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Earthquakes pose a constant threat to human communities. A key step in improving preparedness against 
such disasters is to determine the optimal location of Temporary Emergency Stations (TESs) and allocate 
them to affected areas. Decisions in the preparedness phase ensure optimal performance by TESs and 
minimize potential delays in rescue operations. During crises, TESs have a significant role in minimizing 
human causalities. In this research, a robust simulation-optimization approach is proposed to ensure 
appropriate planning in the preparedness phase. We develop a mathematical model for simultaneous and 
hierarchical location-allocation of the injured to the available medical facilities under disaster conditions. 
Since natural disasters are inherently unpredictable, the uncertainty of the data should inevitably be taken 
into account. We thus employ a Robust Optimization (RO) technique to tackle the uncertainty in the 
number of the injured and use simulation to create the first seven days of the crisis and determine the 
optimal capacities of medical facilities. The findings indicate that by eliminating the unnecessary 
transfer of mildly-injured victims to high-level medical facilities, the model causes a 15% reduction in 
treatment costs. 

1. Introduction
Natural disasters such as earthquakes, floods, landslides, 
volcanic eruptions, tsunami, etc. injure and kill thousands 
of humans each year and cause significant asset and 
habitat destruction [1]. Since the 1950s, the number and 
scope of disasters have been consistently on the rise. In 
particular, since the 1990s, an average of 235 million 
individuals per year have fallen victim to disasters. In 
2014, 324 natural disasters were recorded worldwide, 
incurring a total of $99.2 billion in damages [2]. 
According to statistics from the International Disasters 
Database, Americas and Asia have dealt with the most 
intense earthquakes, landslides, floods, and typhoons in 
recent decades [3]. 

One of governments' most serious concerns is the 
increasing frequency of natural disasters and these 
underlines the necessity of enhancing nations' ability to 
withstand destructive events [4]. Since it is only a matter of 
time before the occurrence of the next natural disaster, 
governments and communities should have the necessary 
plans and measures firmly in place to minimize the potential 
destruction and casualties [5]. Proper planning and public 
awareness are widely believed to be effective at minimizing 
the scope of casualties and lost assets, which is essentially 
the central objective of response and rescue operations [6].  

Given the increasing frequency of the disasters, 
researchers have recognized a vital need to efficiently assist 
the affected populations by placing greater emphasis on the 
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theory and practice of Disaster Management (DM) [7]. Since 
Emergency Medical Services (EMS) are in high demand in 
times of disaster, DM is classified into four stages to 
minimize the shock and prevent a state of chaos: mitigation, 
preparedness, response, and recovery. The first two phases 
are carried out pre-disaster, while the other two are reactive 
and conducted post-disaster [8]. In this regard, Rebeeh et al. 
[9] addressed DM theory and performance in industrial 
cities. The research encompasses all the stages of DM, with 
particular focus on modeling, support systems, resources, 
and facilities.  

In the post-disaster phase, the existing hospitals and 
clinics cannot be expected to serve all the injured victims due 
to various technical difficulties and the overwhelming 
number of casualties [10]. Therefore, anticipating disasters 
and planning Temporary Emergency Station (TESs) in 
appropriate locations in disaster-prone cities could 
significantly mitigate the shortage of medical facilities.  

The purpose of Emergency Facility-Location (EFL) 
problems is to determine the optimal geographical location 
of new facilities to provide various emergency services to the 
affected populations in the aftermath of a disaster. Location-
allocation problems are classified into two broad categories: 
regular and hierarchical. In systems with hierarchical 
facilities, there are multiple service levels available to the 
injured [11]. 

Since there is strong uncertainty in crisis situations, the 
model's uncertain parameters are analyzed through 
techniques of coping with uncertainty. Studies on healthcare 
systems often deal with many types of uncertain data, 
factors, and parameters. Stochastic programming, Robust 
Optimization (RO), and simulation software have been some 
of the most widely-used tools by researchers to address and 
counter uncertainty. Ahmadi-Javid et al. [12] reviewed 220 
research papers on this subject and concluded that few 
studies had worked on the uncertainty faced by temporary 
medical centers.  

Iran is located on one of the most active seismic belts in 
the world, with numerous faults identified across the country. 
Consequently, earthquakes are a real possibility in the 
country. There are four major faults in Tehran which are 
feared to activate. Ahmadzadeh et al. [13] assessed the 
response to the 2017 Kermanshah earthquake, the most 
recent major earthquake in Iran. 

