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This study aims to identify and rank the Performance Influencing Factors (PIFs), which cause errors in 
human operations, by analyzing the failure weights and ranks of the tasks performed by every operator. 
Assessing these factors can mitigate human errors (HEs) and improve safety, efficiency, and job 
satisfaction. The Linear programming techniques for Multidimensional Analysis of Preference 
(LINMAP) and Bayesian Belief Networks (BBNs) were employed to analyze an aircraft tire 
manufacturing industry. In this method, all operators of workshops were evaluated. According to the 
data analysis, each operator’s tasks were weighted, and the potential error rate of each task was 
determined. PIFs for each workshop were then ranked and prioritized so that the most effective factors 
could easily be distinguished in order to identify the tasks where the operators had the highest rates of 
failure. The probability of HE was then obtained. In a predictive model, it is possible to determine when 
an error occurs and which factors are the most effective in its occurrence. This paper proposes an 
approach to the easy, inexpensive, and rapid classification of PIFs by determining their correlations 
through conditional possibilities. The proposed approach is capable of classifying not only PIFs but also 
the PIF-related tasks with the greatest effects. 

1. Introduction
According to various theories, a major cause of work-related 
accidents is the unsafe behavior of operators. Defined by 
various references, a Human Error (HE) is a deviation from 
the predetermined circumstances that would result in a 
reduction of accuracy and validity of performance on the part 
of an operator. The Human Reliability Analysis (HRA) is 
now in one of the most critical phases of Probabilistic Risk 
Assessment (PRA) in research and industry. In fact, the HRA 
consists of two steps: identifying the HE and determining the 
occurrence probability of that error. If implemented properly, 
it can enhance the human reliability and reduce the Human 
Error Probability (HEP). The concept of HEP can be defined 
as the following formula. 

𝐻𝐻𝐻𝐻𝐻𝐻    =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁𝑡𝑡 𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑁𝑁 ℎ𝑎𝑎𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑡𝑡𝑁𝑁𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑡𝑡 𝑜𝑜𝑜𝑜𝑁𝑁 𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑁𝑁 𝑡𝑡𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁  . 

The HRA aims to predict the possibility of failure to fulfil a 
task (by the operator), the outputs of which are affected by 
different factors such as judgments of experts, simulation 
techniques, and problem-solving processes. The HRA 
methods are adopted in various fields such as power plants, 
transportation systems (e.g., trains, ships, aircraft and motor 
vehicles), medicine factories, nursing tasks, and so many 
other fields where operators are employed.  

HE is also considered an outcome but not a cause. Errors 
are formed and provoked by the events occurring at 
workplaces as well as organizational factors. Humans cannot 
change circumstances but can change the conditions in 
which the operators work [1]. 
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HE can be related to various factors known and 
designated as Performance Shaping Factors (PSFs), 
Performance Influencing Factors (PIFs), Influence 
Factors (IFs), Performance Appraisal Factors (PAFs), 
Error Producing Conditions (EPCs), and Common 
Performance Conditions (CPCs). 

Since 1950, many studies have been conducted on the 
identification and reduction of HEs and factors affecting 
the performance of operators.  

Hollnagdel [2] indicated that human factors played the 
most crucial role in industrial accidents by accounting for 
nearly 60% of accidents occurring as a direct result of 
HEs. In air transport, this rate reaches 70–90% [3]. 

There are various methods for identifying, evaluating, 
and reducing HE such as Technique for Human Error-Rate 
Prediction (THERP), Cognitive Reliability Error Analysis 
Method (CREAM), Standardized Plant Analysis Risk-
Human Reliability Analysis (SPAR-HRA), and 
Information Decision and Action in Crew (IDAC). Most 
of the HRA methods provide an overview of tools and 
techniques for analysts where the sources of errors are 
easily discernible. Some scientific papers have adopted 
the Multiple-Criteria Decision-Making (MCDM) method 
and the AHP–SLIM technique [4]. Paolo and Trucco 
employed the ANP method [5]. 

Generally, many methods have been developed to 
assess human reliability. They are classified as three 
generations, the first of which includes HRA methods. In 
this category, an analyst must divide a task into its 
components. The effects of such factors as pressure 
(work), time, equipment design, and stress can then be 
taken into account. Combining these methods, an analyst 
can determine the nominal potential for HE. The methods 
of the first generation focus on an operator’s skills and 
activity roles. 

