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Abstract. Globally, aluminium alloys are used in many industries. Application of
aluminium alloys is realized by many manufacturing processes in which joining processes
are inevitable. Joining of aluminium alloys is achieved by various welding processes.
One of the appropriate welding processes used to join aluminium alloy is Gas Metal
Arc Welding (GMAW). This paper investigates the e�ect of process parameters of the
GMAW process while welding AA 6351 aluminium alloy weldment with the help of an
integrated Taguchi-grey-Fuzzy approach. Taguchi L-16 array was designed by using an
orthogonal method to conduct the experiments. From the experimental results, Signal-
to-Noise ratios (S=N ratio) were calculated from which Grey Relational Grades (GRG)
were computed. These computed GRG were used as input for the fuzzy controller to �nd
the Grey Fuzzy Relational Grades (GFRG), by which optimized process parameters were
found and validated. Furthermore, Analysis of Variance (ANOVA) was used to identify
the contributions of the GMAW process parameters over the responses. Subsequently, the
e�ects of process parameters on the weldments were also discussed in detail. By identifying
the optimized process parameters and contributing process parameters, the quality of weld
joints is improved.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Aluminium is replacing steel in industries at a rapid
pace. Current and future technological scenarios are
more dependent on the application of arti�cial intelli-
gence to perform tasks commonly associated with intel-
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ligence. Among the manufacturing processes, welding
is one of the inevitable processes demanding enhance-
ment from qualitative and quantitative perspectives.
Weldments experience failure owing to the changes in
weld bead characteristics such as Reinforcement Form
Factor (RFF), Penetration Shape Factor (PSF), and
percentage of dilution (%D), which are related to the
thermomechanical variations that occur during weld-
ing. The relationship between weld beads and welding
process parameters is always nonlinear and compli-
cated, making it di�cult for even experienced operators
to easily �x the appropriate process parameters. The
problems are related to theory-based assessment of
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input and output relationships of any welding process
through various statistical investigations of the data
obtained from the conducted experiments. Some of
those approaches include non-linear and linear regres-
sion techniques, Taguchi technique, factorial design,
RSM (Response Surface Methodology), and so on.
In this work, a hybrid of Taguchi-grey-fuzzy is used
to optimize the process parameters. Furthermore,
investigations were carried out to explore the direct and
interactive e�ects of process parameters on the welding
process characteristics. The manufacturing of pipes
used in the oil and gas industries is one of the more
recent applications of aluminium welding investigated
in this work.

In their paper, Benyounis and Olabi [1] con-
cluded that evolutionary algorithms and computational
techniques were developed and applied to many do-
mains. Furthermore, they found that in recent years,
the integration of various non-traditional optimization
techniques such as Arti�cial Neural Networks (ANN),
Genetic Algorithm (GA), Grey Relational Analysis
(GRA), and fuzzy logic remained fascinating for re-
searchers to express the input-response relationships
of the joining process. Parida and Pal [2] proposed
a fuzzy-based grey-Taguchi method to identify the
optimum friction stir welding process parameters with
multiple weld quality characteristics. Sahu et al. [3]
presented the Fuzzy-grey Taguchi optimum technique
for the optimization of process parameters of the
friction stir welding process for Al/Cu joints with
dissimilarity. Chandel et al. [4] studied the e�ects of
submerged arc welding parameters on weld penetra-
tion, bead height, melting rate, and bead width. Kim
et al. [5] utilized the Taguchi method. They determined
the control settings that were optimum for the fuzzy
controller. Kim et al. [6] determined the e�ect of mea-
surement errors in parameters that were uncertain in
nature while using the robotic Gas Metal Arc Welding
(GMAW) process by sensitivity analysis and compared
the experimental data with those obtained from the
empirical formula. Satheesh and Dhas [7] proposed
using a hybrid grey-fuzzy technique, a method that
facilitates manufacturers in developing intelligent man-
ufacturing systems and achieving the highest level of
automation. Kumar and Maheshwari [8] implemented
a hybrid method combining grey, fuzzy, and Taguchi
approaches to integrate such properties as ultimate
tensile strength and impact strength of the submerged
arc weldments. Sarkar et al. [9] proposed an algorithm
that was based solely on grey fuzzy. They also used
the Taguchi method in that algorithm, which was used
to identify the appropriate process parameters used in
the welding of AISI 1518 grade steel by submerged
arc welding. Saravanan and Pitchipoo [10] developed
Taguchi-based GRA for multi-objective optimization
of GMAW parameters for yielding better mechanical

