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Abstract. Dynamic analysis of cracked thin rectangular plates subjected to a moving
mass is investigated �rst in this paper. To this end, the eigenfunction expansion method
is employed to solve the ruling di�erential equation of motion. For the �rst time, intact
plate orthogonal polynomials in combination with well-known corner functions, serving
as a composition, have been used in the governing equation which required professional
computer programming to solve the equation. The proposed solutions a�ord upper bounds
for true solutions, which is a property of an appropriate numerical solution. Parametric
investigations are performed to determine the e�ects of moving mass weights, moving
mass velocities, crack lengths, crack angular orientations, and plates' aspect ratios on the
dynamic responses of cracked thin rectangular plates. The results con�rm that the moving
mass has a greater impact than the moving load on the dynamic responses of cracked thin
rectangular plates. Furthermore, there are non-monotonous nonlinear relations between
altering dynamic responses of cracked thin rectangular plates with various boundary
conditions and modifying moving mass weights, moving mass velocities, crack lengths,
inclined crack angles, and plates' aspect ratios.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Rectangular plates including large-span bridges and
concrete 
oor slabs are commonly used in civil struc-
tures. Irregular dynamic loads, especially cyclic loads,
initiate cracks in plates, a�ecting the performance of
structures. Therefore, it is of utmost importance to
study cracked plates subjected to various dynamic
excitations.

Free vibrations of rectangular plates with sim-
ply supported boundary conditions including a crack
parallel to one of the edges were studied by many
researchers. Few papers in the literature have ana-
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lyzed cracked rectangular plates under various bound-
ary conditions. Many researchers have investigated
cracked rectangular plates including simply supported
as well as clamped boundary conditions. Utilizing
Levy's model of the solution, Lynn and Kumbasar [1]
proposed a solution using Green's functions, while
Stahl and Keer [2] represented dual series equations,
reduced to homogeneous Fredholm integral equations
of second type. Solecki [3] provided a solution by
means of the �nite Fourier transformation of discon-
tinuous functions, derived from the Navier's model
of the solution. Obtaining free vibration solutions of
cracked plates with complex geometries and boundary
conditions, researchers employed numerical methods
such as Finite Element Methods (FEMs) or the Ritz
method. Qian et al. [4] and Krawczuk [5] presented
�nite element solutions. Qian et al. [4] integrated the
stress intensity factor of cracked plates subjected to
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twisting, bending, and shearing to obtain the sti�ness
matrix of an element with a crack, while Krawczuk's
approach was expressed in a closed form.

Bachene et al. [6] developed an extended �nite
element solution based on the �rst-order shear defor-
mation plate theory. By utilizing FEMs to analyze the
vibrations of cracked thin plates, the basis of the clas-
sical plate theory and constructing C1-type elements
can overcome di�culties; or, by using FEMs to obtain
vibrations of cracked thin plates basis of the �rst-order
shear deformation plate theory and forming C0 type
elements, one can resolve the problem of shear locking.
Since the well-known Ritz method was presented, it has
often used. Through the instrumentality of the Ritz
method and domain decomposition approach, Yuan
and Dickinson [7], Liew et al. [8], and Lee and Lim [9]
obtained the results of natural frequencies and mode
shapes of thin central cracked rectangular plates with
simply supported boundary conditions. Utilizing the
Ritz method, Huang et al. [10{12] proposed natural
frequencies of simply supported rectangular thin plates
with side cracks [10] and internal cracks [11], as well
as those simply supported rectangular thick plates or
Mindlin plates with side cracks or internal cracks [12]
at arbitrary locations with di�erent crack lengths and
various crack angular orientations. Riks et al. [13],
Barut et al. [14], and Brighenti [15,16] investigated
the buckling behavior of cracked rectangular plates via
FEMs. Zeng et al. [17] proposed solutions of vibrations
and stabilities of side cracked rectangular plates, and
Xue et al. presented solutions of vibrations and sta-
bilities of 
at sti�ened side-cracked plates [18], as well
as preloaded cracked rectangular Mindlin plates [19].
Huang et al. investigated the buckling of internally
cracked square plates [20], while Xue et al. analyzed
the vibrations and buckling responses of cracked rect-
angular Mindlin plates [21]. Huang et al. studied the
vibrations and buckling responses of three-dimensional
(3D) internal and side-cracked Functionally Graded
Material (FGM) plates [22] as well as preloaded 3D
internal and side-cracked FGM plates [23] by means
of the Ritz method and admissible corner functions
formed by the moving least-squares approach or the
MLS-Ritz method. Kiani and _Zur [24] investigated
vibrations of double parallel defected nanorods by
utilizing the nonlocal surface energy principium and
the Galerkin method.