The HRA methods of the second generation tend to be 
conceptual. However, attaining such an objective requires 
a predictive model having sound theoretical foundations 
and experimental validations [6]. 

The methods of the third generation are mainly based 
on the first-generation methods redefined as the third-
generation methods such as Nuclear Action Reliability 
Assessment (NARA) developed through the Human Error 
Assessment and Reduction Technique (HEART) method. 
Most researchers working on the third generation try to 
bridge the existing gaps in the previous two categories. 
Alternative analysis is a new problem including different 
job spectrums, stability in teamwork, and use of the fuzzy 
logic to analyze reliability and HE. 

Some of the HRA methods discuss the interdependency 
issues between PIFs, some cases of which are the model of 
IDAC, the CREAM [6], and the SPAR-HRA [7]. 

A few studies have discussed how PIFs affect each 
other qualitatively (e.g., CREAM [8]). However, some 
others have tried to describe the analysis of mental 
interdependencies between different PIFs in addition to 
explaining the outcomes in very complex applications 
requiring excessive efforts by analysts (e.g., IDAC) [9]. 

Hallbert et al. [10] addressed how experimental data could 
help determine the strength effects of factors and their 
interactions; however, they failed to provide analysts with 
the necessary procedures for guiding their analyses. 

There are two groups of challenges to PIFs, the first of 
which includes the prioritization of PIFs, whereas the 
second group (known as principal challenges) requires a 
modelling framework of PIFs in which the quantity and 
interdependence of factors are represented. 

This paper aimed to analyze the challenges related to 
the categorization of PIFs as well as the correlations 
between factors. The LINMAP method was then 
employed to rank the factors based on the opinions of 
experts and operators. Moreover, Bayesian Belief 
Networks (BBNs) were adopted to propose a model that 
could to some extent measure the effect of each PIF on 
other factors as well as the effect of each PIF on the 
operators. Additionally, the proposed approach consists of 
no pairwise comparisons as in AHP and ANP methods, 
which are confusing, tedious, and time-consuming for the 
operators. In fact, the implementation of the proposed 
approach requires less time and training. A BBN can 
measure the presence probability of each factor by using 
conditional probabilities in order to determine which PIFs 
were the most likely cause of the HE occurrence. 

This paper introduces the Linear Programming 
Technique for Multidimensional Analysis of Preference 
(LINMAP) for the prioritization of PIFs in conjunction 
with BBNs to determine the interactions of relevant 
factors. Section 2 reviews the recent literature on the HE, 
whereas Section 3 presents the LINMAP and BBNs. In 
fact, the LINMAP is introduced as an MCDM technique 
in Subsection 3.1. After that, Subsection 3.2 discuses 
BBNs. The data collection methodology is discussed in 
Section 4. The PIFs and the research results are then 
analyzed. Finally, Section 5 draws the research 
conclusion. 

2. Literature review
Dragana and Isaic-Mania [11] used statistical distributions to 
analyze the HRA. Employing questionnaires and statistical 
estimates, Dragana determined the parameters of statistical 
distribution and divided the HE into two ergonomic and 
physical categories through statistical models of Markov, 
Goel–Okumoto, Jelinski and Jonson. 

The HEART is a method of showing that any reliability 
in task performance might be adjusted as long as EPCs are 
present. Identifying nine general tasks, this method proposes 
the nominal values of human unreliability. Moreover, 17 
EPCs have been reported to have the greatest effects on an 
operator’s performance. The failure rate is defined as below: 

𝐻𝐻 = 𝐻𝐻0 ��[(𝐻𝐻𝐻𝐻𝐸𝐸𝑖𝑖 − 1)𝐴𝐴𝑜𝑜𝑖𝑖 + 1]
𝑖𝑖

� , 

where P denotes the probability of HE and 𝐻𝐻0 indicates the 
nominal human unreliability. Furthermore, 𝐻𝐻𝐻𝐻𝐸𝐸𝑖𝑖 represents 
the ith error-promoting condition, whereas 𝐴𝐴𝑜𝑜𝑖𝑖  refers to an 
engineer’s assessment of the proportion effect (on a scale of 
0 to1)  for  each ith EPC [12]. Castiglia  et al. [9]  concluded 
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Figure 1. The organization of PIF groups and high-level 
interdependencies within the IDAC. 

that using the fuzzy concept could improve the results of 
the HEART. 

