (66) 
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( N ) ( N )

k k k

d d ,( N

k k

)

k k k
ˆ ˆˆ ˆIW( ;g , ) IW( ;g , )q ( ) q ( )   RR R R G G  (67) 

For the proposed VB-AKFRD-PR, Equations (14)-(15), (18)-(21), and (24)-(25) will represent time-update Equations and 

Equations (35)-(37), (40)-(41), (44)-(45), (48)-(49), and (52)-(67) are for measurement-update. Algorithm I shows the 

Implementation steps of the proposed algorithm. 

Note: Estimation accuracy and computation burden of VB method depends on number of VB loop iterations, Accuracy may be 

improved by increasing the number of vb loop iterations but at the same time computation cost also increases. For high 

dimensional systems more number of VB iterations are required to get the better accuracy of the estimation.  In theoretical study 

or simulation sufficient less number N 10  of iterations may lead to local convergence, however in practical application 

sufficient large number of VB iterations may be required to get the more accurate estimates. Nevertheless, It has been observed 

through simulation that 4 to 5 VB loop iterations are sufficient for the convergence. 

3. Simulations 

3.1 Numerical simulations with aircraft tracking problem 

To demonstrate the efficacy of the proposed algorithm, following filters applied: Delayed KF with true noise covariance 

matrices (DKF-TNCM), nominal noise covariances (DKF-NNCM)  and proposed adaptive KF based on MLE  method (MLE-

AKFRD-QR) and VB approach (VB-AKFRD-PR) on a target tracking problem from Huang et al. [13]. The target moves along 

2D Cartesian coordinates, target position is collected by a sensor. However, in this case study it is assumed that measurements 

have at the most one step random delay. Target having state, x y x y

k k k k kP P V V   X  Where, P  represents position, V  

represents velocity. 

State transition and observation matrices are given as follows 

 

 

2 s 2

k 1

2

k 2

T


  
  
 




I I
A

0 I

H I 0

 (68) 

where sT  denotes sampling time, sT 1s , and nI  represents n dimensional identity matrix. True noise covariance matrices 

are given by 

 

3 2

s s
2 2

k 1 2

s
2 s 2

k

3 3

3

1 0
r

0 1



  
  
  
  

 
 

  
   

  

T T
I I

Q
T

I T I

R

 (69) 

In this work kQ  and kR  are assumed to be unknown and are needed to be adapted. True trajectories are generated by taking 

Q , and R , however, for the filtering part true values of Q  and R  are unknown and are initiated with Q  and R , where 

k 4( 1)  Q I  and 
4

k 2 ( 1e )  R I .  

Algorithm I Proposed VB-AKFRD-PR algorithm for one step 

randomly delayed measurements with unknown noise covariance 

matrices 

The complexity (FLOPs) 

 Inputs: d

k 1|k 1
ˆ

 x , k 1|k 1
ˆ

 Σ , k 1|k 1f̂   , k 1|k 1
ˆ

 F , k 1A , kH , zn , xn ,  

,  , N , k 1Q , and 
d

1:kz  
 

 Time update:  
 1: d d

k|k 1 k 1 k 1|k 1
ˆ ˆ

   x A x  22n n  

 
2: T

k|k 1 k 1 k 1|k 1 k 1 k 1

ˆ ˆ
      Σ A Σ A Q  3 24n n  

 3: T
k 1,k|k 1 k 1|k 1 k 1

ˆ ˆ
    Σ Σ A  3 22n n  

 

4: 

d

k|k 1d

k|k 1 d

k 1|k 1

ˆ
ˆ

ˆ





 

 
 
  

x
ξ

x
, a k|k 1 k 1,k|k 1

k|k 1
T

k 1,k|k 1 k 1|k 1

ˆ ˆ

ˆ ˆ
  



   

 
 
 
 

Σ Σ
Σ

Σ Σ
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5: 

d
d k
k d

k

 
  
 

z
z

z
  

 Variational measurement update:  
 6: Initialization of VB loop: 

d ,( 0 ) d

k|k k|k 1
ˆ ˆ

x x , d ,( 0 ) d

k|k k|k 1ξ ξ  , a,( 0 ) a

k|k k|k 1
ˆ

Σ Σ , 

xk|k 1f̂ 12n     , kk|k k 11

a

|
ˆ   ΣF , 

k|k 1 k 1|k 1 z z
ˆ ˆg ( g n 1) n 1       , k|k 1 k 1|k 1

ˆ ˆ  G G . 