strength of welded joints. Hould [11] reported that
for automated applications, process variables should be
selected precisely to control the shape of the weld bead.
Je�us [12] stressed the importance of establishing
relationships between the welding process parameters
and the bead geometry so that prediction and control
of the weld bead quality could be achieved. �Ozg�orm�u�s
et al. [13] proposed a method that could e�ectively deal
with PSP and help a company establish a systematic
and unbiased approach to the problem. Datta et
al. [14] applied the Taguchi philosophy to optimize the
process parameters with respect to bead geometry and
width of Heat A�ected Zone (HAZ) in Shielded Metal
Arc welding (SMAW). Kannan and Yoganandh [15]
studied the e�ects of GMAW process parameters on
the geometry of clad beads and their shape rela-
tionships. Senthilkumar and Kannan [16] identi�ed
that heat input during the welding process played an
important role in the determination of composition and
microstructure of super duplex stainless steel while the
cladding process began. They concluded that RFF
was greatly in
uenced by factors like speed of the
welding torch, arc length, melting rate, and resistance
heating of the electrode. In their work, Ebrahimi
Qazvini et al. [17] developed a two-stage approach
based on Fuzzy Analytic Hierarchy Process (FAHP)
and a Multi-Objective Mixed Integer Linear Program-
ming (MOMILP) model under uncertainty and ap-
plied them to supplier selection and order allocation.
Moghaddam et al. [18] addressed the idea of applying
a multi-criteria optimization method for the GMAW
process of API-X42 alloy. They conducted experiments
based on the L36 Taguchi matrix and also employed
Back Propagation Neural Network (BPNN), an ANN
algorithm for predicting the geometry of weld bead and
HAZ. Rostami et al. [19] developed ANN to forecast the
thermal conductivity of a multi-walled carbon anotube
(MWCNTs)-CuO/water nano
uid. Furthermore, they
proposed an algorithm for �nding the optimum for
better performance. He et al. [20] developed an
algorithm to predict the optimum neuron number from
the trained ANN. Accordingly, they calculated the
performance and correlation coe�cient. In his work,
Kurtulmu�s [21] conducted the A-TIG welding process
by covering a slim layer of activated 
ux deposited on
the weld bead before the welding process. In doing
so, he concluded that a high penetration depth was ob-
tained. Kam et al. [22] optimized the Fused Deposition
Modelling (FDM) process parameters to have better
mechanical characteristics using the Taguchi method.
They concluded that by using optimized FDM process
parameters, the material properties were improved.
Azadi Moghaddam and Kolahan [23] optimized the
Electrical Discharge Machining (EDM) process param-
eters by training and developing ANN. Upon using the
optimized process parameters, better material removal
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rate, surface roughness, and tool wear rate were ob-
tained. Having gathered the experimental results as
data points with respect to the volume fraction of
various nanoparticles at di�erent temperatures, Ros-
tami et al. [24] developed an algorithm to predict the
optimum neuron number that should be present in the
hidden layer of the developed ANN. In their work, Garg
and Kaur [25] presented an innovative multi-criteria
cluster or group-based decision-making method under
a cubic intuitionistic fuzzy environment by hybridizing
the extended TOPSIS method. They demonstrated the
feasibility of the proposed method by comparing the
results obtained from various existing approaches. In
their paper, Delir Nazarlou et al. [26] attempted to
optimize the friction stir welding parameters. They
employed the Taguchi L9 orthogonal array to design
and conduct the experimental runs and to optimize the
process parameters. By using ANOVA, they found the
most in
uential parameter that a�ected the process.
Toghraie et al. [27] investigated the dynamic viscosity
of Ag/Ethylene glycol nano
uid. After conducting the
experiments, the obtained data was used to develop
an ANN model, which they later used to forecast the
dynamic viscosity. In their study, Tavakkoil Nabavi et
al. [28] addressed a technique to develop a model and
optimize the process of Abrasive Water Jet Machining
(AWJM). Taguchi and D-optimal techniques were used
for the same purpose. They also employed regression
modeling along with ANOVA to establish a relationship

between the input process parameters and output
responses.