According to the research literature, the major 
disadvantage of the HEART is the negligence of 
correlations between errors. Due to the nature of this 
study, interpreter might end up calculating a variety of 
HEs within the context of similar tasks. Unlike the 
HEART, the IDAC method and the CREAM method seek 
to evaluate the correlations between errors and factors 
affecting the performance of operators but require a 
prolonged period of time for training and implementation. 

Chang and Mosleh [13] developed a model called the 
Information, Decision, and Action in the Crew context 
(IDAC) model to assess the responses given by the 
nuclear power plant operators. This model includes 50 
interactive PIFs. The IDAC factor is classified as two 
macro categories (i.e., internal PIFs and external PIFs) 
and 11 hierarchically structured groups. The PIFs within 
each group are independent; however, the PIFs between 
groups are dependent. Figure 1 demonstrates the high-
level interdependencies of PIF groups in the IDAC [12]. 
      Measuring an HEP estimate, Zhiqiang et al. [14] 
employed the CREAM method, in which the control 
degrees are presented in four manners. Given the intended 
field, they are determined by prevailing performance 
conditions. Zhiqiang then made an estimate between 
control and HEP ranges and used the method as a base to 
estimate the HEP points. Next, he collected the method 
characteristics and observed that the results corresponded 
to the registered human performance data. In his proposed 
model, PIFs were replaced by PSFs. Table 1 indicates how 
PSF groupings might affect each other [11].  
     The numbers within parentheses indicate the following 
PIFs. The model expresses that the presence of a specific 
PSF might adjust the impacts of other PSFs and HEPs. 

Furthermore, a “+” sign denotes a direct effect (increase–
increase and decrease–decrease), whereas a “-” sign 
denotes an inverse effect (increase–decrease and 
decrease–increase) [8]. 
      Park and Lee [4] proposed a method called AHP–
SLIM to overcome the existing difficulties arising from 
the judgments of experts on the achievement of an 
accurate estimate. Their proposed method is a technique 
of making HEP estimates through the AHP method. 
Introducing the method in seven steps at 2 levels, the 
researchers drew a pairwise comparison between ten error 
factors and five human factors. Finally, nearly 225 
pairwise comparisons were made. In the proposed 
method, Jae in Lee compared two groups of operators with 
high seniority and low seniority. 

Zhou and Kou [15] demonstrated that the failure 
structure might bring about overall failure and 
consequently HEs. This structure is mainly aimed at 
analyzing HE. Their method estimated HEA and HEP in a 
structure close to the AHP method in which they 
introduced their method called AHP–FLIM to analyze the 
effects of expert judgments on the failure verification of 
the index model. 

Ambroggi and Trucco [5] evaluated the correlative 
factors in the aviation industry by analyzing 10 influential 
factors in an air traffic control tower. Through the ANP, 
these factors were compared pairwise between the 
operators working at two airports. The factors were then 
weighted through the t-paired (t-student) method. The 
weights related to the air traffic towers were then tested. 
In this method, the normalized outputs of each factor 
weight were considered the HEP points. This study 
classified the factors to measure the dependent and 
independent effects. A nearly 95% confidence interval 
was considered for each factor that facilitated the analysis 
of results in each control tower. 

The methods based on ANP and AHP have their own 
weaknesses. In fact, they require a wide variety of 
pairwise comparisons, which are toilsome. This results in 
deviation from the development of more accurate 
solutions.  

Peng-Cheng et al. [16] employed a Fuzzy Bayesian 
Belief Network (FBBN) to develop a method for 
improving the quantification of organizational effects on 
the HRA. The results indicated that their method was 
unable to quantify human factors and human reliability. 
However, it managed to measure human equipment 
reliability, determine the causes of errors, and prioritize 
these causes. 

BBNs were used in [17] to develop a “6-bubble 
model”, “9-bubble model”, and a “mixed expert/data 
model”. These models were developed through the levels 
and sources of data. The “6-bubble model’’ used the data 
obtained from a Nuclear Regulatory Commission (NRC) 
workshop, whereas the “Mixed expert/data model” 
employed a large set of over 30 PSFs. The “9-bubble 
model” was an intermediate one aimed at identifying the 
error context. 
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Table 1. Effects between PSFs within CREAM. 
(1) (2) (3) (4) (5) (6) (7) (8) (9)  

(1) 1- Adequacy of organization 
2- Working conditions 
3- Adequacy of MI and operational support 
4- Availability of procedures/plans 
5- Number of simultaneous goals 
6- Available time 
7- Time of day 
8- Adequacy of training and experience 
9- Crew collaboration quality 

(2) + + + + + 
(3) + 
(4) + 
(5) - - - 
(6) + + + - + + 
(7) 
(8) +
(9) + + 

Figure 2. The causal graph for the BBN analysis in. 