According to the existing studies in the literature,
free vibrations of the cracked plates, or vibrations
of cracked plates subjected to static loads, were in-
vestigated. However, the researchers [25{36] reported
that dynamic excitations such as moving loads and
particularly moving masses, whose inertial e�ects were
taken into account, had impacts on plate displacement.
The investigation of plates subjected to a moving load
was initiated in the 1970s. Mote [25] �rst studied the

vibration of the centrally clamped annulus plate with
the encircled free boundary conditions subjected to two
orbiting moving loads: (a) a harmonic load at an unal-
terable angular velocity and (b) a load whose speed was
the sum of a harmonic and an unalterable component.
Abundant studies on beams and rectangular plates
subjected to a moving load were collected in a book by
Fryba [26]. Cifuentes and Lalapet [27] investigated the
dynamic response of an arbitrary plate subjected to an
orbiting mass. They utilized the technique basis of the
�nite element discretization of the plate, whose mesh
consisted of the circumnavigating mass trajectory. The
results highlighted the consequence of the inertia of
the moving mass. Shadnam et al. [28] explored simply
supported Kirchho� rectangular plates subjected to
a moving mass. The eigenfunction expansion method
was applied to solve the di�erential equation of mo-
tion. In the mentioned investigation, only the verti-
cal acceleration component of the moving mass was
considered. The results showed that the moving mass
inertia and the participation of each vibration mode
a�ected the dynamic responses of plates, particularly
in case of larger velocities and/or larger mass weights.
Rofooei and Nikkhoo [29] obtained the responses of
thin rectangular plates subjected to a moving mass by
utilizing all acceleration elements of the moving mass.
The dynamic responses were reduced via piezoelectric
patches as controllers. The results indicated the e�cacy
of the moving mass inertia. In another study, the
dynamic responses of thin rectangular plates with
varied boundary conditions subjected to a moving mass
were investigated by Nikkhoo and Rofooei [30]. They
revealed the importance of the inertial e�ect by utiliz-
ing all acceleration parts of the moving mass compared
to applying only the vertical acceleration component
of the moving mass. Kiani [31{33] scrutinized the
embedded nanoplate vibration modeled based on the
nonlocal continuum theory of Eringen, subjected to
biaxial loads. Moving nanoparticles were modeled as
rigid bodies, whose frictions were taken into account.
The results proved the inertial e�ect, the e�ect of the
length to the thickness ratio of the nanoplate, the
velocities or angular velocities of moving nanoparticles,
as well as the e�ect of the lateral sti�ness of the
surrounded medium on the displacement time history
of a nanoplate. According to the e�ect of multi-moving
masses across plates, Nikkhoo et al. [34] employed the
eigenfunction expansion method to evaluate the reso-
nance of a thin rectangular plate subjected to a series
of moving masses. The results indicated the import of
load inertias and load velocities. Rofooei et al. [35]
compared the Von Karman with the Kirchho� plate
theory to investigate the displacement of rectangular
plates subjected to a moving mass. They reported
that smaller de
ections were obtained by applying the
Von Karman plate theory than the Kirchho� plate
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theory. Nikkhoo et al. [36] proposed accurate results
of vibrations of 
exo-poroelastic structures on elastic
beds subjected to moving loads.

The present study �rst obtained dynamic re-
sponses of thin rectangular plates with internal cracks
at arbitrary locations featuring di�erent crack lengths
and inclined crack angles with various boundary con-
ditions subjected to a moving mass. Accordingly, the
eigenfunction expansion method is utilized to trans-
form the partial di�erential equation of motion into
a number of connected normal di�erential equations.
For the �rst time, intact plate orthogonal polynomials
combined with admissible corner functions are applied
in the eigenfunction expansion method formulations.
The admissible corner functions are able to de�ne
stress singularities near the tips of the crack and
to describe the discontinuities due to the crack line.
Professional computer programming is employed to
solve the governing equations. Furthermore, parametric
studies are conducted to specify e�ects of moving mass
weighs, moving mass velocities, crack lengths, inclined
crack angles, and plates' aspect ratios on dynamic re-
sponses of cracked plates. Consequently, there are non-
monotonous nonlinear relationships between varying
dynamic responses of cracked thin rectangular plates
with various boundary conditions and altering the
mentioned parameters respectively.

2. Problem formulations

The present study utilized the formulas composed of
the reference equations. While these formulations are
similar to a composition, they are presented in the form
of a collection.