Given the necessity of pre-disaster planning, we propose 
a network of emergency healthcare facilities with 
hierarchical allocation. We first develop a robust bi-objective 
optimization model to determine the locations of TESs and 
allocate the injured to the nearest TES. In the second phase, 
the simulation model incorporates the uncertainty in the 
response and rescue operation, treatment of the injured, and 
accessibility of TESs. The model mainly simulates the 
behavior of the injured and the congestion forming in 
hospitals after an earthquake and helps determine the optimal 
capacity of the three types of medical facilities in the 
hierarchical structure. Both the mathematical and simulation 
models minimize the distance traveled and the cost of 
establishing TESs. 

The contributions of this study to the literature are as follows: 

• Location and allocation are done simultaneously;
• Demand is the key parameter in the mathematical

model which is solved using RO;
• A hybrid model (mathematical + simulation) is

developed;
• The mathematical model features both direct and

hierarchical allocation strategies;
• The model incorporates  urban infrastructure

parameters such as the Richter scale, urban quality
building coefficient urban areas, etc.;

• Preparing backup TESs.

The remainder of this paper is organized as follows: Section 
2 reviews the literature on EFL models. Section 3 presents 
the modeling assumptions and mathematical programming 
formulas. Section 4 introduces the solution method to 
determine the optimal locations and allocations using RO 
optimization and describes the process of simulating the 
onset of an earthquake. The computational results are 
detailed in Section 5. Finally, Section 6 includes a brief 
conclusion and a number of recommendations for future 
research. 

2. Literature review
Selecting suitable locations for emergency facilities can 
increase the speed and efficiency of relief efforts and 
accelerate the response to disasters. EFL is considered a 
strategic decision. Prior research has often addressed 
deterministic and stochastic problems [14]. Most studies on 
deterministic problems have aimed to minimize transport 
costs, facility construction, and relief supply storage. In case 
of a crisis, the demand for medical assistance, casualties, 
response time, and scope of asset losses are uncertain [15]. 
Logistical strategies are various but all have the same 
objectives: maximizing coverage, minimizing the distance 
between affected areas and treatment centers, and selecting 
the most appropriate locations, all of which affect the process 
of identifying and prioritizing the decision criteria [16]. 
2.1. Relief logistic networks and emergency facility 

location 
In the case of relief logistics networks, Beikia et al. [17] 
investigated an inverse logistical programming problem 
involving the response, recovery, and reconstruction phases 
after an earthquake using a case study. Ghasemi et al. [18] 
proposed a multi-objective stochastic programming model 
for evacuation and logistical supply distribution following an 
earthquake. Stage 1 decisions in the model concern the post-
disaster phase, including the location of relief distribution 
centers and the quantity of stored relief supplies. Stage 2 
decisions determine the optimal location of Travel 
Management Companies (TMCs) such that the process of 
treating the casualties and relief distribution is accelerated. 
Li et al. [19] examined the demand uncertainty caused by 
major disasters, proposing a cooperative maximal covering 
model and pointing to financial productivity and coverage of 
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appeal as the criteria according to which humanitarian 
logistics performance should be evaluated.  Khorsi et al. [20] 
worked on operational and logistical decisions in relief 
operations, including planning, routing, and resource 
allocation, using the ε-constraint and rolling horizon 
algorithms. Safaei et al. [21] developed an optimization 
model for logistical relief operations under disaster 
conditions by defining two sets of upper-echelon and lower-
echelon objectives. Boonmee and Kasemset [22] addressed 
the location, inventory, and distribution of relief supplies 
during a crisis and developed a fuzzy model to minimize the 
response time and budget, and to determine storage 
locations, maximum stock in each storage, distribution 
management, and inventory holding. Fazli-Khalaf et al. [23] 
developed a multi-objective model to design an emergency 
Blood Supply Chain (BSC) in the aftermath of a disaster with 
the goal of minimizing Supply Chain (SC) costs and delivery 
times between the facilities, as well as to maximize the 
reliability of lab tests performed on the blood received from 
donors. Due to the uncertainty of some input variables, two 
variations of the robust possibilistic ε-constraint method 
were used to solve the model. Naghipour and Bashiri [24] 
dealt with an emergency BSC with the goal of minimizing 
total SC cost in disaster situations and considered donors, 
blood transfusion centers, hospitals, and casualties, 
simultaneously. 