From the above studies, it is noted that the
exploration of GMAW aluminium weldments is very
limited. Hence, an attempt is made in the current
work to evaluate and optimize the GMAW process
parameters for aluminium alloy AA 6351 weldment by
integrating the Taguchi-grey-Fuzzy technique, which
will provide a basis for machine learning in the future
that can be applied in the industries.

2. Experimental method

The methodology adopted in the optimization of
GMAW process parameters of aluminium weldments
using the Taguchi-grey-fuzzy integrated approach is
illustrated in Figure 1.

The experiments for the study were conducted
using the experimental setup, as shown in Figure 2.
100% Argon was used as a shielding gas while welding.
The base material composition is presented in Table 1.
AA4043 with a wire diameter of 1.2 mm was used as

Table 1. Chemical composition of the base and �ller
metal (weight %).

Material Al Si Mn Mg

AA 6351 (base metal) 97.8 1.0 0.6 0.6
AA 4043 (�ller metal) 94.8 5.2 | |

Figure 1. Methodology adopted in this paper.
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Table 2. Process parameters and their levels.

Process parameters Details Levels
Units Notation 1 2 3 4

Welding voltage V A 14 16 18 20
Welding speed mm/min B 150 160 170 180
Wire feed rate inch/min C 200 225 250 275
Nozzle to plate distance inch D 0.25 0.50 0.75 1.00

Figure 2. Experimental setup.

Figure 3. Weld bead geometry.

a �ller material, whose composition is also given in
Table 1.

For designing the experimental runs, the L16
Taguchi orthogonal array was utilized with welding
voltage, welding speed, wire feed rate, and nozzle-
to-plate distance as input process parameters. The
input ranges identi�ed are given in Table 2. During
the experiments, experimental runs were randomized
to reduce the environmental e�ects.

After initiating the experiments, weldments were
sectioned in the transverse direction perpendicular to
the weld line and the weld surfaces were prepared fol-
lowing the standard metallographic procedure. Keller's
reagent was used as an etchant. Weld bead macro-
graphs were characterized by an optical microscope,
and the obtained images were imported to SolidWorks
Drawing Editor, where the weld bead width, height,
and penetration depth (as shown in Figure 3) were
measured and RFF, PSF, and %D were calculated
using Eqs. (1) to (3), as given by Bahrami et al. [29]:

RFF = W=R; (1)

Figure 4. A sample macrograph (experiment no. 8).

where RFF is the Reinforcement form factor; W is the
weld bead width (mm); and R is the reinforcement
height.

PSF = W=P; (2)

where PSF is the penetration shape factor; W is the
weld bead width (mm); and P is the penetration depth.
%D

=
Area of penetration

Area of reinforcement+Area ofpenetration

� 100: (3)

A sample macrograph obtained is given in Figure 4.

2.1. Calculation of S=N ratios
The S=N ratio was calculated based on the larger the
better criterion through Eq. (4). The calculated S=N
ratio for the responses is tabulated in Table 3.

S=N = �10log

"
1
n

nX
i=1

1
y2
i

#
; (4)

where y represents the observed data and n is the
number of tests in one trial.

2.2. Grey Relational Analysis (GRA)
Grey systems theory, developed by Deng, facilitates
result prediction and decision-making with respect
to uncertain systems. As per grey relational system
modeling, grey relational coe�cients were calculated
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Table 3. Calculated S=N ratio for multiple responses.