2 24 4n m   

 for j 0 : N 1    

 Update d ( j 1 ) ( j 1 )

k|k 1 k| 1

d ,( j 1 ) a

k k k
ˆ ˆ( ) IW( ; f , )q 



 

Σ Σ F   given 

d ,( j ) d

k|kq ( )ξ  
 

 7: d , j a,( j ) d ,( j ) d d ,( j ) d T

k k|k k k|k 1 k k|k 1
ˆ ˆ ˆ ˆˆ ( )( )    A Σ ξ ξ ξ ξ  2N( 2n 8n )  

 8: ( j 1 ) ( j 1 ) ( j 1 ) ( j 1 ) d , j

k k|k 1 k k|k 1 k
ˆ ˆ ˆ ˆf f 1,   

    F F A  2N(1 4n )  

 Update k

d ,( j 1 )

k

( j 1 ) ( j 1 )

k k
ˆˆIW( ;g , )q ( )    R GR  given d ,( j ) d

k|kq ( )ξ   

 9: d ,( j ) d d ,( j ) d d ,( j ) T ( j ) T

k k k k|k k k k|k k k|k k
ˆˆ ˆ( )( )   B z H x z H x H Σ H  2 2 2N( 2n m 2nm mn m )    

 10: ( j 1 ) ( j 1 ) ( j 1 ) ( j 1 ) d ,( j )

k k|k 1 k k|k 1 k
ˆ ˆˆ ˆg g 1,   

    G G B  2N(1 m )  

 Update  d ,( j 1 ) d d d a,( j 1 )

k k k|k k|k
ˆ ˆq ( ) ( ; , ) ξ ξ ξ Σ  given 

k

d ,( j 1 ) a

k| 1( )q 


Σ  and 

d ,( j 1 )

kq ( )
R  

 

 
11:  

1
( j 1 ) ( j 1 )

k z

1

kk ( ) ˆĝ n 1 


      GR  
3 2N( m 2m m )   

 
12:  

1
( j( j 1 ) ( j 1 )

k x k

1 ) a

k|k 1
ˆ ˆf 2n )1( 

 


     FΣ  
3 2N( 8n 8n 2n )   

 
13:  

1
a,( j 1 ) ( j 1 ) a 1

k|k 1 k|k 1
ˆ 


  

 
   Σ Σ  

( j 1 ) ( j 1 )

k|k 1 k 1,k|k 1

T( j 1 ) ( j 1 )

k 1,k|k 1 k 1|k 1

ˆ ˆ

ˆ ˆ

 

  

 

   

 
 
 
 

Σ Σ

Σ Σ
 

3 2N( 8n 4n 2n )   

 
14:  

1
( j 1 ) ( j 1 ) 1

k k
ˆ 


     R R  

3 2N( m m m )   

 

15: 

( j 1 )

k|k 1 k 1,k|k 1a,( j 1 )

k|k 1 T

k 1,k|k 1 k 1|k 1

ˆ ˆ
ˆ

ˆ ˆ



  



   

 
  
  

Σ Σ
Σ

Σ Σ
  

 
Calculate

kH , ( j 1 )

k

ˆ 
R and

( j 1 )

k

ˆ 
R   

 

16: 
k n m

k

n m k





 
  
 

H 0
H

0 H

( j 1 )

k
m m

k( j 1 )

k

k
m m

k

ˆ

ˆ

ˆ

1













 
 
 


 
 
  

R
0

R
R

0

 

( j 1 )

k m m( j 1 )

k

m m k 1

ˆ
ˆ

ˆ





 

 
  
  

R 0
R

0 R
 

2N( 2m )  

 
17:  

