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Abstract. Joint encryption-encoding schemes have been released to ful�ll both reliability
and security desires in a single step. Using Low Density Parity-Check (LDPC) codes
in joint encryption-encoding schemes, as an alternative to classical linear codes, would
shorten the key size as well as improving error correction capability. In this article, a joint
encryption-encoding scheme using Quasi-Cyclic Low Density Parity-Check (QC-LDPC)
codes based on �nite geometry is presented. It is observed that our proposed scheme
not only outperforms its predecessors in key size and transmission rate, but also remains
secure against all known cryptanalyses of code-based secret key cryptosystems. In this
paper, we have proposed an idea to make QC-LDPC based cryptosystems secure against
reaction attacks. It is subsequently shown that our scheme bene�ts from low computational
complexity. By taking the advantage of QC-LDPC codes based on �nite geometry, the
key size of our scheme is very close to its target security level. In addition, using the
proposed scheme, a wide range of desirable transmission rates are achievable. This variety
of codes makes our cryptosystem suitable for a number of di�erent communication and
cryptographic standards such as Wireless Personal Area Networks (WPAN) and Digital
Video Broadcasting (DVB).
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The �rst code-based cryptosystem has been introduced
by McEliece [1]. The security of this cryptosystem
is based on the general decoding problem, which is
known to be an NP-complete problem [2]. Although at
the time of writing this paper, no algorithm running
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on quantum computers has been published to break
the code-based cryptosystems, its large key size and
low transmission rate in comparison with the prevalent
cryptosystems such as RSA and ElGamal made
these cryptosystems unusable from implementation
perspective.

After McEliece published his public key code-
based cryptosystem [2], Rao proposed a symmetric
key cryptosystem inspired by the McEliece public key
cryptosystem [3]. In 1986, Rao and Nam made a
security modi�cation on their proposed scheme [4]. In
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1987, Struik and Tilburg pointed out some weaknesses
of the Rao-Nam cryptosystem and proposed an im-
proved version of it [5]. In 2000, a secret key code-
based cryptosystem with much shorter key size was
introduced by Barbero and Ytrehus [6].

In conventional communication systems the en-
cryption and encoding is being performed separately
and in series. On the other hand, joint encryption-
encoding schemes perform encryption and encoding
as well as decryption and decoding, each in a sin-
gle step [3,4] with lower complexity than classical
encryption-then-encoding schemes. This scheme, us-
ing quasi-cyclic structure succeeded in shortening the
key size. Moreover, it gains bene�ts from the fast
decoding algorithms and superior error performance
of the LDPC codes. In 2012, another scheme us-
ing QC-LDPC codes based on Extended Di�erence
Families (EDF) was proposed [7], which could not
achieve further improvement on the key size. In
2014, Esmaeili et al. introduced a joint encryption-
encoding scheme with the novel idea of puncturing,
instead of adding a perturbation vector [8]. Then,
in 2015, they added random insertions with the idea
of improving the security of their cryptosystem [9].
In [10], they added an agreed random error vector to
their encryption process. In [11], they used random
interleaving instead of random insertions and dele-
tions. The cryptosystem in [10,11] is an encoding
then encryption system rather than a joint encryption-
encoding scheme. Besides, it is shown that the use of
two pairs of Linear Feedback Shift Registers (LFSRs)
has made Esmaeili-Gulliver cryptosystem vulnerable
against ciphertext-only attack [12]. Another approach
for joint encryption-encoding, which uses polar codes as
generator matrix, has been proposed [13,14]. In [15], a
nonlinear cryptosystem based on QC-LDPC codes was
introduced and claimed to be secure against di�erential
attacks and have a relatively low hardware complexity.
In [16], Guan and Liang used LDPC codes based on
quadratic permutation polynomials for the Gaussian
wiretap channel. For the �rst time, performing encryp-
tion, encoding and modulation simultaneously using
QC-LDPC lattice-codes has been proposed in [17] with
relatively small key size.

Although the key sizes of recent schemes reduced
considerably in comparison to the trailblazing code-
based studies, the proportion of their target security
level to their key size are still smaller than that of
conventional AES. Due to this fact, attaining a more
compact secret key, which is close to its target security
level, is one of our motivations in this article. Besides
shortening the secret key, increasing the transmis-
sion rate, decreasing the computational complexity of
algorithm, and e�ciently correcting channel errors,
as well as keeping the cryptosystem secure are the
most challenging issues in joint encryption-encoding

researches. Resolving these issues needs a proper
family of codes to be utilized. This code should possess
the following characteristics:

� E�ciently decodable;
� A large family of equivalent codes;
� Achievable high transmission rate;
� Sparse parity-check matrices.

In this paper, we propose a joint encryption-
encoding scheme utilizing QC-LDPC codes based on
�nite geometry (FG-QC-LDPC) in order to obtain a
practical solution for the above mentioned issues. We
can construct circulant matrices whose �rst rows are
derived from incident vectors of a line in this geometry.
In �nite geometry, every line is identi�ed through a
pair its points. We show that this property enables to
achieve a shorter key size. The wide acceptable range in
the size of parameters in our proposed scheme makes it
suitable for various applications and di�erent levels of
security. Furthermore, we show that the FG-QC-LDPC
joint scheme is secure against all known cryptanalyses
of such schemes including recent statistical attacks.

The rest of this paper is organized as follows.
Section 2 introduces some basic de�nitions about �nite
geometry and QC-LDPC codes based on them that
are used in this article. Next, the description of our
new joint encryption-encoding scheme using FG-QC-
LDPC codes is given in Section 3. The security and
performance including key size, error performance, and
complexity of our scheme are discussed in Section 4.
Finally, Section 5 summarizes and concludes the paper.

2. Preliminaries

We took the advantages of FG-QC-LDPC codes to
achieve the designated goals, namely improving the
performance in comparison to the best known systems
in the literature and also keeping the system secure
against all known cryptanalyses. The basic de�nitions
of QC-LDPC codes based on �nite geometry is sum-
marized in this section.

2.1. QC-LDPC
In cryptographic applications, quasi-cyclic LDPC codes
allow one to reduce the key size as well as the
complexity in comparison with the general LDPC
codes [18]. The parity-check matrix of a QC-LDPC
code is represented as follows:

H =

264 H0;0 : : : H0;n0�1
...

. . .
...

Hr0�1;0 : : : Hr0�1;n0�1

375 ; (1)

where each Hi is a circulant block of size p� p.
There are di�erent families of QC-LDPC codes

used in code-based cryptography, namely, the Ex-
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tended Di�erence Family (EDF) [7,18], and the Ran-
dom Di�erence Family (RDF) [19,20]. In the current
scheme the using of �nite geometry to construct circu-
lant blocks of the parity-check matrix is proposed. This
helps us attain a shorter secret key than those available
in the literature for joint encryption-encoding schemes.