The partial di�erential equation of motion of an
undamped uniform thin rectangular plate subjected to
a moving mass is expressed as follows:

Dr4W (x; y; t)+m
@2W (x; y; t)

@t2

= M
�
�g � d2W (x0(t); y0(t); t)

dt2

�
�(x� x0(t))�(y � y0(t)); (1)

where d2W (x0(t); y0(t); t)=dt2 is the moving mass ac-
celeration obtained from the total di�erentiation of the
second order of W (x0(t); y0(t); t), which is the contact
curve between the plate and the moving mass at any
time t at the time-dependent coordinates x0 and y0.
W (x; y; t) is the vertical de
ection of the plate at any
time-dependent coordinates x; y.

D = Eh3

12(1��2) is the plate's 
exural rigidity, where
E, �, and h are the plate's modulus of elasticity, Pois-
son's ratio, and thickness, respectively. Accordingly,
g, m, M , and � are the gravity's acceleration, the

mass per unit area of the plate, the moving load's
magnitude, and the Dirac-delta function, respectively.
The eigenfunction expansion method is utilized to solve
the equation of motion. The free vibration response of
the plate is assumed as:

W (x; y; t) =
1X
l=1

�l(x; y)e�i!lt; (2)

in which �l (x; y) ; !l, and �i are the lth mode shape, the
natural frequency of the plate, and the imaginary unit,
respectively. It is assumed that the mode shape of the
plate, �l(x; y), is considered. While the mode shape of
the plate must consider the plate's boundary condition
form and satisfy the di�erential equation, according to
the Ritz method, the mode shape is represented as two
sets of the functions summation:
�l(x; y) = �p(x; y) + �c(x; y); (3)

where �p(x; y) denotes the behavior of the intact plate
in which:

�p(x; y) =
NX
i=1

ai�i(x; y); (4)

where �i(x; y) is a set of orthogonal polynomials in x
and y directions (Figure 1) generated by the Gram-
Schmidt process [37] expressed according to the Bound-
ary Characteristics Orthogonal Polynomials (BCOP)
method [38]. N is the number of utilized orthogonal
polynomials and ai is a set of constants denoting
the participation contribution ratio of the orthogonal
polynomials.

Figure 1 reveals a thin rectangular plate with a
crack subjected to a moving mass with the magnitude
M . The indicated polar coordinates (r1, �1) and (r2,
�2) are the two tips of an internal crack. a0 and b0
are the crack center coordinates in x and y directions,
respectively. a, b, c, and � are the rectangular cracked
plate length, the rectangular cracked plate width, the
crack length, and the inclined crack angle, respectively.

Figure 1. A rectangular plate with a crack subjected to a
moving mass (a0 and b0 are determined as a crack center
coordinates).
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�c(x; y) are the William's solutions for the plate's
internal crack, denoting the well-known corner func-
tions, explaining the behavior of the cracked plate
along the crack line as additive modes, describing the
stress singularity near the tips of the crack and the
discontinuities along the crack:

�c(x; y) =xn1(1� x)n2yn3(1� y)n4� N1X
n=1

bn�n;S(
n; r1; �1; r2; �2)

+
N2X
n=1

cn�n;A(
n; r1; �1; r2; �2)

+
N3X
n=1

cn�n;A(
n; r1; �1; r2; �2)

+
N4X
n=1

en�n;S(
n; r2; �2; r1; �1)
�
; (5)

in which:

n = n=2; n = 1; 2; � � � ; (6-a)

and for (
n 2 N natural numbers):

�n;S(
n; r1; �1; r2; �2) = r�k
j r

n+1
i�

��2

�1
cos(
n + 1)�i + cos(
n � 1)�i

�
; (6-b)

�n;A(
n; r1; �1; r2; �2) = r�k
j r

n+1
i�

�3

�1
sin(
n + 1)�i + sin(
n � 1)�i

�
; (6-c)

and for 
n =2 N (natural numbers):

�n;S(
n; r1; �1; r2; �2) = sin2(�j=2)rkj r

n+1
i�

�3

�1
cos(
n + 1)�i + cos(
n � 1)�i

�
; (6-d)

�n;A(
n; r1; �1; r2; �2) = sin2(�j=2)rkj r

n+1
i�

��2

�1
sin(
n + 1)�i + sin(
n � 1)�i

�
; (6-e)

where:
�1 = (
n + 1)(� + 1);

�2 = �
n(1� �) + (3 + �);

�3 = 
n(1� �) + (3 + �): (6-f)

The subscripts A and S denote antisymmetric and
symmetric modes, respectively. n1, n2, n3, and n4
determine the boundary conditions of the cracked plate

that are satis�ed as 2, 1, or 0, denoting the three
geometrical boundary conditions as clamped, simply
supported, and free, respectively. N1, N2, N3, and N4
are the number of employed admissible corner func-
tions. bn, cn, dn, and en are the constants that denote
the participation contribution ratio of the admissible
corner functions. From Eq. (2), one can deduce the
following:

Dr4�l(x; y) = �!2
l �l(x; y): (7)