Li et al. [25] reviewed the literature on facility-location 
and planning in emergency response with the emphasis on 
optimization methods and models. Liu et al. [26] developed 
a bi-objective mathematical model to maximize the projected 
survival rate, define a medical service allocation plan, and 
locating temporary medical centers by minimizing the 
operational costs of deploying ambulances and helicopters. 
Kumar et al. [27] developed a model to maximize demand 
coverage, paying attention to urban space details, urban 
infrastructure, and social elements such as internal 
compactness. Memari et al. [28] developed model for 
location-allocation of ambulances and helicopters with 
multiple paramedics. The first Objective Function (OF) 
minimized the costs of EMC response and the second OF 
minimized the treatment time of the injured. Baharmand et 
al. [29] proposed a multi-layer bi-objective location-
allocation model for the consequences of natural disasters 
and solve the model following the AUGMECON2 algorithm. 
Chen et al. [30] designed a two-level programming model 
with multiple warehouses and damaged structures.  Level 1 
involves distribution and Level 2 focuses on repairing 
damaged roads. Verma and Gaukler [31] assessed a 
deterministic and a stochastic model to determine secure 
locations for emergency facilities.  
2.2. Facility location models considering uncertainty 
A common technique of tackling uncertainty, also adopted in 
our model, is RO [32]. The approach is especially effective 
when there is insufficient information on probability 
distributions [33]. Given the uncertainty of DM, researchers 
have worked extensively on EFL. Alinaghian et al. [34] 
developed a robust mathematical model for location-
allocation of medical facilities under normal and crisis 

conditions. The authors used the harmony search algorithm, 
tabu search technique, variable neighborhood search, and a 
lower bound to solve the problem using the Lagrangian 
method. Mamashli et al. [35] proposed an uncertain model 
for post-disaster conditions to minimize the cost, adverse 
social impact, environmental damage, and transportation 
risks, while maximizing the logistical system. Yu [36] 
developed a two-stage pre-disaster location model to 
improve preparedness. First, the warehouses are located and 
the emergency supplies are stored, then a robust stochastic 
optimization technique is employed to cope with the 
randomness of disaster-stricken areas and the disaster's 
severity. Tirkolaee et al. [37] proposed a robust mixed-
integer linear model for allocation and scheduling of rescue 
units to minimize the weighted time of completing the 
emergency response operation and tardiness. Du et al. [38] 
introduced a three-stage mixed-integer linear optimization 
model to solve a Humanitarian Emergency Logistics (HEL) 
problem. The service levels increased over the three stages, 
with one rising from 88.53% to 96.44%. 

Now, let us examine the applications of simulation in 
EFL and health network design. As a principle, longer 
waiting times in the emergency ward lowers the service level 
to patients, causes dissatisfaction, and in some cases, 
increases the mortality rate. Sepehri et al. [45] developed a 
simulation model with two scenarios to simulate the 
emergency ward during a disaster. Sajadi et al. [46] proposed 

Sun et al. [39] developed a RO model to combine facility-
location and the transfer of the injured. Finally, a RO 
approach was adopted to counter uncertainty and create the 
robust equivalent of the proposed model. Ramezanian and 
Ghorbani [40] proposed a two-stage stochastic model to 
assist pre- and post-disaster decisions regarding the 
distribution of relief supplies to survivors. The model 
consisted of a scenario-based RO approach to cope with 
demand uncertainty. Eshghi et al. [41] worked on a robust 
location-allocation and emergency response problem 
following a disaster, developing a mixed-integer nonlinear 
programming model to maximize equity and minimize total 
logistics costs. Sotoudeh-Anvari et al. [42] developed a 
stochastic model to allocate resources and search for people 
lost in disaster-stricken areas. A dynamic stochastic 
programming approach was employed to solve the problem. 
Velasquez et al. [43] proposed a two-stage stochastic 
optimization model to preposition relief supplies. First, the 
location and quantity of pre-disaster relief supplies are 
determined. Next, some emergency equipment is procured 
and distributed in the affected areas. Lastly, Makui et al. [44] 
produced a multi-objective model considering uncertainty in 
the number of casualties and transfer of the injured to 
healthcare facilities; a single-objective linear mathematical 
model for allocation and distribution of medical equipment 
from suppliers to healthcare facilities under emergency; and 
a hybrid two-stage model to minimize the total relief and 
rescue time and total cost, and maximize the extent to which 
the severity of injuries matched the specialty level of 
healthcare facilities.  
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Figure 1. Dispersion of urban districts, TESs, clinics and hospitals. 