2.2. Finite geometry
A �nite geometry is composed of �nite number of
points. In this paper we focus on two types of
�nite geometry, namely Projective Geometry (PG)
and Euclidean Geometry (EG). The de�nitions of
�nite geometry are generally provided from [21,22] and
explained in Appendix A.

2.3. FG-QC-LDPC codes
In our scheme we exploit a QC-LDPC code with one
block row of the form:

Hqc = [H0H1 : : : Hn0�1]: (2)

In FG-QC-LDPC codes, as a subset of QC-LDPC
codes, the �rst rows of the circulant blocks are derived
from incident vectors of a line in that geometry.
Thanks to the geometric construction, each line, and
therefore its incident vector, can be identi�ed by only
two points lying on that line. This property helps us to
shorten the key size. Other details regarding the key
size are mentioned in Section 4.

The number of circulant blocks in the parity-
check matrix, n0, is limited to the number of cyclic
classes in that particular geometry, i.e., n0 � Nc. The
parity-check matrix derived from �nite geometry has
the following characteristics, which correspond to the
parameters given in Appendix :

� The Hamming weight of each row in each circulant
block is equal to the number of points lying on each
line in that �nite geometry;

� The size of each circulant block is p� p, where p is
the total number of points in that geometry;

� No two columns have more than one common
locations of `1's. This is due to the fact that two
distinct lines in �nite geometry are either disjoint or
intersect at only one point;

� The Tanner graph contains no length 4 cycles;
� The codeword length is n = n0 � p;
� The length of message vectors or equally the dimen-

sion of the code is k = (n0 � 1)� p = k0 � p.

3. FG-QC-LDPC joint encryption-encoding
scheme

Here is the description of the proposed joint encryption-
encoding scheme based on FG-QC-LDPC codes
in three di�erent steps, that is, key generation,

encryption-encoding, and decryption-decoding. Then,
we discuss the range of suitable parameters for our
proposed scheme.

3.1. Key generation
The secret key of the joint encryption-encoding scheme
is composed of a parity-check matrix, H, a permutation
matrix, P , and the seed of the Pseudo Random Number
Generator (PRNG).

3.1.1. Parity-check matrix
The parity-check matrix of the FG-QC-LDPC code in
Eq. (2) can be constructed based on either Euclidean
geometry or projective geometry. The construction
procedure �rst starts with choosing between these two
types of geometries and their parameters. According
to Section 2, a �nite geometry is de�ned in terms of
two parameters, that is, its dimension, m, and the
corresponding �eld, GF (q).

As discussed in Section 2, in both cases of Eu-
clidean and projective geometries all lines are parti-
tioned into di�erent cyclic classes. Each cyclic class
in a �nite geometry forms a set of rows of a circulant
block. Thus, for generating a circulant block Hi one
needs to simply specify a cyclic class and then assign
only its �rst row.

In the case of EG, the number of cyclic classes,
according to Appendix A.2 is Nc;EG� = Jo

n = qm�1�1
q�1

and the number of lines in each cyclic class is p = qm�
1 which is equal to the length of each row vector of
circulant blocks.

In the case of PG, the number of cyclic classes
is Nc;even = qm�1

q2�1 or Nc;odd = q(qm�1�1)
q2�1 , when the

dimension of the geometry is even or odd, respectively.
Here, the number of lines in each cyclic class is p =
qm+1�1
q�1 .

To sum up with the generation of the parity-
check matrix, we should choose public parameters,
that is, the type of geometry, its dimension m, its
corresponding �eld GF (q), and the number of circulant
blocks of the matrix, n0. Then each circulant block
must be generated in the above fashion.

3.1.2. Permutation matrix
In the current scheme, the permutation matrix is a
block diagonal matrix in the form of:

P =

0B@� : : : 0
...

. . .
...

0 : : : �

1CA
xl�xl

; (3)

where each � block is an l� l permutation matrix and
xl = n. To prevent reaction attack [23], the block size l
should be chosen in a way that l - p. The reason behind
this condition is discussed in Section 4.

3.1.3. The PRNG seed
In order to generate a sequence of perturbation vectors
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Figure 1. Block diagram of the proposed encryption-encoding/decryption-decoding scheme.

eP we should utilize a PRNG. Thus, in order to
use the same sequence as perturbation vectors by the
transmitter and the receiver, it su�ces they agree on
the same seed for the PRNG. The sequence generated
by the PRNG is then divided into (n�k)-bit vectors, z.
The perturbation vectors are computed by eP = H�1z,
where H�1 is the right inverse of H. Therefore, the
perturbation vector eP is of length n. Di�erent PRNGs
can be employed depending on the hardware/software
resources and applications of the joint encryption-
encoding scheme.

3.2. Encryption-encoding
For doing joint encryption-encoding, the transmitter
needs to compute the generator matrix G from the
parity-check matrix H. In QC-LDPC codes with a
parity-check matrix in the form of one block row (see
Eq. (2)), the generator matrix can be constructed as
given below:

G =

0BB@Ik����� (H�1
n0�1H0)T

...
(H�1

n0�1Hn0�2)T

1CCA : (4)

Note that for G being used as the generator matrix,
it is su�cient for at least one circulant block, Hi, to
be non-singular. Without loss of generality, one could
assume that the circulant block Hn0�1 is a non-singular
matrix.

Next, the transmitter generates a perturbation
vector eP as given below:

eP = H�1z; (5)

where z is an (n � k)-bit vector produced by the
PRNG, and the right inverse of the parity-check matrix
is computed through a public algorithm such as that
given in [24]. Finally, the ciphertext is obtained as
follows:

c = (mG+ eP )P: (6)

3.3. Decryption-decoding
It is assumed that, the error vector e is added to
the ciphertext through a noisy channel between the
transmitter and the receiver. Thus, we denote the
received vector by:

r = c+ e = (mG+ eP )P + e: (7)

This algorithm works as follows:

1. Find the inverse permutation, P�1.
2. Multiply both sides of Eq. (7) by P�1:

r0 = rP�1 = mG+ eP + eP�1: (8)

3. Subtract the perturbation vector eP from r0:

c0 = r0 � eP = mG+ eP�1: (9)

4. Decode c0 using a belief propagation algorithm to
�nd m.

Note that the e0 = eP�1 has the same Hamming weight
as e.

Figure 1 shows block diagram of the joint
encryption-encoding/decryption-decoding algorithms.

3.4. The code parameters
To deploy a �tting EG-QC-LDPC or PG-QC-LDPC
code, length, rate, and density of the parity-check
matrix should be chosen properly. Our search results
reect the parameter values for di�erent codes and
we have summarized some suitable codes in Tables 1
and 2. Although parameters of any particular future
usage may need a value out of this range, we selected
only those within the range of existing standards as
samples.