Td ,( j 1 ) ( j 1 )

k|k 1 k|k 1 k 1,k|k 1 k
ˆ ˆ ˆ 

   
 
 

x z
Σ Σ Σ H  

2N( 8mn 2mn )  

 
18:  

Td ,( j 1 ) T

k 1|k 1 k 1,k|k 1 k 1|k 1 k
ˆ ˆ ˆ

     
 
 

x z
Σ Σ Σ H  

2N( 8mn 2mn )  

 
19:  

T
a,( j 1 )

k k k|k 1 k
ˆ 

Δ H Σ H  
2 2 2N(16mn 4mn 16m n 4m )    

 
20: ,( j 1 ) ( j 1 ) ( j 1 )

k|k 1 k k k

ˆˆˆ   

   zz
Σ Δ R R  

2N( 8m )  

 
21: 

1d( j 1 ) ,( j 1 ) ,( j 1 )

u k|k 1 k|k 1
ˆ ˆ


  

 
 
 

x z zz
K Σ Σ  

3 2 2N( 8m 4m 8m n 2mn 2m)     
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 22: d ,( j 1 ) d ( j 1 ) d d

k|k k|k 1 u k k k
ˆˆ ˆ ( ) 

  x x K z H ξ  N(12nm )  

 
23: 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k|k k|k 1 u k|k 1 u
ˆ ˆ ˆ    

   zz
Σ Σ K Σ K  

2 2N( 8m n 4n m 2mn )   

 
24: 

1d( j 1 ) ,( j 1 ) ,( j 1 )

s k 1,k|k 1 k|k 1
ˆ ˆ


  

  
 
 

x z zz
K Σ Σ  

3 2 2N( 8m 4m 2m 8nm 2nm)     

 25: d ,( j 1 ) d ( j 1 ) d d

k 1|k k 1|k 1 s k k|k 1
ˆˆ ˆ ( ) 

     x x K z z  N(12nm )  

 
26: 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k 1|k k 1|k 1 s k|k 1 s
ˆ ˆ ˆ    

     zz
Σ Σ K Σ K  

2 2N( 8m n 4n m 2mn )   

 
27: 

T( j 1 ) ( j 1 ) ( j 1 ) ,( j 1 ) ( j 1 )

k 1,k|k k 1,k|k 1 s k|k 1 u
ˆ ˆ ˆ    

     zz
Σ Σ K Σ K  

2 2N( 8m n 4n m 2mn )   

 

28: 

d ,( j 1 )

k|k 1d ,( j 1 )

k|k 1 d ,( j 1 )

k 1|k

ˆ
ˆ

ˆ





 



 
 
  

x
ξ

x
  

 

29: 

( j 1 )

k|k 1 k 1,k|k 1a,( j 1 )

k|k 1 T

k 1,k|k 1 k 1|k 1

ˆ ˆ
ˆ

ˆ ˆ



  



   

 
  
  

Σ Σ
Σ

Σ Σ
  

 end for  

 30: d d ,( N )

k|k k|k
ˆ ˆx x , ( N )

k|k k|k
ˆ ˆΣ Σ , ( N )

k|k 1 k
ˆ ˆf f  , 

( N )

k|k 1 k
ˆ ˆ

 F F , 

( N )

k|k 1 k
ˆ ˆg g  and ( N )

k|k 1 k
ˆ ˆ

 G G  
 

 Output: x
d

k|k
ˆ , k|kΣ̂  �̂�𝑘|𝑘, k|kf̂ , k|kF̂ , 

k|kĝ and k|kĜ   

Total complexity 

3 3 2 2 2

2 3 2

2

N[16n 18m 24n 19m 26m n

46mn 7mn 6m 6n 2] 6n 4n

m n 4

    

      

 

 

 

 

Algorithm II Delayed Kalman filter with one step randomly delayed 

measurements 
The complexity (FLOPs) 