Table 1. Population of urban districts. 
Urban districts  Urban population Areas Damage coefficient  Hospitals       Clinics TESs 

Northern 20000 12 0.01 1 3 4 
Central 40000 7 0.04 1 1 5 

Southern 60000 11 0.08 1 2 6 

a simulation-optimization algorithm to schedule the working 
hours of emergency ward nurses to reduce waiting times and 
increase overall satisfaction with the medical service in 
disaster conditions. Salehi et al. [47] developed a two-stage 
stochastic model to simulate the BSC in case of a possible 
earthquake in Tehran. The model was evaluated by Monte 
Carlo simulations. Gul et al. [48] proposed an integrated 
framework of artificial neural networks in five districts of 
Istanbul and used discrete-event simulation to enhance 
earthquake preparedness and estimate the number of 
casualties in emergency wards. Kamali et al. [49] minimized 
the response time to emergency requests by integrating 
optimization and simulation techniques, identifying several 
locations as suitable for setting up TESs based on indicators 
such as each district's population density and number of calls 
requesting assistance. Karatas and Yakıcı [50] investigated 
the effects of backup service level, demand assignment 
policy, demand density, number of facilities, and locations 
on the solution's performance, employing discrete-event 
simulation to assess the performance of the layout obtained 
from the deterministic model.  

3. Problem definition and formulation
This study focuses on designing a hierarchical network of 
healthcare facilities that gets activated in case of a disaster. 

The goal is to minimize the distance traveled to transfer the 
injured to TESs and the total cost. A key aspect of this 
network is determining the optimal locations of TESs to 
minimize the post-disaster congestion at higher-level 
medical facilities i.e., clinics and hospitals. Figure 1 
illustrates the structure of the research. 
      The diagram shows 30 urban districts. In calculating the 
distances between the areas, we use the center of each 
district. In our model, the intensity of the hypothetical 
earthquake is the same in all districts. Table 1 details the data. 

3.1. Assumptions 

The proposed model's underlying assumptions are as 
follows: 

• The injured are classified based on triage assessment
into three groups of mildly-, moderately-, and
severely-injured victims;

• All victims are immediately transferred to the
nearest TES first;

• Depending on the severity of the injury and distance
to the nearest healthcare facility, some victims may
be directly transferred to a clinic or hospital;

• Severely-injured victims are transferred directly to
hospital;
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• A number of schools, mosques, and squares are
selected as candidate locations to establish TESs;

• Three factors were considered in selecting the
locations of TESs: resistance to potential damages,
safe distance from potentially hazardous facilities,
and adequate accessibility for vehicles.

In this subsection, we define the terms used in the 
mathematical model. 

3.2. Sets and indices 

Areas 𝑖𝑖 

TESs 𝑒𝑒

Clinics 𝑐𝑐 

Hospitals ℎ 

Triage 𝑇𝑇(𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3) 

3.3. Parameter 

Distance between clinic c and hospital h 𝑑𝑑𝑐𝑐ℎ 

Distance between TESs e and clinic c 𝑑𝑑𝑒𝑒𝑐𝑐  

Distance between areas i and TESs e 𝑑𝑑𝑖𝑖𝑒𝑒  

Set up cost TESs e    𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡𝑒𝑒 

The total budget for the construction of a TESs 𝐵𝐵 

Population of urban areas i   𝑃𝑃𝑖𝑖  

Damage coefficient of urban infrastructure i 𝛼𝛼𝑖𝑖 

Emergency severity coefficient 𝑟𝑟 

Urban quality building coefficient urban areas i 𝑆𝑆𝑖𝑖 

Percentage of emergency severity index t in urban 
areas i𝑇𝑇𝑖𝑖𝑖𝑖  

The number of casualties in urban areas i in with 
emergency severity index t level 