3.4.1. Code rate
The code rate of QC-LDPC codes with one block row is:
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Table 1. Parameters of EG-QC-LDPC codes designed for
the proposed scheme.

n0 q m p Nc n R r log2

(NEG)
6 2 8 255 127 1530 0.833 0.0078 81.7
6 3 6 728 121 4368 0.833 0.0041 88.9
7 7 4 2400 57 16800 0.857 0.0029 107.7
8 2 9 511 255 4088 0.875 0.0039 126.8
9 2 10 1023 511 9207 0.889 0.0020 160.9
15 2 10 1023 511 15345 0.933 0.0020 274.6

Table 2. Parameters of PG-QC-LDPC codes designed for
the proposed scheme.

n0 q m p Nc n R r log2

(NEG)
6 2 8 511 85 3066 0.833 0.0059 83.2
6 2 9 1023 170 6138 0.833 0.0029 94.3
8 3 6 1093 91 8744 0.875 0.0037 122.3
11 2 8 511 85 5621 0.909 0.0059 159.5
13 5 5 3906 130 50778 0.923 0.0015 233.6
15 3 7 3280 273 49200 0.933 0.0012 284.3

R =
k
n

=
k0p
n0p

=
n0 � 1
n0

: (10)

In di�erent communication standards, code rates vary
from 1/5 in DVB-S2 [25] to 14/15 in IEEE 802.15.3c
[26].

3.4.2. Code length
The code lengths of EG-QC-LDPC and PG-QC-LDPC
are as follows using the parameters given in Ap-
pendix A:

nEG = n0pEG = n0(qm � 1); (11)

nPG = n0pPG = n0

�
qm+1 � 1
q � 1

�
: (12)

Similarly, code lengths in di�erent standards bound our
search for suitable parameters from 336 bits in ITU-T
G9960 [27] to 64800 bits in DVB-S2 [25].

3.4.3. Parity-check matrix density
A parity-check matrix of density 0.01 or lower is catego-
rized as a low density parity-check matrix. LDPC codes
of density about 0.001 have better error performance
[28]. The density of the parity-check matrices of EG-
QC-LDPC and PG-QC-LDPC codes are given below,
respectively:

rEG =
�
p

=
q

qm � 1
; (13)

rPG =
�
p

=
q + 1
qm+1�1
q�1

=
q2 � 1

qm+1 � 1
; (14)

where � is the Hamming weight of the incident vector
of each line in the geometry and p is its length.

4. Security and performance

In order to evaluate a joint encryption-encoding
scheme, also known as a secure channel coding scheme,
we investigate the scheme from security and e�ciency
perspectives, namely, key size, error performance, and
complexity of the scheme. Our goal in design of
the FG-QC-LDPC joint encryption-encoding scheme
is to decrease the key size as well as complexity
of the scheme while improving error performance in
comparison with the so far best previous schemes in
the literature. In addition, keeping it secure against all
known cryptanalytic attacks.

4.1. Security
Provable security for symmetric key cryptography is an
open problem. There exists no natural hard problem
to which the security of symmetric schemes can be
reduced. To assess the security of symmetric key
cryptosystems, there is a method to reduce the security
of that scheme to the problem of distinguishing between
the output of an oracle which encrypts a message with
a random key and an oracle which outputs a random
ciphertext [29]. This reduction in oracle model is
given [30], for chosen-plaintext attack on symmetric
key cryptosystems which is applicable to analyze the
security of modes of operations using a secure block
cipher. Besides, provable security is a \tool" and old-
fashioned cryptanalysis is more reasonable in practical
point of view [31].

Based on the level of a priori knowledge, which
is available to the cryptanalyst, there are di�erent
kinds of cryptanalyses. We have examined our scheme
against brute-force, ciphertext-only, message resend,
chosen-plaintext attacks, and statistical attack.

4.1.1. Brute-force attack
The secret key consists of the parity-check matrix, H,
the permutation matrix, P , and the seed of the PRNG,
S. These parameters must be chosen large enough in
order to keep our scheme secure against brute-force
attack.

The number of parity-check matrices of FG-QC-
LDPC codes is:

NFG = pn0�1 � Nc!
(Nc � n0)!

; (15)

where Nc is the number of cyclic classes on that
geometry. Let s denote the required security parameter
of our scheme, then in Eq. (15) we can simply assign
the number of blocks, n0, and the block size, p, such
that NFG�NP �NPRNG = NFG� l!�2L > 2s, where
L is the length of PRNG.

According to this condition and those described in
Section 3.4, our search for parameters of the suitable
codes has been resulted in various examples summa-
rized in Tables 1 and 2.
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4.1.2. Ciphertext-only attack
The goal of this attack is to recover the plaintext
from its ciphertext without any knowledge of the key.
In code-based cryptosystems, this is interpreted as
decoding an encoded message without access to its
parity-check or generator matrix. To achieve this
goal, the adversary needs to solve the general decoding
problem, which is known to be NP-hard problem [2].
This attack was applied on the McEliece-like public-key
code-based cryptosystems [32{34], whose public key
is algebraically equivalent to their generator matrix.
Since in our symmetric key code-based scheme the
parity-check matrix is kept secret, the adversary deals
with the general decoding problem.

4.1.3. Message resend attack
The aim of the message resend attack is to �nd the
perturbation vector, eP , used by the transmitter and
then recover the message in the following manner.
Suppose that the transmitter sends c1 = (mG+ eP1)P
to the receiver. The attacker, as the man in the middle,
alter some bits of c1 such that the receiver receives a
false or undecodable vector. Therefore, the receiver has
to make a request to the transmitter for resending the
message, m. This time, the transmitter encrypts the
same message using a di�erent perturbation vector eP2,
as c2 = (mG+ eP2)P . This scenario is called message
resend [35]. In this situation, the attacker has access to
two di�erent ciphertexts c1 and c2 of the same message
m. So the attacker can obtain the following equation
and thereby guessing the positions of non-zero entries
of eP1 and eP2:

c1 � c2 = (eP1 � eP2)P: (16)

This attack is only feasible when the perturbation
vectors have low Hamming weight. Since the used
perturbation vectors in the proposed scheme are gen-
erated uniformly at random, it is not feasible to �nd
each of eP1 and eP2 from c1� c2. Moreover, the secret
permutation matrix, P , changes the location of `1's and
`0's.

Apart from these issues while applying this at-
tack, error correction capability of capacity approach-
ing FG-QC-LDPC codes could obviate the need for
resending the message. Because the alterations made
by the attacker can be recovered by the error correc-
tion code. Thus, the message resend attack can be
thwarted.

4.1.4. Chosen-plaintext attack
There are two major chosen-plaintext attacks against
secret key code-based cryptosystems, namely Struik-
Tilburg [5] and Rao-Nam [36] attacks.