Trucco et al. [18] proposed a novel method for combining 
organizational human factors and risk analysis. This method 
was applied to a case study capable of being developed in 
other fields. The behavior of the maritime transport system 
was analyzed by modeling the interactions between different 
factors through BBNs. 

BBNs were also utilized to analyze the population 
variations of the endangered species. This type of study can 
develop a model for the habitats and the growth patterns of 
the species under investigation. The study further included 
the construction of a causal graph [19]. 

In a paper called Human Reliability Modeling for the 
Next Generation System Code, Sundaramurthi and Smidts 
[20] reviewed different methods of human reliability and 
analyzed the strengths and weaknesses of each technique 

based on the IDAC model in different scenarios. By 
modeling the PIFs, they managed to determine the scores of 
important factors. In the end, they provided an overview of 
complex factors through BBNs and dealt with the role of HEs 
in aviation and nuclear accidents. Figure 2 demonstrates a 
causal graph showing human factors in nuclear accidents 
[20]. 

Further details can help develop a complete model which 
could explain the relationships between different factors. The 
calculations, however, can become more complicated. The 
factors of highest importance are frequently identified and 
placed in the analyzed model.  

Kyriakidis et al. analyzed humans, their performance, 
actions, and decisions playing significant roles within a vast 
range of operations in complex sociotechnical systems. 
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Numerous studies were then conducted to perceive people’s 
actions and/or inactions within their working environments 
in addition to identifying the other factors known as PSFs, 
which contribute either positively or negatively to the 
sociotechnical system performance [21]. 

Washington et al. [22] analyzed challenges to the 
implementation of System Safety Assessments (SSAs) in 
Unmanned Aircraft Systems (UASs). They intended to 
highlight the main advantages associated with the adoption 
of a risk-based framework in the System Safety Performance 
Requirement (SSPR) compliance process, which is capable 
of considering the uncertainty associated with each of the 
outputs of the SSA process. In another study, Washington et 
al. [23] also proposed a novel system safety compliance 
process based on Bayesian methods. 

In the recent paper, Washington et al. [23] analyzed the 
significant uncertainty regarding the safety of novel or 
complex aviation systems such as Remotely Piloted Aircraft 
Systems (RPASs). The current aviation safety assessment 
and compliance processes do not account adequately for 
uncertainty. They sought to support more objective, 
transparent, systematic, and consistent regulatory outcomes 
in relation to the safety assessment of such systems. They 
aimed to provide the systematic means of accounting for the 
various uncertainties inherent to any SSA processes [24]. 

Steijn et al. [25] implemented the quantification of 
human factors in a Quantitative Risk Analysis (QRA), which 
they called the QRA+. The quantitative knowledge 
concerning the technological parameters was obtained from 
the officially documented SIL statistics, whereas the SPAR-
HRA was employed to quantify the human factors. Beta 
distributions were then utilized to model the failure 
probability distributions accounting for the uncertainty 
inherent in dealing with human reliability. For the seamless 
integration of existing qualitative knowledge and 
quantitative knowledge, they utilized a BBNs. The resultant 
model provides an integrated and more accurate estimation 
of failure probabilities for both technological and human 
factors as well as the uncertainty surrounding such 
probability estimates. 

Golestani et al. [26] proposed a methodology for 
quantifying the effects of harsh environmental conditions on 
the reliability of human actions in performing complex 
physical operations. According to a review of current human 
reliability techniques, there is a lack of methodology for 
quantifying HEs while conducting complex physical 
operations in extreme environments. The proposed 
methodology is based on a hierarchical Bayesian Network 
(BN) accounting for causal dependencies among 
environmental factors, Human Error Modes (HEMs), and 
scenario-based activities. A novel model was also developed 
with three reference points (i.e., awareness of situation, 
system access, and action) to derive HEMs from 
physiological failure mechanisms and help analysts identify 
the root causes of HEs. 