𝑃𝑃𝑖𝑖𝑖𝑖  

Capacity of hospital h 𝑐𝑐𝑐𝑐𝑝𝑝ℎ 

Capacity of TESs e 𝑐𝑐𝑐𝑐𝑝𝑝𝑒𝑒 

Capacity of clinic c 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐 

A very big number 𝑀𝑀 

The percent of casualties referred to clinic c need 
more hospital-level services 

𝛽𝛽𝐶𝐶  

The percent of casualties referred to TESs e need 
more hospital-level services 

𝛽𝛽𝑒𝑒 

The average cost of treatment for each casualty in 
the hospital h 

𝐴𝐴𝐶𝐶ℎ 

The average cost of treatment for each casualty in 
the clinic c 

𝐴𝐴𝐶𝐶𝑐𝑐 

The average cost of treatment for each casualty in 
the TESs e 

𝐴𝐴𝐶𝐶𝑒𝑒 

3.4. Variables
1, If the TESs is activated; and 0, otherwise 𝑐𝑐𝑒𝑒 

1, If the of casualties in urban area i with grade t 
severity index, first taken to e, then to c, and then 
to h; and 0, otherwise 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ 

1, If the of casualties in urban area i with grade t 
severity index, are transferred to e; and 0, 
otherwise 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒  

1, If the of casualties in urban area i with grade t 
severity index, are transferred to e then to c; and 
0, otherwise 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐  

The number of casualties in urban area i with 
grade t severity index, are transferred to e 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 

The number of casualties in urban area i with 
grade t severity index, are transferred to e then to 
c 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐  

The number of casualties in urban area i with 
grade t severity index, are transferred to e then to 
c and then to h 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒ℎ 

The number of casualties in urban area i with 
grade t severity index, are transferred direct to c 

𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 

The number of casualties in urban area i with 
grade t severity index, are transferred direct to h 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒ℎ 

The number of casualties from the urban area i 
with the severity of index t have referred to the 
TESs e and are calling for services at the clinic 
level 

𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒  

The number of casualties from the urban area i 
with the severity of index t have referred to the 
TESs e and are calling for services at the hospital 
level 

𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 

The number of casualties in urban district i with emergency 
severity index t level who have been affected by the Richter 
scale (𝑟𝑟), considering the damage coefficient of urban 
infrastructure i (𝛼𝛼𝑖𝑖) and urban quality building coefficient 
urban areas i (𝑆𝑆𝑖𝑖) is obtained as follows: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖 × 𝛼𝛼𝑖𝑖 × 𝑟𝑟 × (1 − 𝑆𝑆𝑖𝑖) × 𝑇𝑇𝑖𝑖𝑖𝑖 , 

0 ≤ 𝑆𝑆𝑖𝑖 ≤ 1, 0 ≤ 𝑟𝑟 ≤ 1 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 1 . (1) 

3.5. Mathematical model 
Eq. (2) is shown in Box Ⅰ. 

∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 + ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 + ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎℎ = 𝑃𝑃𝑖𝑖𝑖𝑖 , ∀𝑖𝑖, 𝑡𝑡,               (3) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 × 𝛽𝛽𝑒𝑒 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒,  (4) 

�𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐
𝑐𝑐

= 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒,  (5) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 × 𝛽𝛽𝑐𝑐 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐,  (6) 

�𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ = 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐
ℎ

, ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐,  (7) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 ≤ 𝑀𝑀 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒,  (8) 
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min𝑍𝑍1 = �����𝑑𝑑𝑐𝑐ℎ × 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ
ℎ𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖

+ ����𝑑𝑑𝑒𝑒𝑐𝑐 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐
𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖

+ ���𝑑𝑑𝑖𝑖𝑒𝑒 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒
𝑒𝑒𝑖𝑖𝑖𝑖

+ ���𝑑𝑑𝑖𝑖𝑐𝑐 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐
𝑐𝑐𝑖𝑖𝑖𝑖

 

 +���𝑑𝑑𝑖𝑖ℎ × 𝑦𝑦𝑖𝑖𝑖𝑖ℎ
ℎ𝑖𝑖𝑖𝑖

, 

min𝑍𝑍2 = �𝑐𝑐𝑜𝑜𝑜𝑜 𝑡𝑡𝑒𝑒 × 𝑐𝑐𝑒𝑒
𝑎𝑎

+ �����𝐴𝐴𝐶𝐶ℎ
ℎ𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖

× 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ + ����𝐴𝐴𝐶𝐶𝑐𝑐 ×
𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐  