Struik and Tilburg [5] proposed chosen-plaintext
attacks against secret-key code-based cryptosystems.
In this attack two plaintexts m1 and m2 are chosen

such that they are only di�erent on their ith position,
i.e., m1 � m2 = ui. As a result, the corresponding
ciphertext di�erence is:

c1 � c2 =uiGP + (eP1 � eP2)P

=g0i + (eP1 � eP2)P; (17)

where g0i is the ith row of the generator matrix G0 =
GP . The attacker repeats the procedure for the same
ui and di�erent perturbation vectors eP until a set of
all possible ciphertexts di�ering on ith position, namely
ui, for i = 1; : : : ; n are collected. The cardinality of this
set is equal to the number of total perturbation vectors,
Ne. Doing a brute-force over all perturbation vectors,
g0i is obtained. Repeating the above scenario for all i
reveals the whole matrix G0.

The work factor of this attack is of
O(knN2

e log2(Ne)) [36]. Therefore, this attack
will be successful only if the set of all perturbation
vectors, Ne, is of small cardinality. In FG-QC-LDPC
joint encryption-encoding scheme Ne = 2(n�k) = 2p
and according to Tables 1 and 2, p � 255.
Therefore the work factor of this attack is at least
1275�1530�2510�255, which is dramatically large and
therefore the Struik-Tilburg attack is not applicable to
the FG-QC-LDPC joint encryption-encoding scheme
in polynomial time.

Rao and Nam [36] proposed their attack based
on the previously mentioned Struik-Tilburg [5] attack.
They similarly used chosen-plaintexts m1 and m2
di�ering only in one position. They noticed that when
the perturbation vectors has low Hamming distance the
attacker can use majority voting to estimate g0i and
thereby revealing the whole matrix G0. The work factor
of this attack, obtained by Rao and Nam [36], isO(Nk

e ).
Based on Tables 1 and 2, The work factor of this
attack on our proposed scheme is at least (2255)1275.
Therefore, the FG-QC-LDPC joint scheme is far more
secure to be threatened by this attack.

4.1.5. Statistical attack
This type of attack include reaction attacks and timing
attacks. In the following we investigate our proposed
cryptosystem against both kinds of attacks.

Reaction attacks have been proposed against
McEliece-like public key cryptosystems. We show that
these attacks are not feasible on symmetric cryptosys-
tems including our proposed scheme.

A reaction attack has been proposed on MDPC
codes based on a statistical fact that if the parity-check
matrix has distance d in one of their circulant blocks,
the probability of failed decoding of error vectors
having two 1s with the same distance is relatively
low [37]. In [23], they extended this attack to QC-
LDPC based cryptosystems. They argued that in
such systems even multiplying error vector e by a



1510 H. Khayami et al./Scientia Iranica, Transactions: D Computer Science & ... 31 (2024) 1504{1516

matrix Q, instead of permutation matrix with greater
row and column Hamming weight than that of P ,
would not prevent the reaction attack because eQ also
contains 1 entries with distance d with high probability.
According to [23], the attacker can learn the distances
between `1's in eQ when Q is composed of circulant
blocks of size p� p. However, in our proposed scheme
the secret permutation matrix P , instead of a quasi-
cyclic matrix Q, changes the distances between `1's in
the error vector eP�1, hence the attacker could not
learn information about the distances in eP�1 and
consequently in H.

QC-LDPC codes with higher Decoding Failure
Rates (DFR) are known to be vulnerable to reaction
attacks. Using monomial codes has been proposed to
achieve a lower DFR [38]. Several studies proposed
theoretical models and bounds for the DFR under dif-
ferent decoding algorithms [39{41]. However, instead of
lowering the DFR, our proposed scheme uses the secret
permutation matrix to mask the information which is
used to apply the reaction attack introduced in [23].

An adversary may want to recover an equivalent
version of the secret parity-check matrix ~H = HP .
In this case ~H is the parity-check matrix of ~G = GP
because ~G ~HT = GPPTHT = GHT = 0. The
adversary needs to reconstruct both ~H and ePP to
decode the received vector:

r =(mG+ eP )P + e = mGP + ePP + e

)r � ePP = mGP + e: (18)

In our proposed scheme the size of permutation blocks
in P , l, is chosen such that l - p. Therefore, ~H = HP
is not quasi-cyclic and the attack in [23] is not feasible.
Moreover, ePP is secret and the adversary cannot even
reach to the r � ePP in Eq. (18). For McEliece-like
public key cryptosystems, using the condition l - p
is worth considering whether it would thwart reaction
attacks.

Timing attack is a kind of side-channel attacks
exploiting the duration of decoding process to gain
information about the private key. By performing
constant-time decoding algorithm the proposed scheme
is remained secure against timing attacks [42]. Gener-
ally, we can protect the cryptosystem against statistical
attacks by refreshing keys every while.

4.2. Key size
The secret key of the FG-QC-LDPC joint encryption-
encoding scheme as mentioned in Section 3.1 consists
of the seed vector for a PRNG (S), the parity-check
matrix (H), and the permutation matrix (P ):

jKsj = jSj+ jKP j+ jKH j (19)

First, choosing a suitable PRNG for each application,
keeps the size of the seed at a desirable extent.

Comparing PRNGs is not in the scope of this paper.
However, as pointed in Section 1, it is not recommended
to use simple LFSRs based on the reasons mentioned
in [12]. In our example, we use Sosemanuk-128 stream
cipher as an example of PRNG [43]. The size of the
seed vector of this PRNG is only 128 bits.

Owing to quasi-cyclic structure of the parity-
check matrix, storing only the �rst row of each circulant
block of this matrix su�ces to create the parity-check
matrix. Furthermore, thanks to the �nite geometry
construction of these blocks, the whole �rst row of each
block can be produced by only knowing the location of
two \1"s on each. Since each row is an incident vector
of a line on �nite geometry, the two \1"s indicate the
two points where a line go through them. Thus, these
two location numbers can regenerate the line and its
incident vector.

We introduce a practical method to achieve the
information theoretic lower bound for storing the �rst
row of each circulant block. In this regard, we need
to identify two things, the representative of cyclic class
and the number of cyclic right shift to obtain the �rst
row. The following constraints must be considered to
assign a unique line as a representative for each cyclic
class:

(i) The �rst element of its incident vector must be
\1";

(ii) The next \1" in the incident vector must be
located at the nearest possible locations among
all lines of the class.

If the non-zero elements of the incident vec-
tor of the representative are �j1 ; �j2 ; : : : ; �j� , (i)
forces that j1 = 0 and (ii) forces j2 � j1 <
min (ji+1 � ji); (j1 � j�)(modp). By using this method
we only store j2 to indicate the cyclic class. This needs
only dlog2(p� )e bits. Another dlog2(p)e bits is needed
to indicate the amount of cyclic shift for the �rst row
of each block. As a result, the amount of memory
to store each circulant block of FG-QC-LDPC parity-
check matrix is:

dlog2(
p
�

)e+ dlog2(p)e bits: (20)

While a permutation in the rows of the parity-check
matrix makes no di�erence in the code, we can suppose
that the �rst circulant block (or one of the others) made
by the representative without being cyclically shifted.
As a result, the whole parity-check matrix with one
block row and n0 blocks needs the following amount of
memory to be stored:

jKH j = n0 � dlog2(
p
�

)e+ (n0 � 1)

� dlog2(p)e bits: (21)

The block diagonal permutation matrix, P , in this
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scheme will be stored in similar way as in [6]. The
size of the permutation matrix of the key is as follows.
Where l is the length of each block and l0 = 2blog2(l)c:

jKP j = l(log2 l
0 + 1)� 2l0 + 1: (22)

Tables 3 and 4 show examples of codes and their key
sizes for 220 bits and 270 bits security parameters,
respectively.