An arbitrary forced response of the cracked plate is
de�ned as follows:

W (x; y; t) =
NX
l=1

�l(x; y)Sl(t); (8)

where Sl(t) is the time-dependent modal amplitude of
the cracked plate. Eqs. (2), (3), and (7) are substituted
into the equation of motion. By normalizing and
re-arranging the obtained equation in the matrix form,
the following is obtained:

M(t)�s(t) + C(t) _s(t) + Ks(t) = F(t)

s(t0) = s0; _s(t0) = s10; (9)

Mij =�ij +Mwi(x0(t); y0(t))

[wj(x0(t); y0(t))]; (10-a)

Cij =2Mwi(x0(t); y0(t))[ _x0(t)wj;x(x0(t); y0(t))

+ _y0(t)wj;y(x0(t); y0(t))]; (10-b)

Kij =!2�ij +Mwi(x0(t); y0(t))

[ _x2
0wj;xx(x0(t); y0(t)) + _y2

0wj;yy(x0(t); y0(t))

+�x0(t)wj;x(x0(t); y0(t))+�y0(t)wj;y(x0(t); y0(t))

+ 2 _x0(t) _y0(t)wj;xy(x0(t); y0(t))]; (10-c)

Fj = �Mgwj(x0(t); y0(t)); (10-d)

s(t) =

26666664
s1(t)
s2(t)
:
:
:

sN (t)

37777775
N�1

; (10-e)

where s0 and s10 are the initial conditions. Utilizing
the state-space form of Eq. (9) yields:

_A(t) = G(t)A(t) + �F(t); (11)

where:
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A(t) =
�
s(t)
_s(t)

�
2N�1

;

G(t) =
�

0 I
�M�1K �M�1C

�
2N�2N

;

�F(t) =
�

0
M�1F

�
2N�1

: (12)

Eq. (11) is solved as follows:

A(t) = V(t)V�1(t0)A(t0)

+
tZ

t0

fV(t)V�1(�)[�F(�)]gd�; (13)

where V(t) is the fundamental solution matrix:

_V(t) = G(t)V(t); V(t0) = I2k;

A(t) = V(t)A(t0): (14)

A transfer matrix �V(t) is employed to obtain V(t):

�T(t; �) � V(t)V�1(�): (15)

Therefore, we have:

A(t) = �T(t; �)A(�): (16)

An approximate solution is utilized to obtain �T:

�T(tq+1; tq) = eG(tq)�tq ; (17)

�tq is de�ned as the time interval and G is
nonsingular. Therefore, a solution to Eq. (11) obtains:

A1(tq+1) = G1(tq)A(tq) + �F1(tq); (18)

where:

G1(tq) �= eG(tq)�tq ; (19)

�F1(tq) �= [G1(tq)� I]G�1(tq)�F(tq): (20)

The present method can be extended to solve com-
plexed and composited dynamic loadings by utilizing
the Betti and Lord Rayleigh reciprocity theorem
and the superposition method. It can also solve the
presented problem for cracked plates with other shapes

by altering the coordinates. The mentioned method
can be utilized to solve the mentioned problem for
plates with multiple cracks, by setting admissible
functions to each crack. It can be also extended to
such problems for Mindlin cracked plates, by setting
new admissible functions in the 3D formulation. The
presented method can solve the mentioned problem
for cracked plates rested on the Winkler foundation,
by adding KW (x; y; t) to the left side of Eq. (1) and
adding K�ij to the right side of Eq. (10-c), where K
is the modulus of the Winkler foundation.

3. The veri�cation and the numerical
examples of the present investigation

Since the issue of cracked plates subjected to a mov-
ing mass has not been investigated in the publicized
literature, the e�ciency of the presented method is
determined by verifying the obtained results of the
natural frequencies of a simply supported cracked
square plate and the spectra of a simply supported
square intact plate subjected to a moving mass. To
this end, the approach proposed in Section 2 is utilized
to solve the problem. After the convergence investiga-
tion, spectra of cracked plates with various boundary
conditions subjected to a moving mass are presented
and parametric studies are performed. As an exten-
sion of the suggested approach, spectra of elastically
rested cracked plates subjected to a moving mass
are investigated and parametric studies are proposed.
The Winkler foundation as an elastic foundation is
reacted at the bottom of cracked plates. The average
modulus of Winkler foundation is designated K =
106 N/m3 [40,41] depending on the properties of the
subgrade. The MATLAB program is utilized to conduct
numerical analyses. For the convergence study of the
frequencies, the �rst 25 vibration modes of an intact
plate in combination with 60-term admissible corner
functions (n = 15) are considered. Table 1 presents the
convergence investigation of the frequency parameters
� = !a2

p
�h=D for a simply supported square plate

with the horizontal center crack (c=a = 0:8, a0=a =
b0=b = 0:5, � = 0�).