 Inputs: d

k 1|k 1
ˆ

 x , k 1|k 1
ˆ

 Σ , k 1A , kH , k 1Q , kR  and 
d

1:kz   

 1: d d
k|k 1 k 1 k 1|k 1
ˆ ˆ

   x A x  22n n  

 
2: T

k|k 1 k 1 k 1|k 1 k 1 k 1

ˆ ˆ
      Σ A Σ A Q  3 24n n  

 3: T
k 1,k|k 1 k 1|k 1 k 1

ˆ ˆ
    Σ Σ A  3 22n n  

 

4: 

d

k|k 1d

k|k 1 d

k 1|k 1

ˆ
ˆ

ˆ





 

 
 
  

x
ξ

x
, a k|k 1 k 1,k|k 1

k|k 1
T

k 1,k|k 1 k 1|k 1

ˆ ˆ

ˆ ˆ
  



   

 
 
 
 

Σ Σ
Σ

Σ Σ
  

 
5: 

d
d k
k d

k

 
  
 

z
z

z
  

 measurement update:  
 Calculate 

kH ,
kR and kR   

 
6: 

k n m

k

n m k





 
  
 

H 0
H

0 H
, k m m

k

m m k 1



 

 
  
 

R 0
R

0 R
 and 

k
m m

k

k

k 1
m m

k1










 
 
 
 
 

 

R
0

R
R

0

 

22m  

 
7:  

Td

k|k 1 k|k 1 k 1,k|k 1 k
ˆ ˆ ˆ

   
 
 

x z
Σ Σ Σ H  

28n m 2mn  

 
8:  

Td T

k 1|k 1 k 1,k|k 1 k 1|k 1 k
ˆ ˆ ˆ

     
 
 

x z
Σ Σ Σ H  

28n m 2mn  

 
9:  

T
a

k k k|k 1 k
ˆ

Δ H Σ H  
2 2 216mn 4mn 16m n 4m    
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 10: k|k 1 k k k
ˆ

   zz
Σ Δ R R  28m  

 
11: 

1d ,

u k|k 1 k|k 1
ˆ ˆ



 
 
 

x z zz
K Σ Σ  

3 2 28m 4m 8m n 2mn 2m     

 12: d d d d

k|k k|k 1 u k k k
ˆˆ ˆ ( )  x x K z H ξ  12nm  

 13: T

k|k k|k 1 u k|k 1 u
ˆ ˆ ˆ

   zz
Σ Σ K Σ K  2 28m n 4n m 2nm   

 
14: 

1d

s k 1,k|k 1 k|k 1
ˆ ˆ



  
 
 

x z zz
K Σ Σ  

3 2 28m 4m 2m 8nm 2nm     

 15: d d d d

k 1|k k 1|k 1 s k k|k 1
ˆˆ ˆ ( )     x x K z z  12nm  

 16: T

k 1|k k 1|k 1 s k|k 1 s
ˆ ˆ ˆ

     zz
Σ Σ K Σ K  2 28m n 4n m 2nm   

 17: T

k 1,k|k k 1,k|k 1 s k|k 1 u
ˆ ˆ ˆ

     zz
Σ Σ K Σ K  2 28m n 4n m 2nm   

 

18: 

d

k|k 1d

k|k 1 d

k 1|k

ˆ
ˆ

ˆ







 
 
  

x
ξ

x
  

 

19: 
k|k 1 k 1,k|k 1a

k|k 1 T

k 1,k|k 1 k 1|k 1

ˆ ˆ
ˆ

ˆ ˆ
  



   

 
  
  

Σ Σ
Σ

Σ Σ
  

 end for  

 Output: 
d

k|kx̂ and k|kΣ̂   

Total complexity 

3 3 2 2

2

6n 16m 2m 24m n

44mn 10mn 4m n

  

   
 

MATLAB simulations are carried out for 1000 Monte Carlo (MC) runs and for 400s at each run. Different latency probability 

conditions ( 0.1,0.2,0.3,...,0.9 )   are considered to see the performance of the applied filers. 