The key size of the proposed scheme, taking
the advantages of FG-QC-LDPC codes, is only 235
bits. Table 5 compares the key size of the proposed
cryptosystem with those known similar ones. However,
one needs to perform NFG�NP �NPRNG �= 2220 com-
putations to recover the key that means our e�ective
key size is 220 bits. In Table 6, we compare the key sizes
of the recent cryptosystems along with their e�ective
key sizes (target security levels).

4.3. Error performance
At the receiver the FG-QC-LDPC code used in our sys-
tem is decoded by a logarithmic Sum-Product decoder.
We took the following considerations to simulate encod-
ing, channel, and decoding processes. In our simulation
codewords transmitted via a Binary Phase Shift Keying
(BPSK) channel with additive white Gaussian noise.
The receiver has access to soft information of channel.
We compared decoders of 10 and 100 iterations with a
Reed-Solomon code in Figure 2. This �gure shows that
there is no remarkable improvement in 100 iterations
decoding in compare to 10 iterations.

Figure 2 shows the error performance using simple
logarithmic Sum-Product decoder. In cryptography,
there is typically a trade-o� between security and
performance. To reach a better error performance
with a lower error oor extensive analysis is required
which is beyond the scope of this work. We will

Figure 2. Performance comparison of log-SPA decoder of
10 and 100 iterations with Reed-Solomon code.

consider some modi�cations in the decoding algorithm
for LDPC codes, such as those in [45{47], and examine
the feasibility of having reduced error oor in our future
work.

4.4. Complexity
There are two separate process which their compu-
tational complexity needs to be assessed, encryption-
encoding and decryption-decoding processes.

4.4.1. Encryption-encoding
The complexity of this process can be calculated as
follows:
CEnc = Cmul(mG) + Cadd(mG+ eP )

+Cmul(H�1:s) + Cmul(P ): (23)

In this equation Cadd(mG + eP ) stands for adding
two n-bit vectors which consume n binary operations.

Table 3. The key size of the proposed system with more than 220 bits security parameter.

Secret key
parts

Proposed
parameters

Computational
complexity to �nd key

Key
size

H q = 2;m = 8; n0 = 6 281:7 82 bits
P l = 10 221:8 25 bits
S Sosemanuk-128 > 2120 128 bits

Total > 2220 235 bits

Table 4. The key size of the proposed system with more than 270 bits security parameter.

Secret key
parts

Proposed
parameters

Computational complexity
to �nd key

Key
size

H q = 3;m = 6; n0 = 6 288:87 98 bits
P l = 21 265:46 74 bits
S Sosemanuk-128 > 2120 128 bits

Total > 2270 300 bits
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Table 5. Comparison of the key size of the proposed scheme with the preceding schemes.

Cryptosystem Code Key
size

Rao [3] C(1024,524) 2 Mbits
Rao-Nam [36] C(72,64) 18 Kbits
Struik-Tilburg [5] C(72,64) 18 Kbits
Barbero-Ytrehus [6] C(30,20) over GF (28) 4.9 Kbits
Sobhi Afshar et al. [44] C(2044,1024) 2.5 Kbits
Hooshmand et al. [7] C(2470,2223) 3.55 Kbits
Esmaeili et al. [8] C(2048,1536) 2191 bits
Esmaeili Gulliver [9] C(2048,1536) 2272 bits
Mafakheri et al. [13] C(2048,1781) 1611 bits
Guan-Liang [16] C(2040,1020) 864 bits
Han et al. [14] C(1024,620) 686 bits
Bagheri et al. [17] C(258,215) 252 bits
Stuart-Deepthi [15] C(248,124) 182 bits
The proposed Scheme I C(1530,1275) 235 bits
The proposed Scheme II C(4368,3640) 300 bits

Table 6. Comparison of the key size and security level of the proposed scheme with the recent schemes.

Cryptosystem Target security level Code Key size
Han et al. [14] 597 bits C(1024,620) 686 bits
Bagheri et al. [17] 178 bits C(258,215) 252 bits
Stuart-Deepthi [15] 129 bits C(248,124) 182 bits
The proposed Scheme I 220 bits C(1530,1275) 235 bits
The proposed Scheme II 270 bits C(4368,3640) 300 bits

Multiplying a vector by a sparse matrix a1n� Bnn, needs
nw binary operations [48], where w is the Hamming
weight of rows of the sparse matrix. Here permutation
matrix, P , has w = 1 so Cmul(P ) = n.

The generator matrix, G, and the inverse of
parity-check matrix, H�1, are dense matrices and need
kn and (n�k)n binary operations respectively. By the
way, their quasi-cyclic property leads to a 92% lower
computational complexity in multiplying operations
[48]. Therefor, one could conclude that:

CEnc = 0:08� k:n+ n+ 0:08� (n� k):n+ n

=
0:08n+ 2

R
; (24)

where R = k
n .

4.4.2. Decryption-decoding
The complexity of this process is obtained as follow:

CDec = Cmul(r � P�1) + Cadd(r0 + eP );

Cmul(H�1s) + Cmul(c0 �HT ) + CSPA: (25)

The complexity of the Sum-Product Algorithm, as
mentioned in [48], is:

CSPA = Iavg:n[d(8�+ 12R� 11) + �]: (26)

In this equation Iavg is the average number of decoding
iterations and d is the number of quantization bits in
analog-to-digital converter. Finally letting Iavg = 10
and d = 6, the number of binary operations for each
information bit to be decrypted-decoded is:

CDec=k =
1
R

(2 + n� k + n0�

+ 490�+ 720R� 110): (27)

In this equation it could be seen that the complexity of
decryption-decoding algorithm is linearly proportional
to the redundancy (n� k).

5. Conclusion

This paper introduces a joint encryption-encoding
scheme, also known as secure channel coding, using
QC-LDPC codes based on �nite geometry. We have
taken advantage of FG-QC-LDPC codes to shorten the
secret key to 235 bits for 220 bits security level.

Thanks to the LDPC codes and their fast itera-
tive decoding, the error performance of the proposed
scheme is among the best of the literature. The FG-
QC-LDPC joint encryption-encoding scheme is secure
against cryptanalyses of code-based cryptosystems. We
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have also proposed an idea that makes symmetric
key QC-LDPC cryptosystems secure against reaction
attacks. It is worth considering if this idea makes
McEliece-like public key cryptosystems secure against
reaction attacks.