Table 2 presents the convergence investigation of
the frequency parameters � for a simply supported
square plate with the horizontal and inclined center
cracks (c=a = 0:5, a0=a = b0=b = 0:5, � = 0�, and
� = 45�).

Table 1. The frequency parameters for a simply supported square cracked plate (c=a = 0:8, a0=a = b0=b = 0:5, � = 0�).

Mode number Present study Huang et al. [11] Stahl and Keer [2] Liew et al. [8]

1 16.4316 16.41 16.4 16.47

2 27.7489 27.77 27.77 27.43

3 47.2229 47.21 47.26 47.27
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Table 2. The frequency parameters for a simply supported square cracked plate (c=a = 0:5, a0=a = b0=b = 0:5, � = 0�as
well as � = 45�).

Mode number
Present study

� = 0�
Huang et al. [11]

� = 0�
Present study

� = 45�
Huang et al. [11]

� = 45�

1 17.60 17.72 17.03 17.53
2 43.93 43.06 43.49 42.85
3 49.01 48.69 49.00 48.33

The results of Tables 1 and 2 reveal that the
present results ensure that the upper bounds are the
true solutions and this is one grave aspect of a worthy
numerical solution.

For the convergence investigation of the moving
mass e�ect, the aluminum thin square plate with the
simply supported boundary conditions featuring the
modulus of elasticity E = 7:31 � 1010 Pa, the mass
density � = 2700 kgm�3, and Poisson's ratio � = 0:33
is taken into account. Accordingly, the width and the
length of the plate are equal to 2 m and its thickness
is 1.7 cm. The �rst 25 vibration modes are taken into
consideration. It is assumed that a moving mass with
di�erent velocities and mass weights takes a rectilinear
direction. In other words, x0(t) = vt and y0(t) = b=2,
where v denotes the velocity of the moving mass.

Figure 2 indicates the accuracy of the inertial
e�ect on Dynamic Ampli�cation Factors (DAFs) of
the simply supported square plate due to alterations of
mass weights and mass velocities. Depending on mass
velocities, maximum dynamic responses may occur at
the �rst phase of passing, while the mass is still on
the plate or at the second phase. The mass already
passed, indicating a free vibration. �8 = 2a=T1 is
the velocity parameter. Herein, T1 is the vibration
period of the �rst plate. According to the loading safety
factor, the moving mass weight whose inertial e�ect is
considered is designated to enhance the mass weight of

the structure to 0.45. In order to ensure the stability
of the dynamic system, the mass velocities correspond
to the characteristic equation or the frequency equa-
tion [42], the positive root for natural frequencies, the
positive de�nition of the structure's mass as well as
the structure's sti�ness, and the formula for natural
frequencies of a simply-supported plate [30,43],

!n = !ij = �2

"�
i
a

�2

+
�
j
b

�2
#r

D
m

=
2�
Tn

is limited to:

�
�
1 + �2�
2
p
�

r
D
M
:

After verifying the accuracy and the convergence of this
method, studies of moving mass e�ects and parametric
analysis of cracked plates and elastically rested cracked
plates are carried out. An aluminum thin cracked
plate with various boundary conditions featuring the
modulus of elasticity E = 7:31 � 1010 Pa, the mass
density � = 2700 kgm�3, and Poisson's ratio � = 0:33
is considered. The width is 2 m, the length varies, and
the thickness is 1.7 cm such that the aspect ratio of the
plate, � = a=b, is at 1/2 to 2. The �rst 25 vibration
modes of intact plates in combination with 20-term
admissible corner functions (n = 5) are considered.

Figure 2. The e�ect of the inertia on the DAFs of the SSSS square plate due to the velocity and the mass weight
variations.
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Figure 3. The e�ect of the inertia on DAFs of SSSS square plates with an internal crack due to alterations of velocities,
mass weights, crack lengths, and inclined crack angles.

The process of obtaining the mass, and velocity limits
of a moving mass on plates with various boundary
conditions are resemble to the process of achieving the
mass, and velocity limits of a moving mass on simple
supported plates [43].

Figures 3{8 illustrate the maximum DAF curves
of intact plates and cracked plates subjected to a
moving load as well as a moving mass. Accordingly,
the moving load spectra may remain similar at di�erent
mass weights. Of note, according to the problem formu-
lation, because of the inertial e�ects, an induced damp-
ing matrix would emerge, while the mass and sti�ness
matrix components were changed, as well. Therefore,
based on the moving load velocity and magnitude,
the components of these matrices can be modi�ed
remarkably and, therefore, the dynamic behavior of
the structure is a�ected. The moving mass spectra
increase due to increase in the moving mass velocities
as well as mass weights. Based on the �gures, moving
mass cases with diminutive weights and velocities can
be approximate to the moving load cases as facilitated
problems. Increase in the crack lengths and angle raises

the inertial e�ects. As corner function formulas are
expressed, crack lengths' variations and inclined crack
angles' modi�cations, alter plates' mode shapes due to
alterations of behaviors of stress singularities near the
tips of the cracks. According to the �gures, since the
investigated cracks are constant cracks [44], increasing
the crack lengths as well as the inclined crack angles
is limited to the extent that stress intensity factors
should be less than the critical stress intensity factor
[44].