Note: Computational complexity of the proposed VB-AKFRD-PR algorithm and DKF-NNCM at each step and overall 

complexity is given in Algorithm I and II tables. Where N  represents number of VB loop iterations. Complexity of the 

proposed VB-AKFRD-PR is linearly proportional to N . However, as we can see from the simulations later, it is found that from 

Figure 1, three VB loop iterations is sufficient for convergence of VB loop, so 𝑁 is set to, N 3  and the proposed VB-AKFRD-

PR displays superior performance compared to DKF-NNCM and RMSEs of state matches with the RMSEs of the conventional 

filter with ideal conditions. 

Performance indices: 

In order to compare the performance of the applied filters, RMSE (for states) and SRNFN as in Huang et al. [13] (for noise 

covariance matrices) are taken as performance indices. 

where RMSE, ARMSE and SRNFN are calculated using (70) 

 

 

 

M
x,i x ,i 2 y ,i y ,i 2

P k k k k
i 1

2T M
x,i x ,i 2 y ,i y ,i 2

P k k k k
k 1 i 1

1 ˆ ˆRMSE ( P P ) ( P P )
M

1 ˆ ˆARMSE ( P P ) ( P P )
TM



 


   





    


 (70) 

where 
i

kP  and 
i

kP̂  are the true and estimated positions respectively at thk  time-step in thi  MC run. RMSE, ARMSE of the 

velocity can be calculated similarly according to (70). For evaluation of the estimation accuracy of the adapted PECM and 

MNCM, SRNFN is chosen, which can be defined as follows 

 

1/ 4
2M

i i

PECM k|k 1 k|k 12
i 1

1 ˆSRNFN
n M

  


 
  
 
 

 (71) 

i

k|k 1̂  is estimated PECM at 
thi  MC run and i

k|k 1   is the PECM from DKF-TNCM. 

True trajectories are generated by taking initial condition,  
T

0 100 100 10 10X using kQ  and kR whereas initial state of 

all the competent filters are randomly generated with an assumed error covariance of   0|0
ˆ diag 100 100 100 100   Some of 
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the parameters of the proposed filter are as follows: WL 50 , 
y xn 2,n 4, 1,N 3     , 

0|0 yĝ k n 1   , k 3  and 

0|0 0
ˆ kG R . 

3.2 Findings related to the choice of parameters of the proposed filter 

Selection of certain parameters like number of VB iterations ( N ) , tuning parameter ( ) and forgetting factor ( )  is very 

important for the better estimation performance of the proposed filter. Instead of assuming a random value for N ,  and  , it is 

good to get the optimum values of the parameters such that RMSE of the states will be less. To get the optimum value of N  

(value of N at which RMSE of the state is low) 1000 MC runs carried out for each value of N , where N  is varying from 1 to 20 

for latency probability 0.5  . Through simulations it is observed that the proposed filter converges at N 3 . From Figure 1 

we can see that RMSE is low when N 3 . Therefore, N  is set to be, N 3 . 

Figure 2 depicts the RMSE Comparison with different values of tuning parameter ( ) varying from 1   to 6 according to 

Huang et al. [13] for latency probability 0.5   using 1000 MC. It has been observed that the proposed filter has consistent 

performance and lower RMSE when 2,3,4,5,6   and for which RMSE of velocity is shown in Figure 2. While performing 

simulations tuning parameter is selected to be 3  . Similarly, Figure 3 depicts the RMSE comparison of velocity with different 

values of forgetting factor, 0.9,0.92,0.94,0.96,0.98,1  . From Figure 3 it is clear that VB-AKFRD-PR filter has consistent and 

better estimation with 0.98   and 1.0 . This is due to stationary MNCM. Figure 4 and 5 shows SRNFN of PECM and MNCM. 

From Figure 4 and 5 it can be observed that SRNFN of PECM and MNCM is low and consistent from N 3 . Based on above 

observations, while executing simulations, values of the parameters are taken as, N 3 3   and 1  . 

MATLAB simulation results shown for the latency probability 0.5  . Figure 6 depicts the RMSE comparison of position 

and velocity among VB-AKFRD-PR, MLE-AKFRD-QR Mohamed et al. [5], DKF-NNCM, and DKF-TNCM Wang et al. [15].  