The joint algorithm leads to lower complexity
than conventional encryption-then-encoding methods.
We have shown that our system can provide reliability
and security simultaneously with the lower cost of one
joint system rather than two disjoint systems.

References

1. McEliece, R.J. \A public-key cryptosystem based
on algebraic coding theory", DSN Progress Report,
42(44), pp. 114{116 (1978). NASA Code 310-10-67-11

2. Berlekamp, E., McEliece, R., and van Tilborg, H.
\On the inherent intractability of certain coding
problems (corresp.)", IEEE Transactions on Infor-
mation Theory, 24(3), pp. 384{386 (1978). DOI:
10.1109/TIT.1978.1055873

3. Rao, T.R.N. \Joint encryption and error correc-
tion schemes", ACM SIGARCH Computer Archi-
tecture News, 12(3), pp. 240{241 (1984). DOI:
10.1145/773453.808188

4. Rao, T. and Nam, K.H. \Private-key algebraic-
coded cryptosystems", in Advances in Cryptology -
CRYPTO' 86, 263, (Santa Barbara, California, USA),
pp. 35{48, Springer, August (1986). DOI: 10.1007/3-
540-47721-7 3

5. Struik, R. and van Tilburg, J. \The Rao-Nam scheme
is insecure against a chosen-plaintext attack", in Ad-
vances in Cryptology - CRYPTO '87, 293, (Santa
Barbara, California, USA), pp. 445{457, Springer,
August (1987). DOI: 10.1007/3-540-48184-2 40

6. Barbero, �A.I. and Ytrehus, �. \Modi�cations of the
rao-nam cryptosystem", in Coding Theory, Cryptogra-
phy and Related Areas, (Berlin, Heidelberg), pp. 1{12,
Springer (2000). DOI: 10.1007/978-3-642-57189-3 1

7. Hooshmand, R., Eghlidos, T., and Aref, M.R. \Im-
proving the Rao-Nam secret key cryptosystem using
regular EDF-QC-LDPC codes", The ISC International
Journal of Information Security, 4(1), pp. 3{14 (2012).
DOI: 10.22042/isecure.2015.4.1.2

8. Esmaeili, M., Dakhilalian, M., and Gulliver, T.A.
\New secure channel coding scheme based on ran-
domly punctured quasi-cyclic-low density parity check
codes", IET Communications, 8(14), pp. 2556{2562
(2014). DOI: 10.1049/iet-com.2014.0101

9. Esmaeili, M. and Gulliver, T.A. \Joint channel coding-
cryptography based on random insertions and dele-
tions in quasi-cyclic-low-density parity check codes",
IET Communications, 9(12), pp. 1555{1560 (2015).
DOI: 10.1049/iet-com.2015.0026

10. Esmaeili, M. and Gulliver, T.A. \A secure code based
cryptosystem via random insertions, deletions, and
errors", IEEE Communications Letters, 20(5), pp.
870{873 (2016). DOI: 10.1109/LCOMM.2016.2540625

11. Esmaeili, M. and Gulliver, T.A. \Code-based se-
curity with random interleaving", IET Communica-
tions, 11(8), pp. 1195{1198 (2017). DOI: 10.1049/iet-
com.2016.0303

12. Lee, Y., Kim, Y.-S., and No, J.-S. \Ciphertext-
only attack on linear feedback shift register-based
Esmaeili-Gulliver cryptosystem", IEEE Communi-
cations Letters, 21(5), pp. 971{974 (2017). DOI:
10.1109/LCOMM.2017.2654238

13. Mafakheri, B., Eghlidos, T., and Pilaram, H. \An
e�cient secure channel coding scheme based on polar
codes", The ISC International Journal of Information
Security, 9(2), pp. 13{20 (2017). DOI: 10.22042/ise-
cure.2017.84609.380

14. Han, X., Chen, D., Zhang, C., et al. \Joint en-
cryption and channel coding scheme based on bal-
ancing indices and polar codes", in 2019 IEEE 19th
International Conference on Communication Tech-
nology (ICCT), pp. 276{282, October (2019). DOI:
10.1109/ICCT46805.2019.8947156

15. Stuart, C.M. and Deepthi, P. \Nonlinear cryptosystem
based on qc-ldpc codes for enhanced security and
reliability with low hardware complexity and reduced
key size", Wireless Personal Communications, 96(3),
pp. 4177{4197 (2017). DOI: 10.1007/s11277-017-4376-
z

16. Guan, W. and Liang, L. \E�cient secure channel cod-
ing based on qpp-block-ldpc codes", Wireless Personal
Communications, 98(1), pp. 1001{1014 (2018). DOI:
10.1007/s11277-017-4905-9

17. Bagheri, K., Eghlidos, T., Sadeghi, M.R., et al.
\A joint encryption, channel coding and modulation
scheme using QC-LDPC lattice-codes", IEEE Trans-
actions on Communications, 68(8), pp. 4673{4693
(2020). DOI: 10.1109/TCOMM.2020.2996781

18. Baldi, M., Chiaraluce, F., Garello, R., et al. \Quasi-
cyclic low-density parity-check codes in the mceliece
cryptosystem", in Proc. 2007 IEEE International Con-
ference on Communications, (Glasgow, UK), pp. 951{
956, June (2007). DOI: 10.1109/ICC.2007.161

19. Baldi, M. and Chiaraluce, F. \Cryptanalysis of a new
instance of McEliece cryptosystem based on QC-LDPC
codes", in Proc. 2007 IEEE International Symposium
on Information Theory, (Nice, France), pp. 2591{2595,
June (2007). DOI: 10.1109/ISIT.2007.4557609

20. Baldi, M., Bianchi, M., Maturo, N., et al. \Improv-
ing the e�ciency of the LDPC code-based McEliece
cryptosystem through irregular codes", in Proc. 2013
IEEE Symposium on Computers and Communications
(ISCC), (Split, Croatia), pp. 197{202, July (2013).
DOI: 10.1109/ISCC.2013.6754945

21. Lin, S. and Costello, D.J., Error Control Coding: Fun-
damentals and Applications., Pearson-Prentice Hall
(2004). ISBN: 0130426725

22. Ryan, W. and Lin, S., Channel Codes: Classical and
Modern. Cambridge University Press (2009). ISBN
1139483013, 9781139483018



1514 H. Khayami et al./Scientia Iranica, Transactions: D Computer Science & ... 31 (2024) 1504{1516

23. Fab�si�c, T., Hromada, V., Stankovski, P., et al. \A reac-
tion attack on the QC-LDPC McEliece cryptosystem",
in Post-Quantum Cryptography, (Cham), pp. 51{68,
Springer, June (2017). DOI: 10.1007/978-3-319-59879-
6 4

24. Ben-Israel, A. and Greville, T.N., Generalized In-
verses: Theory and Applications, 15. Springer Science
& Business Media (2003). DOI: 10.1007/b97366

25. ETSI, \Digital video broadcasting (dvb); implemen-
tation guidelines for the second generation system for
broadcasting, interactive services, news gathering and
other broadband satellite applications; part 1: Dvb-
s2" (2015).