 +���𝐴𝐴𝐶𝐶𝑒𝑒 × 𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 + ���𝐴𝐴𝐶𝐶𝑐𝑐
𝑐𝑐𝑖𝑖𝑖𝑖

× 𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 + ���𝐴𝐴𝐶𝐶ℎ
ℎ𝑖𝑖𝑖𝑖

× 𝑦𝑦𝑖𝑖𝑖𝑖ℎ
𝑒𝑒𝑖𝑖𝑖𝑖

, (2) 

Box Ⅰ. 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 ≥ 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒,  (9) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 ≤ 𝑀𝑀 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐,  (10) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 ≥ 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐,  (11) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ ≤ 𝑀𝑀 × 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐, ℎ,  (12) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ ≥ 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ ,      ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐, ℎ,  (13) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐,  (14) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ ≤ 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒, 𝑐𝑐, ℎ,  (15) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒 ≤ 𝑐𝑐𝑒𝑒 , ∀𝑖𝑖, 𝑡𝑡, 𝑒𝑒,  (16) 

����𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ
𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖

+ ��𝑦𝑦𝑖𝑖𝑖𝑖ℎ
𝑖𝑖𝑖𝑖

≤ 𝐶𝐶𝑐𝑐𝑝𝑝ℎ , ∀ℎ,    (17) 

���𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐
𝑒𝑒𝑖𝑖𝑖𝑖

+ ��𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖𝑖𝑖

≤ 𝐶𝐶𝑐𝑐𝑝𝑝𝑐𝑐 , ∀𝑐𝑐,  (18) 

��𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒
𝑖𝑖𝑖𝑖

≤ 𝐶𝐶𝑐𝑐𝑝𝑝𝑒𝑒 , ∀𝑒𝑒,  (19) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ ,𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 ,𝑦𝑦𝑖𝑖𝑖𝑖ℎ ,𝐷𝐷𝑖𝑖𝑒𝑒𝑐𝑐 ,𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 ≥ 0,  (20) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐ℎ , 𝑐𝑐𝑒𝑒 ∈ {0,1}.  (21) 

Eq. (2) expresses the OFs of the problem. OF 1 (Z1) 
states the distance traveled to transport the injured from 
disaster-stricken areas to TESs in the proposed hierarchical 
structure, and then from TESs to hospitals and/or clinics. The 
fourth and fifth expressions define the distance traveled to 
directly transfer some of the injured to hospitals and/or 
clinics in case the victims are either critically injured or very 
close to said healthcare facilities. Eq. (1) in OF 2 (Z2) 
addresses the costs of establishing TESs and Eqs. (2)-(6) set 
the costs treating the injured. Specifically, Eqs. (2)-(4) 
address the costs of treating the injured individuals whom get 
transferred first to TESs and then to healthcare facilities, 
while Eqs. (5) and (6) involve victims whom get directly 
transferred from the affected areas to hospitals or clinics. 

Eq. (3)  ensures all the injured individuals in the affected 
areas are transferred to a TES, clinic or hospital, and no 
victim remains unattended. Eq. (4) expresses that a number 
of injured individuals visiting TESs are in such serious 
conditions that it is vital to transfer them to a clinic or 

hospital immediately. Variable 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 is defined for such 
situations. Hence, (1 − 𝛽𝛽𝑒𝑒) refers to injured individuals who 
receive treatment at a TES and do not need to be transferred 
to a clinic or hospital. Eq. (5) compels the model to respond 
to all the victims 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒  who attend TESs and need higher-level 
medical attention, ensuring their immediate transfer to an 
available clinic. 

Eq. (6) is the same as Eq. (5), except those hospitals 
replace the clinics. Thus, (1 − 𝛽𝛽𝑐𝑐) represents injured victims 
who receive treatment in a clinic and get discharged. Eq. (7) 
allocates the victims discharged from clinics to the available 
hospitals 𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐. Eqs.  (8) and (9) determine the link between 
the positive variable a and binary variable b in a way that 
when any value is assigned to variable a, variable b equals 1; 
otherwise, 0. Eqs. (10)-(13) determine the interaction of 
binary and positive variables.  