Welding voltage
(V)

Welding speed
(mm/min)

Wire feed rate
(inch/min)

Nozzle-to-plate
distance (inch)

S=N ratio
RFF PSF %D

14 150 200 0.25 4.27 6.47 29.54
14 160 225 0.50 5.83 9.80 28.47
14 170 250 0.75 2.02 8.35 28.45
14 180 275 1.00 5.52 9.41 28.68
16 150 225 0.75 5.83 6.70 30.21
16 160 200 1.00 2.02 6.94 29.47
16 170 275 0.25 5.52 7.85 30.52
16 180 250 0.50 7.80 7.87 30.90
18 150 250 1.00 7.47 8.71 29.86
18 160 275 0.75 6.96 8.78 29.08
18 170 200 0.50 6.09 4.59 33.06
18 180 225 0.25 6.34 8.07 29.50
20 150 275 0.5 10.57 10.09 31.80
20 160 250 0.25 12.30 9.51 33.05
20 170 225 1.00 12.69 7.65 33.33
20 180 200 0.75 7.31 8.58 32.32

based on the `larger the better' criterion through
Eq. (5), after normalizing the data using Eq. (6) and
computing the deviation sequence, which is calculated
by Eq. (7). Furthermore, Grey Relational Grades
(GRG) are calculated by taking the mean values of
responses' grey relational coe�cients, as presented in
Table 4.

�i(k) =
�min + ��max

�0i(k) + ��max
; (5)

where �0i(k) is the deviation sequence; X�0 (k) is
the reference sequence; X�i (k) is the comparability
sequence; and � is the identi�cation or distinguishing
coe�cient.

If all the parameters are of equal importance, then
0.5 is considered. In this work, it is taken as 0.5.

X�i (k) =
Xi(k)�minXi(k)

maxXi(k)�minXi(k)
; (6)

where X�i (k) is the sequence after data pre-processing;
Xi(k) is comparability sequence; and k is equal to 1
for the responses; i = 1; 2; 3; � � � ; 16 for experiment
numbers 1 to 16.

[�0i(k)] = j[X�0 (k)]� [X�i (k)]j ; (7)

where �0i(k) is the deviation sequence; X�0 (k) is the
reference sequence; and X�i (k) is the comparability
sequence.

Based on the GRG, rank is computed, which is
also incorporated in Table 4.

Table 4. Grey Relational Grade (GRG) calculated from
grey relational coe�cient for responses.

Experiment
no.

Grey relational
coe�cient GRG Rank

RFF PSF %D

1 0.39 0.43 0.39 0.40 15
2 0.44 0.90 0.33 0.56 6
3 0.33 0.61 0.33 0.43 14
4 0.43 0.80 0.34 0.52 9
5 0.44 0.45 0.44 0.44 13
6 0.33 0.47 0.39 0.40 16
7 0.43 0.55 0.47 0.48 11
8 0.52 0.55 0.50 0.53 8
9 0.51 0.67 0.41 0.53 7
10 0.48 0.68 0.37 0.51 10
11 0.45 0.33 0.90 0.56 5
12 0.46 0.56 0.39 0.47 12
13 0.72 1.00 0.62 0.78 3
14 0.93 0.82 0.90 0.88 1
15 1.00 0.53 1.00 0.84 2
16 0.50 0.66 0.71 0.62 4

2.3. Grey-fuzzy integrated approach
Fuzzy sets and systems concepts were introduced by
Zedah [30]. Of the two fuzzy inference systems avail-
able, viz. Mamdani and Sugino, widely used Mamdani
is preferred in this work because it is intuitive and
appropriate for human inputs. The input values con-
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Figure 5. The Grey-Fuzzy model adopted.

Table 5. Fuzzy rules applied.

Fuzzy Rules Input Output
RFF PSF %D GFRG

1 L M L VL
2 L VH L VL
3 L M L M
4 L H L VL
5 L M M LM
6 L M L L
7 L M M VL
8 M M M LM
9 M M L LM
10 M M L LM
11 M L VH LM
12 M M L M
13 H VH M LM
14 VH H VH VH
15 VH M VH VVVH
16 M M H VVH

Note: L: Low; M: Medium, VL: Very Low; VH: Very High;
H: High; LM: Low Medium, VVVH: Very Very Very High;
VVH: Very Very High.

sidered in this work were the GRG values of responses,
namely RFF, PSF, and %D, as shown in Figure 5.
Fuzzi�cation was done by converting the crisp input
values into membership functions as \low, medium,
high, and very high", whose values range between 0
and 1. The triangular method of de�ning membership
functions was used. To increase the accuracy of the
responses, nine membership functions were de�ned.