26. IEEE, \Wireless medium access control (mac) and
physical layer (phy) speci�cations for high rate wire-
less personal area networks (wpans) amendment 2:
Millimeter-wave-based alternative physical layer ex-
tension" (2009).

27. ITU-T, \Uni�ed high-speed wireline-based home net-
working transceivers - system architecture and physical
layer speci�cation" (2015).

28. Baldi, M., Bianchi, M., and Chiaraluce, F. \Opti-
mization of the parity-check matrix density in qc-ldpc
code-based mceliece cryptosystems", in Proc. 2013
IEEE International Conference on Communications
Workshops (ICC), (Budapest, Hungary), pp. 707{711,
June (2013). DOI: 10.1109/ICCW.2013.6649325

29. Dent, A.W. \Fundamental problems in provable secu-
rity and cryptography", Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 364(1849), pp. 3215{3230
(2006). DOI: 10.1098/rsta.2006.1895

30. Bellare, M., Desai, A., Jokipii, E., et al. \A concrete
security treatment of symmetric encryption", in Proc.
38th Annual Symposium on Foundations of Computer
Science, (Miami Beach, FL, USA), pp. 394{403, IEEE,
October (1997). DOI: 10.1109/SFCS.1997.646128

31. Menezes, A. \Another look at provable security", in
Advances in Cryptology - EUROCRYPT 2012, 7237,
(Cambridge, UK), p. 8, Springer, April (2012). DOI:
10.1007/978-3-642-29011-4 2

32. Lee, P.J. and Brickell, E.F. \An observation on the
security of McEliece's public-key cryptosystem", in
Advances in Cryptology - EUROCRYPT '88, 330,
(Davos, Switzerland), pp. 275{280, Springer, May
(1988). DOI: 10.1007/3-540-45961-8 25

33. Becker, A., Joux, A., May, A., et al. \Decoding random
binary linear codes in 2 n/20: how 1 + 1 = 0 improves
information set decoding", in Advances in Cryptology
- EUROCRYPT 2012, 7237, (Cambridge, UK), pp.
520{536, Springer, April (2012). DOI: 10.1007/978-3-
642-29011-4 31

34. May, A. and Ozerov, I. \On computing nearest neigh-
bors with applications to decoding of binary lin-
ear codes", in Advances in Cryptology-EUROCRYPT
2015, 9056, (So�a, Bulgaria), pp. 203{228, April
(2015). DOI: 10.1007/978-3-662-46800-5 9

35. Berson, T.A. \Failure of the McEliece public-Key cryp-
tosystem under message-resend and related-message
attack", in Advances in Cryptology - CRYPTO `97,
1294, (Santa Barbara, California, USA), pp. 213{220,
Springer, August (1997). DOI: 10.1007/BFb0052237

36. Rao, T. and Nam, K.H. \Private-key algebraic-code
encryptions", IEEE Transactions on Information The-
ory, 35(4), pp. 829{833 (1989). DOI: 10.1109/18.32159

37. Guo, Q., Johansson, T., and Stankovski, P. \A key
recovery attack on mdpc with cca security using
decoding errors", in Advances in Cryptology - ASI-
ACRYPT 2016, 10031, (Berlin, Heidelberg), pp. 789{
815, Springer, November (2016). DOI: 10.1007/978-3-
662-53887-6 29

38. Santini, P., Baldi, M., Cancellieri, G., et al. \Hindering
reaction attacks by using monomial codes in the
mceliece cryptosystem", in 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 951{
955 (2018). DOI: 10.1109/ISIT.2018.8437553

39. Tillich, J.-P. \The decoding failure probability of mdpc
codes", in 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 941{945 (2018). DOI:
10.1109/ISIT.2018.8437843

40. Santini, P., Battaglioni, M., Baldi, M., et al. \Anal-
ysis of the error correction capability of ldpc and
mdpc codes under parallel bit-ipping decoding and
application to cryptography", IEEE Transactions on
Communications, 68(8), pp. 4648{4660 (2020). DOI:
10.1109/TCOMM.2020.2987898

41. Santini, P., Battaglioni, M., Baldi, M., et al. \Hard-
decision iterative decoding of ldpc codes with bounded
error rate", in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pp. 1{6 (2019).
DOI: 10.1109/ICC.2019.8761536

42. Santini, P., Battaglioni, M., Chiaraluce, F., et al.
\Analysis of reaction and timing attacks against
cryptosystems based on sparse parity-check codes",
in Code-Based Cryptography, (Cham), pp. 115{136,
Springer, July (2019). DOI: 10.1007/978-3-030-25922-
8 7

43. Berbain, C., Billet, O., Canteaut, A., et al. \Sose-
manuk, a fast software-oriented stream cipher", Lec-
ture Notes in Computer Science, 4986, pp. 98{118
(2008). DOI: 10.1007/978-3-540-68351-3 9

44. Sobhi Afshar, A., Eghlidos, T., and Aref, M.R. \Ef-
�cient secure channel coding based on quasi-cyclic
low-density parity-check codes", IET Communica-
tions, 3(2), pp. 279{292 (2009). DOI: 10.1049/iet-
com:20080050

45. Zhang, Z., Dolecek, L., Nikolic, B., et al. \Lowering
ldpc error oors by postprocessing", in IEEE GLOBE-
COM 2008 - 2008 IEEE Global Telecommunications
Conference, pp. 1{6 (2008). DOI: 10.1109/GLO-
COM.2008.ECP.590

46. Zhang, S. and Schlegel, C. \Controlling the er-
ror oor in ldpc decoding", IEEE Transactions on
Communications, 61(9), pp. 3566{3575 (2013). DOI:
10.1109/TCOMM.2013.071813.120659



H. Khayami et al./Scientia Iranica, Transactions: D Computer Science & ... 31 (2024) 1504{1516 1515

47. Angarita, F., Valls, J., Almenar, V., et al. \Reduced-
complexity min-sum algorithm for decoding ldpc codes
with low error-oor", IEEE Transactions on Circuits
and Systems I: Regular Papers, 61(7), pp. 2150{2158
(2014). DOI: 10.1109/TCSI.2014.2304660

48. Baldi, M., Bodrato, M., and Chiaraluce, F. \A new
analysis of the mceliece cryptosystem based on qc-
ldpc codes", Security and Cryptography for Networks,
5229, pp. 246{262 (2008). DOI: 10.1007/978-3-540-
85855-3 17

Appendix A

Finite geometry de�nitions

The de�nitions of �nite geometry in this Appendix are
generally provided from [21] and [22].