Eqs. (14) and (15) connect variable a and variable b to 
make sure that the hierarchical structure of the problem 
remains intact. Eq. (16) expresses that when a value is 
assigned to variable a, the TES is operational and the OF 
takes its establishment cost into account. Eqs. (17)-(19) 
determine each TESs capacity. Eqs. (20) and (21) define the 
type of each variable. 

4. Solution approach

The solution approach in this paper proceeds over two steps. 
First, demand uncertainty for injured victims who should be 
transferred from TESs to a clinic and hospital during the 
crisis is obtained by RO. In the second step, the simulation 
model is used for the other uncertain  parameters, including 
the rescue operation, treatment and transfer of the injured, 
availability of TESs and optimal capacity of the healthcare 
facilities. 

4.1. RO model 
RO is one of several techniques of dealing with uncertainty. 
RO searches for near-optimal solutions to maintain their 
feasibility. Bertsimas and Sim [51] introduced an efficient 
approach based on linear distance to control the level of 
conservatism in solutions under uncertainty. The model 
proposed in this research is developed based on Bertsimas 
and Sim's approach with the objective of coping with 
demand uncertainty. In this study, only parameter 𝑃𝑃𝑖𝑖𝑖𝑖  is 
considered uncertain. As a result, only constraint 3 in the 
mathematical model is formulated using Bertsimas and Sim's 
approach. The mathematical model obtained here is a mixed-
integer linear programming model. 
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Robustness variables: 

𝑍𝑍𝑖𝑖𝑖𝑖 
𝑟𝑟𝑖𝑖𝑖𝑖  

Modified variables: 

�𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒
𝑒𝑒

+ �𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐
𝑐𝑐

+ �𝑦𝑦𝑖𝑖𝑖𝑖ℎ
ℎ

≥ 𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑖𝑖 + 𝛤𝛤𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖,∀𝑖𝑖, 𝑡𝑡, 
(22) 

𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑃𝑃𝑖𝑖𝑖𝑖 ,∀𝑖𝑖, 𝑡𝑡, (23) 

𝑍𝑍𝑖𝑖𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 0. (24) 

4.2. Simulation model 

We use Arena v14 to perform the simulations. In this section, 
we use simulation to describe the behavior of the injured and 
the system's performance in case of a disaster. The 
simulation model considers uncertainty in three areas: 
response and rescue operation, treatment and transfer of the 
injured, and availability of TESs. The other objective of the 
model is to determine the optimal capacity of each healthcare 
facility in the three-layer hierarchical structure. 

The simulation model aims to reduce the cost of 
providing hospital beds and the injured victims' waiting 
times. Lastly, the simulation model only covers the first 7 
days (168 hr) of the crisis. In the second part, the 
optimization-based simulation is performed with to 
determine the optimal capacity of the service provided to the 
injured in a hypothetical crisis to achieve maximum 
coverage in the targeted districts. In this section, the cost is 
optimized and the average waiting time is minimized. Thus, 
we use OptQuest to test various time and cost combinations. 

5. Computational results
In this section, the validity of the main model is examined 
through some numerical examples. After solving the model 
using RO in the modeling software General Algebraic 
Modeling System (GAMS) v24., the pareto-optimal solution 

obtained per each protection level (ta = 0, 1, 2, 3) based on 
Table 2 are reported in Figure 2. Higher values of the 
protection level (an uncertain parameter) indicate a more 
pessimistic state and thereby a higher cost of establishing 
TESs.  

In this study, the protection level is realistic (ta=0). Thus, 
the most suitable candidate locations were selected for the 
establishment of TESs, with five stations remaining inactive 
on stand-by mode. Next, the structure for the allocation and 
transfer of the injured, both directly and hierarchically, from 
the 30 urban districts to the designated healthcare facilities 
was determined.  

The allocation method adopted in the rest of the urban 
districts are detailed in Figure 3. 

The values of the OF obtained from solving the first 
phase of the simulation model are listed in Table 3. As can 
be seen, the estimated interval for the average OF is 
[559303 ± 2567] i.e., [556736 , 561870]. The OF is equal 
to the weighted sum of the costs of establishing TESs, 
treatment costs, and waiting times. The results of the 
optimization model, obtained from Opt Quest, are as follows 
in Figure 4.  

The optimal value of the OF is reported in Table 4. The 
results indicate that the OF has improved by 35%. 

Figure 2. Pareto diagram of solutions. 