Fuzzy rules characterize the correlation among
inputs and outputs in a fuzzy inference system by using
a set of statements that are linguistic in nature. In
general, the total number of fuzzy rules used in a fuzzy
inference system depends directly on the number of
fuzzy sets for each input variable. In this work, the
bases of 16 possible rules were formed using fuzzy IF-
THEN rules, as shown in Table 5.

In defuzzi�cation, output values that were fuzzy
were converted into crisp values. The centroid of area
method was used in this work for defuzzi�cation. Grey
Fuzzy Relational Grade (GFRG) values were calculated
using a Simulink model, which was also developed, as
shown in Figure 6.

Figure 6. Simulink model for generating GFRG.

Figure 7. Response values on grey relational grades for
process parameters.

From the calculated GRG values, parameter op-
timization is done by constructing the response tables.
Given that the experiments were designed based on
Taguchi's L16 orthogonal array, it is possible to sep-
arate out the e�ect of every control factor from the
GRG at di�erent levels, as shown in Table 6. A graph
is drawn, which is shown in Figure 7 for di�erent GRG
obtained for the process parameters.

By using the grey-Fuzzy Inference system, GFRG
values were computed and compared with GRG values
computed through the grey relational technique, as
shown in Table 7. In addition, rank is also computed
based on GFRG values. Further, from the calculated
GFRG values, parameter optimization is done by
constructing the response table, as shown in Table 8. A
graph is plotted, which is shown in Figure 8 for di�erent
GFRG obtained for the process parameters.

2.4. Comparison of the Taguchi-grey-fuzzy
optimized values

For comparison, optimization was also done using the
Taguchi method, which is included in the consolidated
optimized values. The same is given in Table 9.

2.5. Conformity tests
Conformity tests were performed to verify the results
of RFF, PSF, and %D with respect to the optimized
process parameters, shown in Table 10.
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Table 6. Response table for grey relational grade.

Symbol Process parameters
Grey relational grade Main e�ect

(max-min)Level 1 Level 2 Level 3 Level 4

A Welding voltage 0.48 0.46 0.52 0.78� 0.32

B Welding speed 0.54 0.59� 0.58 0.54 0.05

C Wire fee rate 0.49 0.58 0.59� 0.57 0.10

D Nozzle to plate distance 0.56 0.61� 0.50 0.57 0.18

�: Optimum level for grey relational grade (A4, B2, C3, D2).

Table 7. Comparison between Grey Relational Grade
(GRG) and Grey Fuzzy Relational Grade (GFRG)
calculated using fuzzy logic.

Experiment
no.

GRG GFRG
Error

percentage
Rank

1 0.40 0.43 {5.94 15

2 0.56 0.55 2.30 6

3 0.43 0.46 {7.73 14

4 0.52 0.52 0.18 7

5 0.44 0.47 {7.09 13

6 0.40 0.46 {1.38 16

7 0.48 0.48 0.90 12

8 0.53 0.50 4.84 8

9 0.538 0.49 7.05 9

10 0.51 0.48 4.77 10

11 0.56 0.58 {2.63 4

12 0.47 0.48 {1.37 11

13 0.78 0.76 2.51 3

14 0.88 0.86 2.93 1

15 0.84 0.827 2.92 2

16 0.62 0.56 8.77 5

2.6. ANOVA
An ANOVA (Analysis of Variance) was employed to
explore the signi�cance of process parameters on the
quality characteristics of weldments. Table 11 shows
the detailed results of ANOVA for the responses.

Figure 8. Response values on grey fuzzy relational grades
for process parameters.

3. Results and Discussion

3.1. Signi�cance of process parameters
From Table 11, it was noted that the `welding volt-
age' had the greatest in
uence (measured at 70.18%)
over the RFF, followed by `wire feed rate' at 12.83%
and `nozzle-to-plate distance' at 6.44%; however, the
welding speed was of lower impact at 0.88%. For PSF,
the impact of wire feed rate is 41.37% which is high,
followed by welding voltage at 26.29%, welding speed at
20.22%, and nozzle-to-plate distance at 0.76%. In the
case of %D, welding voltage had the highest impact at
67.62%, followed by welding speed at 10.22%, wire feed
rate at 5.64%, and nozzle-to-plate distance at 5.20%.