As shown in Figure 3, non-monotonous nonlinear
relations exist between changing the DAFs of the plates
and altering crack lengths and inclined crack angles.
By increasing crack lengths and mass velocities at mass
velocities less than � 0:5�8, the distances among the
DAF curves increase slightly; for the mass velocities
between � 0:5�8 and � 0:6�8, the DAF curves increase
excessively and then, rise signi�cantly; and for the
mass velocities more than � 0:6�8, the distance among
the DAF curves decreases obviously. By increasing
the inclined crack angles, the DAF curves increase
moderately. By increasing crack lengths and inclined
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Figure 4. The e�ect of the inertia on DAFs of CCCC square plates with an internal crack due to alterations of velocities,
mass weights, crack lengths, and inclined crack angles.

crack angles, the distances among the DAF curves
increase because of inertial e�ects.

According to Figure 4, there are non-monotonous
nonlinear relationships between altering the DAFs of
the plates and modifying crack lengths and inclined
crack angles. By increasing crack lengths, the distances
among the DAF curves increase slightly. By increasing
the inclined crack angles, the distances among the DAF
curves increase moderately because of inertial e�ects.
By increasing crack lengths and mass velocities, for
the mass velocities less than � 0:5�8, the DAF curves
increase gradually; for the mass velocities between
� 0:5�8 and � 0:6�8, the DAF curves increase signi�-
cantly; and for the mass velocities more than � 0:6�8,
the DAF curves increase gently. According to the
formulas of the proposed corner functions in Section 2,
in the case of a cracked CCCC square plate, the order
of the mentioned functions is more than that of similar
functions in cracked SSSS square plate cases because of
the geometrical boundary condition parameters in the
formulas of corner functions. Therefore, by altering
crack lengths and inclined crack angles, the di�erences
among DAF curves in cracked CCCC square plate cases
increase more than the mentioned curves in cracked

SSSS square plate cases. However, according to the
de�nition of the DAF, cracked CCCC square plate
cases have lower DAF values than the cracked SSSS
square plate cases.

Figure 5 illustrates non-monotonous nonlinear
relations existing between altering the DAFs of the
plates and modifying crack lengths and inclined crack
angles. By increasing crack lengths, the distances
among the DAF curves increase considerably and by in-
creasing the inclined crack angles, the distances among
the DAF curves increase noticeably because of the
inertial e�ects. By increasing crack lengths and mass
velocities, for the mass velocities less than � 0:5�8, the
DAF curves increase slightly; for the mass velocities
between � 0:5�8 and � 0:6�8, the DAF curves increase
moderately; and for mass velocities more than � 0:6�8,
the DAF curves increase substantially. In cracked SCSC
square plate cases, an internal crack is parallel to the
clamped edges or is assumed to be an inclined crack
with an angle less than 45 degrees. Accordingly, these
cracked SCSC square plates have smaller plates than
the similar cracked CSCS square plates. The reason
for this sti�ness reduction could be observed obviously
in the presented corner function formulas in Section 2.
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Figure 5. The e�ect of the inertia on DAFs of SCSC square plates with an internal crack due to alterations of velocities,
mass weights, crack lengths, and inclined crack angles.

Furthermore, the order of the mentioned functions is
more than the order of similar functions in the cracked
SSSS square plate cases because of the geometrical
boundary condition parameters in the corner function
formulas. As mentioned earlier, given that DAF values
are normalized ones, by changing crack lengths and
inclined crack angles, DAF values in cracked SCSC
square plate cases increase more than DAF values in
the cracked SSSS square plate cases, and the di�erence
among DAF curves in cracked SCSC square plate cases
increases apparently.

As shown in Figure 6, the Winkler foundation
leads to the reduction of the DAFs of the SCSC square
plates with internal cracks resting on the Winkler
foundation because of the reactions of the foundation,
being proportional to de
ections formulated as p =
KW (x; y; t) at any point of the plates. K is the
modulus of the Winkler foundation. By increasing
the moving mass weights, the DAFs of the plates
increase slightly. There are non-monotonous nonlinear
relationships between changing the DAFs of the plates

and modifying crack lengths and inclined crack angles.
By increasing crack lengths and inclined crack angles,
the distances among the DAF curves increase slightly
because of the inertial e�ects; for the mass velocities
between � 0:3�8 and � 0:5�8, the DAF curves increase
moderately and after the mass velocity at � 0:5�8, the
DAF curves decrease slightly.