Table 2. Solutions obtained from RO. 
Z1 Z2 

ta=0 ta=1 ta=2 ta=3 ta=0 ta=1 ta=2 ta=3 
23205 25765 28712 30854 1195324 1317642 1437095 1557117 
23396 26581 28209 31386 1180000 1300670 1416246 1537310 
23941 27001 28825 31732 1140000 1254168 1369783 1487162 
24887 27985 29954 32813 1120000 1238885 1349207 1459512 
25438 28706 30753 33116 1100000 1217393 1322303 1437898 
25872 29200 31058 33866 1080000 1196281 1301132 1409562 
26003 29594 31761 34254 1060000 1170399 1275854 1381292 
26295 29827 32118 34984 1040000 1144666 1249091 1357565 
26972 29765 32556 35483 1020000 1128355 1230442 1334720 
27375 30925 33743 35727 1000000 1104275 1202286 1305762 
28484 31964 34679 37151 980000 1079770 1181631 1283076 
28850 32274 35429 37727 975000 1080179 1173714 1275669 
32420 36503 39089 42229 960000 1057909 1159480 1251976 
32820 36620 40184 43258 940000 1034841 1131588 1231075 
33220 37462 40670 44085 920000 1012499 1106899 1198965 
34260 38620 41474 45371 900000 990814 1088661 1179876 
35460 39927 42824 46400 880000 976083 1065316 1147664 
36660 40730 44214 47678 860000 950007 1041826 1121336 
37860 41769 46301 50157 840000 933228 1011902 1092657 
39100 43401 47025 51107 820000 906022 988331 1071295 
41100 45904 50110 54213 800000 885977 968841 1042310 
43100 47550 52503 57023 780000 859928 942074 1014674 
45100 50220 55065 58637 760000 840782 915853 988921 
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Table 3. Value of the OF in simulation.   
Expression Average Half width Minimum average Maximum average Minimum value Maximum value 

(OF) 559303.34 2567.16 555479.93 565945.54 555479.93 565945.54 

Table 4. Value of the OF after optimization by OptQuest. 
Expression Average Half width Minimum average Maximum average Minimum value Maximum value 

)OF( 534125.71 2500.48 526941.42 537054.89 526941.42 537054.89 

Figure 3. Allocation of urban districts to TESs, clinics and hospitals. 

In the end, the optimal capacities of TESs are obtained using 
simulation-based optimization. The results reveal a 15% 
reduction in costs because the injured individuals whom can 
be treated in lower-level healthcare facilities are no longer 
unnecessarily transferred to higher-level, overqualified 
healthcare facilities. Table 5 compares the values of the OF 
before and after optimization. 

Table 5. Comparison of pre-and post-optimization values of the 
OF. 
Value of OFs before optimization [556736,561870] 
Optimal capacity of healthcare facilities 783293 
Value of OFs after optimization [531625,536625] 
Optimal capacity of healthcare facilities 532880 Figure 4. Reduction in value of the OF in simulation-based 

optimization. 
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6. Conclusion and future research
In this study, we proposed an integrated Disaster 
Management (DM) model that is a combination of a 
mathematical programming model and a simulation-based 
optimization model. We first investigated the location-
allocation of Temporary Emergency Stations (TESs) to 
minimize the total cost and distance traveled. In the 
mathematical model, the injured victims are transferred to 
healthcare facilities both hierarchically (first to TESs, then to 
clinics or hospitals if necessary) and directly (to clinics or 
hospitals). Because of the uncertainty in the number of 
disaster-stricken people, we also solved the mathematical 
model using Robust Optimization (RO) in order to obtain 
pareto-optimal solutions. In the second stage, the output of 
the mathematical model is used as the input of the 
simulation-based model. A number of uncertain parameters 
are introduced to make the model more applicable under 
real-world conditions. In the end, the simulation-based 
optimization approach determines the optimal capacity of 
TESs. The results indicate that preventing the unnecessary 
transfer of mildly-injured patients to high-level facilities 
results in a 15% reduction in treatment costs. 

For future research, it is recommended that location, 
allocation and storage of relief supplies under disaster 
conditions be added to the model developed in this study. 
The problem may also be solved at large scales using 
metaheuristics and the results can be compared. Since natural 
disasters often damage roads and significantly hamper rescue 
and relief efforts on the ground, it may be useful to consider 
aerial routing and relief systems in similar problems and 
models. 
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