Table 8. Response table for grey fuzzy relational grade.

Symbol Process parameters
Grey fuzzy relational grade Main e�ect

(max-min)
Rank

Level 1 Level 2 Level 3 Level 4

A Welding voltage 0.49 0.46 0.51 0.75� 0.29 1

B Welding speed 0.54 0.57 0.58� 0.52 0.07 4

C Wire fee rate 0.49 0.58� 0.58 0.56 0.09 3

D Nozzle to plate distance 0.56 0.59� 0.49 0.56 0.10 2

�: Optimum level for grey relational grade (A4, B3, C2, D2)
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Table 9. Consolidated optimized values.

Technique Response
Welding
voltage

(V)

Welding
speed

(mm/min)

Wire
feed rate

(inch/min)

Nozzle to
plate distance

(inch)

Taguchi-grey-fuzzy
Multi-response

20 170 225 0.50

Taguchi-grey 20 160 250 0.50

Taguchi
Dilution 20 170 200 0.50

PSF 20 160 275 1.00

RFF 20 150 225 0.50

Table 10. Conformity test results.

Welding
voltage

(V)

Welding
speed

(mm/min)

Wire
feed rate

(inch/min)

Nozzle to
plate distance

(inch)

S=N ratios
Error
(%)

Actual value Optimized value

RFF PSF %D RFF PSF %D

20 170 225 0.50

6.78 8.08 30.51

6.53 8.25 30.25 3.69

20 160 250 0.50 6.87 8.70 30.74 {1.33

20 170 200 0.50 5.98 8.13 30.52 11.80

20 160 275 1.00 6.90 8.78 30.27 {1.77

20 150 225 0.50 6.47 7.94 30.07 4.57

Table 11. Results of the ANOVA for Reinforcement Form Factor (RFF), Penetration Shape Factor (PSF), and
percentage of dilution (%D).

Variables Sum of
squares

DoF Mean of
square

F
characteristic

Contribution
(%)

RFF

Welding voltage 8.31 3 2.77 7.26 70.18
Welding speed 0.11 3 0.03 0.09 0.88
Wire feed rate 1.52 3 0.51 1.33 12.83
Nozzle to plate distance 0.76 3 0.25 0.67 6.44
Error 1.15 3 0.38 | 9.67
Total 11.85 15 3.95 | 100

PSF

Welding voltage 0.62 3 0.21 2.31 26.29
Welding speed 0.48 3 0.16 1.78 20.22
Wire feed rate 0.98 3 0.32 3.64 41.37
Nozzle to plate distance 0.02 3 0.006 0.07 0.76
Error 0.27 3 0.09 | 11.36
Total 2.37 15 0.79 | 100

%D

Welding voltage 490.7 3 163.57 5.97 67.62
Welding speed 74.18 3 24.73 0.9 10.22
Wire feed rate 40.95 3 13.65 0.5 5.64
Nozzle to plate distance 37.71 3 12.57 0.46 5.20
Error 82.14 3 27.38 | 11.32
Total 725.68 15 241.9 | 100
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Table 12. Data means of the responses.

Level Welding voltage Welding speed Wire feed rate Nozzle to plate distance

RFF

1 1.69 2.33 1.81 2.43

2 1.89 2.39 2.57 2.45

3 2.17 2.37 2.55 1.94

4 3.53 2.18 2.35 2.46

PSF

1 2.69 2.55 2.18 2.52

2 2.33 2.76 2.55 2.61

3 2.42 2.30 2.70 2.55

4 2.82 2.66 2.84 2.58

%D

1 27.52 33.10 36.51 34.58

2 32.69 32.40 33.79 36.37

3 33.60 37.86 34.38 32.15

4 42.88 33.34 32.03 33.61

3.2. Optimized parameters using
Taguchi-GREY

In general, the higher the grey relation grade, the
higher the quality. Hence, a high GRG is the required
optimum value. In this regard, from Figure 6, the op-
timum process parameters are A4, B2, C3, D2 and the
corresponding values are welding voltage 20 V, welding
speed 160 mm/min, wire feed rate 250 inch/min, and
nozzle-to-plate distance 0.5 inch.