Euclidean geometry
De�nition 1 (Euclidean geometry). All m-tuples
(a0; a1; : : : ; am�1) with ai from GF (q = ps) where p is
prime and s is a natural number form a vector space.
This vector space is also known as the �nite Euclidean
geometry of dimension m over GF (q), denoted by
EG(m; q). Vector additions and scalar multiplications
of these m-tuples are conducted in GF (q).

De�nition 2 (Point). Each m-tuple a = (a0; a1; : : : ;
am�1) represents a point in EG(m; q).

De�nition 3 (Origin). The all-zero m-tuple 0 = (0;
0; : : : ; 0) is called the origin.

De�niton 4 (Line). The set of fa0 + �aj� 2 GF (q);
a 6= 0g is a line, which is composed of q points.

The number of points in EG(m; q) is equal to the
number of all m-tuples i.e., n = qm. For every two
distinct points there exists exactly one line connecting
them. The number of lines intersecting at each point
can be obtained by dividing the number of possible
second points of that line by the number of other points
in each line:

 =
qm � 1
q � 1

: (A.1)

Therefore, the number of lines in the EG(m; q) is as

follows:

J = qm�1 qm � 1
q � 1

: (A.2)

Euclidean geometry without origin
By omitting the origin and all lines intersecting at the
origin, a new geometry appears which is denoted by
EG�(m; q).

If � is primitive in GF (qm), then �i for 0 � i �
qm � 2 represents the elements of GF (qm). So the
incident vector of line F is as given below:

VF = (v0; v1; : : : ; vqm�2); (A.3)

where, vi = 1 if the line F intersects at point �i,
otherwise vi = 0.

In this geometry, a circularly shifted incident
vector of a line is an incident vector for another
line [22]. This property partitions the set of all lines,
Jo, into Nc;EG� cyclic classes:

Nc;EG� =
Jo
n

=
qm�1 � 1
q � 1

: (A.4)

These cyclic classes enable us to generate circulant
blocks for parity-check matrices of QC-LDPC codes.
All the necessary information of Euclidean geometry is
summarized in Table A.1.

Projective geometry
Consider the Galois �eld GF (qm+1) and �, a primitive
element in this �eld. So �0; �1; : : : ; �q

m+1�2 constitute
all non-zero elements of GF (qm+1). Let n = qm+1�1

q�1
and � = �n. Therefore the order of � is q � 1.
Now, 0; �0; �1; :::; �q�2 form the elements of GF (q).
Considering the de�nition of � and �, all non-zero
elements of GF (qm+1) could be partitioned into n
disjoint subsets as shown below:

(�0) , f�0; ��0; �2�0; : : : ; �q�2�0g

(�1) , f�1; ��1; �2�1; : : : ; �q�2�1g

...

(�n�1) , f�n�1; ��n�1; �2�n�1; : : : ; �q�2�n�1g (A.5)

Table A.1. Parameters of the euclidean geometry.

Parameters EG(m; q) EG�(m; q)
Field GF (q) GF (q)

Dimension m m
No. of points n = qm n = qm � 1
No. of lines J = qm�1 qm�1

q�1 Jo = (qm�1�1)(qm�1)
q�1

No. of points in each line � = q � = q
No. of lines intersecting at each point  = qm�1

q�1  = qm�1
q�1 � 1

No. of cyclic classes { Nc;EG� = Jo
n = qm�1�1

q�1
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Table A.2. Parameters of the projective geometry.

Parameters Value

Field GF (q)
Dimension m

No. of �eld's elements that consist each point q � 1
No. of points n = qm+1�1

q�1

No. of lines J = n
� = (qm+1�1)(qm�1)

(q�1)(q�1)(q+1)

No. of points in each line � = q + 1
No. of lines intersecting at each point  = qm�1

q�1

No. of cyclic classes (even m) Nc;even = qm�1
q2�1

No. of cyclic classes (odd m) Nc;odd = q(qm�1�1)
q2�1

Each of the above subsets represents a distinct point
in projective geometry, denoted by PG(m; q). In this
geometry, each line consists of q + 1 points, formed by
linear combination of two distinct �j1 and �j2 points:

(�1�j1 + �2�j2); �i 2 GF (q): (A.6)

The number of lines intersecting at every particular
point is  = n�1

q = qm�1
q�1 , which is obtained by dividing

the remaining number of points chosen as the second
point of line (= n � 1) by the number of other points
in each line (= q).

Let F = (�1�j1 + �2�j2); �i 2 GF (q) be a line in
PG(m; q), then for all 0 � i < n, �iF is also a line in
PG(m; q). The �iF is called the ith circular shift of
line F .

If m is even, all lines in PG(m; q) have primitive
incident vector and partitioned into Nc;even = qm�1

q2�1
cyclic classes, where each cyclic class consists of n lines.
If m is odd, only J0 lines of PG(m; q) have primitive
incident vector [22]:

Jo =
q(qm+1 � 1)(qm�1 � 1)

(q2 � 1)(q � 1)
: (A.7)

These incident vectors are partitioned intoNc;odd cyclic
classes:

Nc;odd =
q(qm�1 � 1)

(q2 � 1)
: (A.8)

Table A.2 summarizes necessary information of the
projective geometry.

In �nite geometry, since there is exactly one line
connecting two distinct points, no two incident vectors
have more than one non-zero elements in the same
location. As a result of this property, the girth of QC-
LDPC codes based on �nite geometry is at least 6.

Biographies

Hossein Khayami received his BSc degree in Electri-
cal Engineering - Telecommunications from University
of Tehran, in 2013, and the MSc degree in Electrical
Engineering-Communications from Sharif University of
Technology, in 2015. His research interests include
wireless communications, Internet of Things, coding
theory and its application in distributed computing.

Taraneh Eghlidos received her BSc degree in mathe-
matics from the University of Shahid Beheshti, Tehran,
Iran, in 1986, and the MSc degree in industrial
mathematics from the University of Kaiserslautern,
Germany, in 1991. She received her PhD degree in
mathematics from the University of Giessen, Germany,
in 2000. She joined the Sharif University of Technology
(SUT) in 2002, as the faculty member, and is currently
an Associate Professor with the Electronics Research
Institute at SUT. Her research interests include in-
terdisciplinary research areas, such as symmetric and
asymmetric cryptography, applications of coding the-
ory in cryptography, and mathematical modeling for
representing and solving real world problems. Her
current �elds of research include lattice-based and
code-based cryptography.

Mohammad Reza Aref received the BSc degree
from School of Electrical and Computer Engineering,
University of Tehran, in 1975. The MSc and PhD
degrees from Stanford University, Stanford, CA, USA,
in 1976 and 1980, respectively. He was the Faculty
member of Isfahan University of Technology from 1982
to 1997. Since 1997, he is the Professor of Electrical
Engineering at Sharif University of Technology. He has
published 470 technical papers in the �eld of Commu-
nication and Information Theory and Cryptography in
international journals and conferences proceedings.