Zhao and Smidts [27] proposed a novel cognitive 
modeling and simulation environment (CMS-BN) by 
introducing Bayesian networks to represent a human’s 

knowledge and Monte Carlo simulation to account for the 
uncertainties in the cognitive process. Arguments and 
responses are modeled by traversing the human knowledge 
represented as a BN to retrieve knowledge and update human 
beliefs and attention distribution accordingly. Uncertainties 
in the cognitive process are characterized as the Monte–
Carlo simulation. The proposed environment also models the 
interplay between the cognitive process and two PSFs, i.e., 
stress and fatigue, although additional factors can be further 
considered. The proposed environment is expected to be 
beneficial to HRA and human performance improvement. 

Zhao and Smidts [28] reported that human operators 
played a critical role in the operation of complex engineered 
systems, in particular under abnormal conditions. It is 
important to assess human performance under the conditions 
of interest and improve the performance by taking effective 
measures. They presented the application of a previously 
developed CMS-BN environment to address these two 
problems. The developed environment simulates how a 
human operator dynamically interacts with the external 
system with focus on the operator’s cognitive activities. 
They also demonstrated how the developed environment 
could be used for HRA and human performance 
improvement. 

Wu et al. [29] reviewed the existing human reliability 
techniques and confirmed that there was a lack of 
quantitative analysis of HEs in the high-temperature 
operating environments. They proposed a model to support 
the HRA of high-temperature operation based on the 
CREAM, the fuzzy logic theory, and a BN. They employed 
the fuzzy CREAM to consider uncertainties and adopted a 
BN to determine the control mode and measure HEP. 

Greco et al. [30] analyzed a model adopted in HRA to 
characterize personnel tasks and performance conditions 
through the categories of tasks and effective factors (e.g., 
task types and PSF). 

3. Methods
This section proposes the LINMAP for determining the 
priority of each operator’s tasks and PIFs. After that, BBNs 
are discussed in order to analyze the interplay between PIFs. 
The significant correlation coefficients of different factors 
are also determined. 

In the industry studies, the proposed method managed to 
eliminate the need for many pair comparisons and the long 
time required for training and implementation. Additionally, 
the relationships between factors were not ignored in this 
study. Finally, BBNs were utilized to determine the effects 
of every PIF on HE. 

3.1. LINMAP 

In this method, m denotes the number of PIFs, whereas n 
refers to the number of operator’s tasks existing in an n-
dimensional space. The decision-makers are assumed to 
select the points which are closest to the ideal point. A 
decision-maker’s subjective judgments on the comparison of 
paired options are shown as S={(k,l)}, which represents the 
pairwise comparisons between 𝐴𝐴𝑘𝑘 options and 𝐴𝐴𝑙𝑙 options. 
Therefore, the decision-maker prefers 𝐴𝐴𝑘𝑘 options. The 
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procedure can define weights �𝑤𝑤𝑗𝑗�  jth task weight and 
determine the optimal value �𝑥𝑥𝑗𝑗∗� the ideal value of the ith 
index. The definitions of these vectors (𝑊𝑊,𝑋𝑋∗) are given 
based on regular pairs in the S set. The distance of the 𝐴𝐴𝑖𝑖 
option from the ideal option is defined as below: 

𝑡𝑡𝑖𝑖 = 𝑜𝑜𝑖𝑖2 = �𝑤𝑤𝑗𝑗�𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑗𝑗∗�
2  ,   𝑡𝑡 = 1,2, … ,𝑁𝑁 .

𝑛𝑛

𝑗𝑗=1

 (1) 

If 𝑡𝑡𝑙𝑙 ≤ 𝑡𝑡𝑘𝑘, the solution (𝑊𝑊,𝑋𝑋∗) to (k,i)∈S is compatible. 
The answer to (𝑊𝑊,𝑋𝑋∗) should be determined in a way 

that the exceeding condition 𝑡𝑡𝑙𝑙 ≥ 𝑡𝑡𝑘𝑘 happens within the least 
range possible. If 𝑡𝑡𝑙𝑙 ≤ 𝑡𝑡𝑘𝑘, then 𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘 represents the 
deviation degree where the intended condition is infringed. 
Hence, the definition given in Eq. (2) can be considered in 
general: 

(𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)− = max{0, (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)} . (2) 

Generally, the total incompatibility of whole (P) on the S 
set is expressed as Eq. (3): 