3.3. Optimized parameters using
Taguchi-GREY-fuzzy

With reference to Figure 7, the computed optimum
process parameters are A4, B3, C2, D2 and the corre-
sponding values include welding voltage 20 V, welding
speed 170 mm/min, wire feed rate 250 inch/min, and
nozzle-to-plate distance 0.5 inch. It may be observed
that the obtained optimized process parameters do not
vary much as compared with the values derived from
the ranks determined earlier.

3.4. Validation
From Table 10, good agreement of S=N ratios between
the calculated and actual values of responses is ob-
served in the conformity test. The S=N ratios calcu-
lated from the validation experiments closely correlate
with the experimental results.

3.5. Direct e�ects of process parameters
The direct and interactive e�ects of the process pa-
rameters a�ecting the weld bead properties are plotted
using MINITAB 16, a statistics-based analysis software
product. For analyzing the direct e�ects, the corre-

Figure 9. Direct e�ect over RFF.

sponding data means of the response for the respective
input process parameters were used, as shown in
Table 12. Figures 9{11 depict the direct impact of
control factors on responses, namely RFF, PSF, and
%D.

3.5.1. Process parameters e�ects on RFF
From Figures 9{11, it is evident that RFF, PSF, and
%D increase upon increasing welding voltage, which
was also reported by Srihari [31]. It was shown
that welding voltage directly a�ected the weld quality.
As the wire feed rate increases, the reinforcement is
achieved by greater deposition of weld material; hence,
there is a reduction in RFF. Similarly, when welding
speed increases, there is a reduction in RFF due to the
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Figure 10. Direct e�ect over PSF.

Figure 11. Direct e�ect over %D.

increased deposition of weld material, which increases
the reinforcement. RFF is reduced when there is an
increase in the nozzle-to-plate distance. This is because
of the increase in the distance between the plate and
the nozzle.

3.5.2. Process parameters e�ects on PSF
PSF increases when wire feed rate increases because
a greater volume of material gets deeper penetration
by enhancing power input through the �ller wire. An
increase in welding speed decreases PSF because at
lower welding speeds, heat input will be greater and,
hence, there will be increased bead width. Nozzle-to-
plate distance increases PSF. This is because of the
wider arc cone when there is an increase in the distance,
as reported by Sowrirajan et al. [32].

3.5.3. Process parameters e�ects on %D
The dilution percentage increases with increase in
welding voltage. This is because of a rise in the larger
deposition rate of �ller material, which is the result
of better 
uidity, and higher heat input, which was
also reported by Hashmi et al. [33]. Other parameters
reduce the dilution percentage because of a reduction
in the area of penetration.

3.6. Interaction e�ects
ANOVA for GRG and GFRG is also performed to
determine the signi�cant parameters that a�ect the
quality of weldment, as given in Table 13. From
Table 13, it is evident that welding voltage a�ects the
weld quality the most.

With reference to ANOVA performed over S=N
ratios, GRG and GFRG, it was found that welding
voltage predominantly a�ected the responses. Hence,

Table 13. ANOVA for Grey Relational Grade (GRG) and Grey Fuzzy Relational Grade (GFRG).

Process parameters DoF Sum of
squares

Mean
squares

F
ratio

Contribution
(%)

GRG

Welding voltage 3 0.267 0.089 17.38 78.98
Welding speed 3 0.009 0.003 0.55 2.52
Wire feed rate 3 0.023 0.008 1.50 6.83
Nozzle to plate distance 3 0.024 0.008 7.12
Error 3 0.015 0.005 4.54
Total 15 11.846 0.113

GFRG

Welding voltage 3 0.211 0.070 10.70 74.59
Welding speed 3 0.011 0.004 0.57 3.96
Wire feed rate 3 0.020 0.007 1.02 7.13
Nozzle to plate distance 3 0.021 0.007 1.05 7.35
Error 3 0.020 0.007 6.97
Total 15 2.369 0.094
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Figure 12. Interaction e�ect of welding speed and
welding voltage over RFF.

Figure 13. Interaction e�ect of welding speed and
welding voltage over PSF.

Figure 14. Interaction e�ect of welding speed and
welding voltage over %D.

the interactive e�ects of welding voltage with other
parameters over RFF, PSF, and %D are plotted in
Figures 12-20 and analyzed.