Performance of the MLE will degrade when both PNCM and MNCM are not known, same has been observed that MLE-

AKFRD-QR is diverging in most of the MC runs. From Figure 6, it can be comprehended that initially RMSEs of the proposed 

VB-AKFRD-PR is close to the RMSEs of DKF-NNCM, but from 200s coincides with the RMSEs of DKF-TNCM. From Figure 

6 it can be understood that VB-AKFRD-PR has significantly lesser RMSEs compared to the other applied filters. SRNFN 

comparison between VB-AKFRD-PR and DKFRD-NNCM is shown in Figure 7. Average RMSEs at different latency probability 

conditions are shown in Table 1. At each probability condition it has been observed that ARMSEs of position and velocity of VB-

AKFRD-PR is much lesser than other filters. However, one can see that ARMSE difference between VB-AKFRD-PR and DKF-

TNCM is also high, but this is due to the time taken by the proposed filter to adapt PECM and MNCM. Figure 8 depicts average 

RMSE comparison of position and velocity with respect to latency probability. From Figure 8 one can that ARMSE of the 

proposed VB-AKFRD-PR is much less than the DKF-NNCM. 

 

3.3 Validation of the proposed algorithm using real data 

Proposed algorithm is validated using offline real data.  The phase current waveform of permanent magnet synchronous machine 

drive under vector control operation has been acquired to estimate the fundamental and harmonic   magnitudes of the phase 

current.  

Measurement model: The phase current measurement equation with harmonics is given by 

 
n

k n n k
h 1

z A sin( h kT )  


    (72) 

Where kz  is the phase current obtained. Main objective is to estimate the amplitude of the fundamental phase current and 

harmonics. As frequency   is considered to be constant, then measurement equation becomes linear.   

Equation (72) can be represented in state space form as shown below 

 
k

1 0

A

0 1

 
 


 
  

 (73) 

State vector can be represented as, 
T

k 1 1 2 2 n nA cos( ) A cos( ) A cos( )       and measurement model can be represented as  

n

k k n k
h 1

g( ) ( h )sin( h kT )    


    

Amplitude of the fundamental phase current and harmonics can be calculated using the following expression  
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2 2

hA ( 2h ) ( 2h 1)     

where, ℎ = 1 implies 1A i.e. fundamental amplitude. 

Simulation results: 

The phase current signal shown in (72) consists of different harmonics. The principle objective of the proposed algorithm is to 

estimate the amplitude of the fundamental and harmonic components. In order to do so, proposed VB-AKFRD-PR and MLE-

AKFRD-QR are applied for amplitude estimation.  As true initial state is not available filter is initialized with (0 )  = [512 154 

37 -4  10 -3 13  -2 -11 29 8  -5 -10 12  1.5 -2 3 0.5 7 -5 -7 -2 -6 -2 1  -1 0.5] and [512.16  154.60   37.01   -4.08    9.83  -3.13   

12.86   -2.5235  -11.01   28.66    7.97   -4.90  -10.33   12.57    1.32   -1.95    2.50    0.41   6.54   -5.00   -7.15   -1.42   -6.26   -1.37    

2.25    1.22   -1.12   -0.35] and the process noise is considered as xQ 0.1 eye( n )  , 0.05  . Figure 9 represents estimated 

measurement using DKFRD-NNCM, proposed VB-AKFRD-PR. From Figure 9 it is very clear that estimated measurement with 

proposed VB-AKFRD-PR is overlapping with real measurement whereas with DFRD-NNCM large deviation is there between 

estimated measurement and real measurement and when it comes to MLE-AKFRD-PR is diverging can be seen from Figure 10. 

Estimated fundamental and harmonic amplitudes using VB-AKFRD-PR are represented in Figure 11, whereas estimated 

fundamental amplitude and harmonics using MLE-AKFRD-QR are not shown as it is diverging. As estimated measurement with 

VB-AKFRD-PR is overlying with real current measurement, the proposed VB-AKFRD-PR can be suggested as a candidate for 

joint estimation of state and unknown noise covariance matrices of the linear systems with 1-RD measurements. The average 

amplitude of fundamental, 2
nd

 , 3
rd

 and 4
th

 harmonics are found to be 530.5141, 11.6430, 17.4813 and 16.2481. 