𝐻𝐻 = � (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)− ,
(𝑘𝑘,𝑙𝑙)∈𝑆𝑆

 
(3) 

where P (i.e., the incompatibility degree) is not negative 
because index (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)− is always non-negative. Therefore, 
P should be minimized to determine the answer to (𝑊𝑊,𝑋𝑋∗). 
Against P, a new value is selected as G (whole compatibility 
degree) defined through Eq. (4): 

𝐺𝐺 = � (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)+
(𝑘𝑘,𝑙𝑙)∈𝑆𝑆

, 
(4) 

where index (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)+ is max{0, (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)}. Therefore, G 
should be greater than P. Since index t is the greatest value 
{0, (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)}, G>P. It is then possible to write G-P=h, in 
which h is an arbitrary positive constant value. 

� 𝐺𝐺 > 𝐻𝐻
𝐺𝐺 − 𝐻𝐻 = ℎ

(5) 

Since the goal is to minimize the incompatibility degree, the 
answer to (𝑊𝑊,𝑋𝑋∗) is obtained by solving a problem in Eq. 
(6): 

min 𝐻𝐻 =

∑ �
𝑡𝑡𝑙𝑙
−𝑡𝑡𝑘𝑘

�
−

=(𝑘𝑘,𝑙𝑙)∈𝑆𝑆 ∑  max � 0,
(𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)�(𝑘𝑘,𝑙𝑙)∈𝑆𝑆

s. t. :  𝐺𝐺 − 𝐻𝐻 = ∑ (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘) 
(𝑘𝑘,𝑙𝑙)∈𝑆𝑆 = ℎ

(6) 

In light of Eq. (5), the mathematical programing model Eq. 
(6) can be converted into a linear programming model 
depicted in Eq. (7): 

min:∑ 𝛼𝛼𝑘𝑘,𝑙𝑙(𝑘𝑘,𝑙𝑙)∈𝑆𝑆   
𝑡𝑡. 𝑡𝑡. :   𝛼𝛼𝑘𝑘,𝑙𝑙 ≥ 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑙𝑙 , ∀(𝑘𝑘, 𝑙𝑙) ∈ 𝑆𝑆    

� (𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘)
(𝑘𝑘,𝑙𝑙)∈𝑆𝑆

= ℎ. (7) 

The equation can also be simplified by  𝑤𝑤𝑗𝑗 × 𝑥𝑥𝑗𝑗∗ = 𝜇𝜇𝑗𝑗 and 
𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘: 

𝑡𝑡𝑙𝑙 − 𝑡𝑡𝑘𝑘 = �𝑤𝑤𝑗𝑗�𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑗𝑗∗�
2 −

𝑛𝑛

𝑗𝑗=1

�𝑤𝑤𝑗𝑗�𝑥𝑥𝑘𝑘𝑗𝑗 − 𝑥𝑥𝑗𝑗∗�
2

𝑛𝑛

𝑗𝑗=1

 = �𝑤𝑤𝑗𝑗�𝑥𝑥𝑖𝑖𝑗𝑗2 − 𝑥𝑥𝑘𝑘𝑗𝑗2 � − 2�𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗∗�𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑘𝑘𝑗𝑗� 
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑗𝑗=1

. 

(8) 

Eq. (7) and Eq. (8) can be merged and rewritten as follows: 
min:∑ 𝛼𝛼𝑘𝑘,𝑙𝑙(𝑘𝑘,𝑙𝑙)∈𝑆𝑆  , 
min:∑ 𝛼𝛼𝑘𝑘,𝑙𝑙 ,(𝑘𝑘,𝑙𝑙)∈𝑆𝑆  

∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 ∑

�𝑥𝑥𝑙𝑙𝑗𝑗2 − 𝑥𝑥𝑘𝑘𝑗𝑗2 �
−2∑ 𝑁𝑁𝑗𝑗𝑛𝑛

𝑗𝑗=𝑙𝑙
(𝑘𝑘.𝑙𝑙)∈𝑆𝑆 ∑ �𝑥𝑥𝑙𝑙𝑗𝑗 − 𝑥𝑥𝑘𝑘𝑗𝑗�(𝑘𝑘,𝑙𝑙)∈𝑆𝑆 =

ℎ , 
(9) 

where 𝛼𝛼𝑙𝑙𝑘𝑘 ≥ 0, 𝑤𝑤𝑗𝑗 ≥ 0, and 𝑁𝑁𝑗𝑗 are without any signs 
(unlimited). Eq. (9) can be solved in a linear programing 
form. The optimal value of the target function is related to 
parameter h; however, it causes no changes in preference 
prioritization [31]. 