According to Figures 12{14, when welding voltage
increases in conjunction with the welding speed, RFF
and %D increase, whereas in PSF, an interestingly high
PSF is obtained at a low welding speed with high
voltage. The reason for this is the reduction of weld
bead width and increase of bead height.

From Figures 15{17, it is observed that RFF

Figure 15. Interaction e�ect of wire feed rate and
welding voltage over RFF.

Figure 16. Interaction e�ect of wire feed rate and
welding voltage over PSF.

Figure 17. Interaction e�ect of nozzle-to-plate distance
and welding voltage over %D.

increases as both welding voltage and wire feed rate
increase. This is due to their combined e�ect of
increasing the weld bead width, leading to the greater
deposition of molten material due to the heat produced,
which was also reported by Samir et al. [34].

Further, it is evident that when welding voltage
increases with wire feed rate, PSF also increases. The
reason behind this is that these parameters increase the
e�ect of fusion in the weld joint, where molten material
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Figure 18. Interaction e�ect of nozzle-to-plate distance
and welding voltage over RFF.

Figure 19. Interaction e�ect of nozzle-to-plate distance
and welding voltage over PSF.

Figure 20. Interaction e�ect of nozzle-to-plate distance
and welding voltage over PSF.

is accumulated, resulting in bead width increase, ac-
cording to Srihari [31]. Hence, if there is an increase in
welding voltage and wire feed rate, it greatly in
uences
the PSF. In the case of %D, when the above parameters
increase in value, the value of %D increases, as well. A
linear relationship exists for %D when welding voltage
and wire feed rate interact.

With reference to Figures 18{20, when welding
voltage interacts with a short nozzle-to-plate distance,

RFF increases. This is due to the arc length incre-
ment, which results in wider bead width. PSF also
increases when higher wire feed interacts with a short
nozzle-plate distance. This is due to more material
penetrating the base material and the shape of the arc
cone. The increasing trend in %D is observed when
welding voltage increases along with the nozzle-to-plate
distance up to a certain limit because of the presence
of low penetration patterns.

4. Conclusion

This study investigated the e�ects of Gas Metal Arc
Welding (GMAW) process parameters while welding
AA 6351 aluminium alloy. Optimized parameters
were e�ectively determined by applying an integrated
Taguchi-grey-Fuzzy approach, which was validated by
conformity tests. The following are the conclusions:

� Investigation with the help of ANOVA revealed
that welding voltages along with wire feed rate
dominated the characteristics of weld bead;

� When welding voltage increased, Reinforcement
Form Factor (RFF), Penetration Shape Factor
(PSF), and percentage of dilution (%D) raised;

� RFF decreased when there was an increase in
welding speed, wire feed rate, and nozzle-to-plate
distance;

� In the case of PSF, PSF increased when wire feed
rate and nozzle-to-plate distance increased, but
decreased while there was an increase in welding
speed;

� %D decreased while increasing the other process
parameters other than the welding voltage;

� RFF and %D increased with welding voltage and
welding speed;

� High PSF was obtained at a low welding speed;
� RFF, PSF, and %D exhibited an increasing trend

when welding voltage interacted with wire feed rate;
� When high welding voltage increased with short

nozzle-to-plate distance, RFF and PSF increased,
whereas %D increased up to a certain limit.

Nomenclature

GMAW Gas Metal Arc Welding
S=N ratio Signal to Noise ratio
GRG Grey Relational Grades
GFRG Grey Fuzzy Relational Grades
ANOVA Analysis of Variance
PSF Penetration Shape Factor
RFF Reinforcement Form Factor
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%D Percentage of dilution
RSM Response Surface Methodology
ANN Arti�cial Neural Network
GA Genetic Algorithm
GRA Grey Relational Analysis
W Weld bead width
R Reinforcement height
P Penetration depth
�0i(k) Deviation sequence
X�0 (k) Reference sequence
X�i (k) Comparability sequence
� Identi�cation or distinguishing

coe�cient
X�i (k) Sequence after the data pre-processing
FAHP Fuzzy Analytic Hierarchy Process
MOMILP Multi-Objective Mixed Integer Linear

Programming
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