Figure 7 shows the non-monotonous nonlinear
relations existing between changing the DAFs of the
SCSC rectangular plates at an aspect ratio 1=2 and
modifying crack lengths and inclined crack angles. By
increasing crack lengths and inclined crack angles, the
distances among the DAF curves increase obviously
because of the inertial e�ects; and for mass velocities
between � 0:3�8 and � 0:7�8, the DAF curves grow
substantially; and after the mass velocity at � 0:7�8,
the DAF curves increase gently. An internal crack in
cracked plates is determined by its two tip coordinates
employed in the corner function formulas as the ratio
of a crack length to one side of cracked plate length c=a
and the ratio of crack center locations to the cracked
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Figure 6. The e�ect of the inertia on DAFs of SCSC square plates with an internal crack resting on the Winkler
foundation due to alterations of velocities, mass weights, crack lengths, and inclined crack angles.

plate edges a0=a and b0=b, as revealed in Sections 2
and 3. Therefore, an internal crack in cracked plates is
de�ned by non-dimensional parameters. Accordingly,
these cracked SCSC rectangular plates at an aspect ra-
tio of 1=2 possess di�erent non-dimensional parameters
of crack orientations in comparison with the cracked
SCSC square plate cases. Therefore, by changing simi-
lar crack lengths and inclined crack angles, DAF values
and di�erences among DAF curves in the cracked SCSC
rectangular plate at an aspect ratio 1/2 cases increase
a little more than those in SCSC square plate cases.

As Figure 8 reveals, there are non-monotonous
nonlinear relationships between modifying the DAFs
of the rectangular plates with the aspect ratio 2 and
increasing crack lengths and inclined crack angles.
By increasing crack lengths as well as inclined crack
angles, the distances among the DAF curves increase
considerably because of the high inertial e�ects; for
mass velocities between � 0:3�8 and � 0:7�8, the
DAF curves increase signi�cantly; and after the mass

velocity � 0:7�8, the DAF curves decrease gradually.
As mentioned earlier, the cracked plates with di�erent
shapes with similar crack lengths and inclined crack
angles possess non-dimensional parameters of di�er-
ent crack orientations utilized in the corner function
formulas. Therefore, by changing similar crack lengths
and inclined crack angles, DAF values and di�erences
among DAF curves in a cracked SCSC rectangular
plate with the aspect ratio 2 increase considerably in
comparison with those in the SCSC rectangular plate
with the aspect ratio 1=2.

According to Figures 3{8, for the mass velocities
larger than � 0:2�8, the inertial e�ects are not negligi-
ble, especially due to increase in moving mass weights,
crack lengths, and inclined crack angles. There are non-
monotonous nonlinear relations between altering DAF
curves and modifying moving mass weights. According
to the problem formulation, an initiated damping
matrix emerge due to the inertial e�ects, while the
mass and sti�ness matrix components are changed, as
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Figure 7. The e�ect of the inertia on DAFs of SCSC rectangular plates with the aspect ratio 1/2 and an internal crack
due to alterations of velocities, mass weights, crack lengths, and inclined crack angles.

well. Therefore, based on the moving load velocity
and magnitude, the components of these matrices
are changed noticeably and therefore, the dynamic
behavior of the structure is a�ected.

Figure 9 reveals the e�ects of crack lengths for dif-
ferent moving mass weights on the dynamic responses
of cracked plates at constant velocities and various
boundary conditions. As can be observed, there are
non-monotonous nonlinear relationships between the
maximum DAF values of the plates and the crack
lengths for all cases. In the case of CCCC plates,
the moving mass velocity � = 0:7�8 and the moving
mass weights are equal to 0:3mab and 0:45mab for
crack lengths more than 0:3a and the inclinations of the
relevant curves are reduced, while for other cases, an
increasing trend can be seen. Furthermore, in the case
of SSSS plates and the moving mass velocity, � = 0:7�8,
for the crack lengths more than 0:3a, the inclinations
of the relevant curves are reduced, while in other cases,
the inclinations increase. For crack lengths less than
0:2a and more than 0:4a, the inclinations of the relevant

curves grow slightly, and between 0:2a and 0:4a the
inclinations of the relevant curves increase noticeably.
For other cases, for the crack lengths more than 0:3a,
the inclinations of the relevant curves are reduced. The
elastically foundations, at any point of cracked plates,
react proportional to the de
ections. Therefore, for
the case of elastically rested SCSC cracked plates, for
moving mass velocity � = 0:7�8, the moving mass
weight equals to 0.45mab, and crack lengths more than
0:35a, the inclinations of the relevant curves reduce
slightly, and for other cases, the inclinations increase
negligibly.