The linear programming of Eq. (9) can be solved to 
calculate 𝑤𝑤𝑗𝑗  and 𝑥𝑥∗ (i.e., the Euclidean distance of each PIF). 
Higher weights indicate the possibility of higher errors in 
each operator’s performances. However, T works in a 
reverse direction. In other words, Euclidean distances that 
are shorter than the ideal point indicate that PIFs have the 
greatest effects on each operator’s performance. The linear 
programming problem was solved in MATLAB. 

3.2. BBNs 
The term BN was first used by Judea Pearl in 1985. In fact, 
a BBN represents the graphic relationships of a model in 
which the relationships are shown as variables [32]. In fact, 
BBNs are similar to a group of graphic models known as the 
Directed Acyclic Graphs (DAGs). Figure 3 demonstrates the 
steps taken in creating and applying a model of BBNs. 
Having specifications for a BBNs allows for the calculation 
of the next probability distribution for each of the nodes 
(designated as beliefs).  

Selecting a model for the representation of relationships 
between PSFs largely based on machine learning can most 
accurately model the causal graph structure. Prospective 
models include decision trees, Artificial Neural Networks 
(ANNs), Support Vector Machines (SVMs), and BBNs. 
Decision trees are developed by splitting source data based 
on some data characteristics. They are used best in instances 
of attribute-value pairs; therefore, they do not accurately 
model the causal graph structure [33].

Figure 3. The steps in the BBN development. 
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Table 2. PIFs used in the ATPI.
No. Corresponding PIFs No. Corresponding PIFs

1 Environmental factors 17 Bias 
2 Organizational culture 18 Hurry 
3 Inadequate supervision on the task 19 Leaving work 
4 Cleaning workplace 20 Personal Grooming 
5 Complexity 21 Impact of personal protective equipment on the task 
6 Lack of adequate tools for tasks 22 Impact of physical abilities on the task 
7 Adverse physical conditions (cold, etc.) 23 Visual impact on the task 
8 Fatigue 24 Lack of transparency in work guidelines 
9 Stress 25 Time-constrained load 

10 Lack of alertness 26 Workload 
11 The possibility of a deliberate error 27 Bad planning production 
12 Functional errors (inadvertent error) 28 Doing two or more tasks simultaneously 
13 Lack of confidence 29 Inadequate access to tools and equipment at work 
14 Lack of training and experience 30 Improper layout equipment 
15 Responsibility and commitment to task 31 Improper maintenance of equipment 
16 Poor interaction and collaboration with colleagues 32 Obsolete technology 

Table 3. The approach to LINMAP and BBNs in an ATP industry.
Phase Step Description of steps

Fi
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Fs
) 

1 Defining the problem and reviewing the literature 
2 Identifying 66 PIFs 
3 Selecting PIFs in the ATP industry (32 PIFs selected) in the light of experts’ opinions 
4 Identifying task assignments and classifying the individuals performing the same task 
5 Dedicating relevant scores to each factor (first section of worksheet) 
6 Selecting preferences and advantages of factors to others by operators (second section of worksheet) 
7 Loading data into software constructing linear programming 
8 Determining the weight of each task (wj) and each factor’s distance from the ideal point (ti) 
9 Normalizing data 

Se
co

nd
 

ph
as

e 
(I

nt
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pl
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y 
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tw
ee

n 
PI

Fs
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10 Determining correlations between PIFs and determining their significance 
11 Reviewing the literature and analyzing results in consultation with industry experts to present a model 

showing interplay between PIFs 
12 Proposing a predictive BBN model 

Figure 4. The BBN diagram for four PIFs. 

Today, BBNs have found diverse applications in 
engineering, medicine, aeronautics, computer sciences, 
geology, education, communication sciences, military 
strategy, and reliability analysis.  

Suppose that E and F are non-dependent or independent 
events, respectively. If the possibility of E happening is not 
completely related to the occurrence or non-occurrence of F, 
E and F are considered independent. Based on probability 
laws, if E and F are independent, the possibility that both 
occur simultaneously can be calculated through the 
following equation: 
𝐻𝐻(𝐻𝐻 ∩ 𝐹𝐹) = 𝐻𝐻(𝐻𝐻).𝐻𝐻(𝐹𝐹) . 