 

4. Conclusions 

In this paper a new algorithm for adaptive delayed KF based on VB approach is formulated and demonstrated to present 

satisfactory estimation performance in face of challenging situations with 1-RD measurements and unknown noise covariance 

matrices. The VB based design of adaptation algorithms has revealed its effectiveness towards estimating the states and 

unknown elements of noise covariance matrices which are modelled with the help of IW distribution. Findings during evaluation 

of the proposed adaptive delayed KF have been enumerated below: 

 The performance of the proposed filter is satisfactory in terms of estimation accuracy and close to the conventional 

delayed KF in the ideal situation when the noise covariances are known and well-tuned. RMSE and ARMSE (position 

and velocity) for the tracking problem of the proposed VB-AKFRD-PR filter almost retrace that of DKF-TNCM as the 

estimates are settling at steady values. This indicates the reliability of the proposed VB-AKFRD-PR during the critical 

circumstances of state estimations. 

 It is obvious from the above findings that the proposed VB-AKFRD-PR is superior compared to DKF-NNCM with 

assumed values of unknown noise covariance matrices. This has been verified in terms of ARMSE and RMSE plots. 

 VB-AKFRD-PR outperforms its closed competitor MLE-AKFRD-QR as illustrated by the RMSE plots and tabulation 

of ARMSE. VB-AKFRD-PR is capable of presenting acceptable estimation performance while the estimates of MLE-

AKFRD-QR diverges. 

 The efficacy of VB-AKFRD-PR is demonstrated with an offline harmonics estimation problem with real measurements. 

The validation with real data increases the confidence in the proposed estimation algorithms and also promotes the filter 

for practical implementation. 

 From the complexity analysis it has been verified that the proposed VB-AKFRD-PR needs moderately high 

computation effort compared to DKF-NNCM and MLE-AKFRD-QR which are unable to present satisfactory 

estimation performance. However, this is not a short coming of the proposed algorithms on availability of off the shelf 

computing facility. 

From the above observations authors recommend proposed VB-AKFRD-PR algorithm for state estimation of dynamic systems 

with linearized models with 1-RD measurements and unidentified noise covariance matrices. 
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Figure 6. RMSE comparison among applied filters 

                                

Figure 7. SRNFN comparison of PECM and MNCM between VB-AKFRD-PR and DKFRD-NNCM 

                                               

Figure 8. Latency probability vs ARMSE of position and velocity 
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Figure. 9 Estimated measurement with different algorithms using real data 

 
Figure. 10 Estimated measurement with MLE-AKFRD-QR using real data 

 
Figure. 11 Estimated harmonic magnitudes with VB-AKFRD-PR using real data 

 

Table 1. ARMSE comparison of different filter with respect to latency probability 

Latency 

probability 

ARMSE  

of 

ARMSE using 

DKFRD-TNCM DKFRD-NNCM VB-AKFRD-PR 

0.1 
Position 17.2219 33.5811 21.8368 

Velocity 2.7483 4.9685 3.5781 

0.2 Position 12.8266 31.6200 17.5266 
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Velocity 2.8365 4.9336 3.5075 

0.3 
Position 9.4065 30.6536 14.8343 

Velocity 2.8846 4.9516 3.5870 

0.4 
Position 8.9367 30.7826 13.2236 

Velocity 2.9610 4.9209 3.4670 

0.5 
Position 9.5553 31.5679 13.3393 

Velocity 3.0072 4.9342 3.4751 

0.6 
Position 11.3433 32.9426 14.6810 

Velocity 3.0273 4.9578 3.4850 

0.7 
Position 14.0031 35.0376 17.1079 

Velocity 3.0424 4.9938 3.5058 

0.8 
Position 17.1904 37.8733 20.3112 

Velocity 3.0352 5.0450 3.5329 

0.9 
Position 21.0354 41.6455 24.3822 

Velocity 3.0195 5.1114 3.5637 
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