Figure 10 shows e�ects of inclined crack angles on
the dynamic responses of plates for constant velocities,
di�erent moving mass weights, and various boundary
conditions. There are non-monotonous nonlinear re-
lations existing between the maximum DAF values of
plates and inclined crack angles for all cases. In the case
of the CCCC cracked plates, in a condition including
inclined crack angles more than 25� and all moving
mass weights, the inclinations of the relevant curves
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Figure 8. The e�ect of the inertia on DAFs of SCSC rectangular plates with the aspect ratio 2 and an internal crack due
to alterations of velocities, mass weights, crack lengths, and inclined crack angles.

increase. Furthermore, in the case of SSSS cracked
plates, for all moving mass weights, the inclinations of
the relevant curves grow slightly. In the case of SCSC
cracked plates, the moving mass velocity � = 0:5�8 and
the moving mass weight are equal to 0:45mab and the
inclination of the relevant curve increases considerably.
In addition, for other cases, the inclinations of the rele-
vant curves grow moderately. In the case of elastically
rested SCSC cracked plates, the inclined crack angles
more than 25� and all moving mass magnitudes led
to elastically foundation reactions proportional to the
de
ections and the inclinations of the relevant curves
increase inconsiderably.

Figure 11 illustrates the impact of plates' aspect
ratios denoted by � for di�erent moving mass weights
on the dynamic responses of the plates at constant
velocities. In the case of SCSC intact plates and
cracked plates, similar to the case of SSSS intact
plates investigated by Nikkhoo and Rofooei [30], there
are constant relations between the aspect ratios and
the maximum DAF values for plates for � � 1.
For � > 1, there are non-monotonous nonlinear

relationships existing between the maximum DAF
values and aspect ratios for the plates in all cases
because of direct e�ects of the ratio of plates' as-
pect to orthogonal polynomial formulations consisting
of orthogonal polynomial formulas of intact plates,
formula of corner functions, which are explained as
plate displacements. Furthermore, inclinations of the
relevant curves grow due to increase in the velocities
and weights of the moving mass, especially in the case
of cracked plates.

4. Conclusions

In this study, the di�erential equation of motion of
an internally cracked rectangular plate subjected to a
moving mass was considered. For the �rst time, the
intact plate orthogonal polynomials, in combination
with the well-known corner functions, were employed
in the governing equation and the eigenfunction ex-
pansion method was utilized to solve the equation of
motion of thin cracked plates with various boundary
conditions as well as elastically rested thin cracked
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Figure 9. E�ects of crack lengths on DAFs of cracked plates with CCCC, SSSS, and SCSC boundary conditions as well
as elastically rested SCSC cracked plates.
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Figure 10. E�ects of inclined crack angles on DAFs of cracked plates with CCCC, SSSS, and SCSC boundary conditions
as well as elastically rested SCSC cracked plates.
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Figure 11. E�ects of plates' aspect ratios on DAFs of intact plates as well as cracked plates with SCSC boundary
conditions.

plates. The corner functions could determine the
stress singularities near the tips of the crack and
specify the discontinuities due to the crack line. The
o�ered solutions created upper bounds for the accurate
solution, which is a characteristic of an opportune
numerical solution. Parametric studies were performed
to investigate e�ects of moving mass weights, moving
mass velocities, crack lengths, inclined crack angles,
and the plates' aspect ratios on dynamic responses of
cracked plates. Based on the results, by increasing
the crack lengths and inclined crack angles, dynamic
responses of SCSC cracked plates increased more than
dynamic responses of CCCC, SSSS, and elastically
rested SCSC cracked plates, while dynamic responses
of elastically rested SCSC cracked plates increased less
than dynamic responses of CCCC, SSSS, and SCSC
cracked plates due to the inertial e�ects. Counter verse
de
ections proportional to reactions of the foundation,
acting as a displacement controller, were deduced in
elastically rested plate cases, in addition to moving
mass de
ections. According to the problem formu-
lation, because of the inertial e�ects, an initiated
damping matrix would emerge, while the mass and
sti�ness matrix components were changed, as well.
Therefore, based on the moving load velocity and mag-

nitude, the components of these matrices are altered
signi�cantly and therefore, the dynamic behavior of
the structure is a�ected. In conclusion, there are non-
monotonous nonlinear relationships between modifying
the dynamic responses of cracked thin rectangular
plates and elastically rested thin cracked plates with
various boundary conditions and altering moving mass
weights, moving mass velocities, crack lengths, inclined
crack angles, and plates' aspect ratios.
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