However, when E depends on F, the above equation does not 
apply, and the relevant law changes through the following 
equation: 

𝐻𝐻(𝐻𝐻) = �𝐻𝐻(𝐻𝐻|𝐹𝐹𝑖𝑖)𝐻𝐻(𝐹𝐹𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 , (10) 

Figure 4 demonstrates the BN diagram for four nodes, 
displaying the conditional dependence and independence 
relationships between nodes A, B, C and D. In this study, 
MSBNX was employed to solve BBNs and probabilities.  

4. Case study (data) and research procedures
This section discusses the use of the proposed method in the 
Aircraft Tire Production (ATP) industry. The study was 
conducted in two categories of operators at two workshops. 
The first group performed such tasks as Banbury mixer, 
extruding, calendaring, and beach-off cooling machine (in 
the first workshop). The second group carried out such tasks 
as bead assembling, cutting, tire building, and tire curing (in 
the second workshop). There were four and 11 operators in 
the first and second workshops, respectively. All the 
operators were included in a statistical study, where they 
completed worksheets (questionnaires). The worksheets 
consisted of two sections, the first of which contained scores 
within the range of 0–10 for each PIF (0 for the lowest value 
and 10 for the highest value) (see Figure 5).  

Figure 6 depicts the sample worksheets of the ATP 
industry in which the operators are ranked from zero to ten 
in vacant cells. The worksheets also include pairwise 
comparisons (among PIFs) drawn for as many required times 
as the operator deems fit. Table 2 demonstrates the 32 PIFs 
analyzed in the current study. The PIFs are determined with 
respect to the following criteria: 

• The literature review of PIFs and pertinent
research papers;

• The comparison of different PIFs to check any lack 
of overlaps;

• The judgments/opinions of experts.
Table 3 gives an overview of the approach to this study. The 
advantage of the LINMAP over other MADM methods is  
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Figure 5. Scores 0 to 10 for PIFs and tasks. 

Figure 6. The worksheet sample. 

Table 4. The weights of tasks in the first workshop. 
Percentage of potential 
error (Normal weight) 

Weights of 
tasks (wj) Tasks 

38% 0.01667 Calendaring 
27% 0.011755 Extruding 
18% 0.007729 Beach-off 
17% 0.007313 Banbury 

Table 5. The weights of tasks in the second workshop. 
Percentage of potential 
error (Normal weight) 

Weight of 
tasks (wj) Tasks 

47.2% 0.0258 Cutting 
18.6% 0.0102 Tire curing 
18.6% 0.0102 Tire building 
15.6% 0.0085 Bead assembling 

that it needs a very few numbers of pairwise comparisons. 
It is also not time-consuming. Moreover, the LINMAP 
prioritizes PIFs and tasks simultaneously. The intended 
frequencies are extracted from the first section of the 
questionnaires including the tasks common to all 
operators. The second section of the worksheet is used for 
each individual operator. Tables 4 and 5 report the results 
of analyzing tasks. The first column indicates the tasks in 
each workshop, whereas the second column displays the 
weight of each task wj. The third one indicates the 
normalized weight of each task where the potential error 
percentage of each task is represented. Tables 6 and 7 
demonstrate the priorities of PIFs having the greatest 
effects on an operator’s performance. The first column 
displays the ranks of factors arranged on the basis of the 
highest scores demonstrating which factors have the 

greatest effects on an operator’s performance in each 
workshop. The second column provides the designations 
of PIFs sorted according to their average distances from 
the ideal points (Ti). Moreover, the third column depicts 
average Ti. As discussed earlier, there are four operators 
in the first workshop where four values of Ti are obtained. 
Therefore, their average is reported in this paper. A similar 
procedure was adopted for the second workshop. There 
are 11 operators in the second workshop; thus, an average 
of 11 values of Ti is considered and calculated. The fourth 
column demonstrates the normalized values of Ti which 
can measure the effect probability each PIF. Furthermore, 
the PIFs are ranked to a sensitivity of two decimal digits.  
       Hence, calendaring task had the highest wj value 
equal to 0.01667 or 38% indicating that it had the greatest 
impact on PIFs in the first workshop. The PIFs were also 
assigned from the highest to lowest on such tasks as 
extruding (27%), beach-off (18%), and Banbury (17%). In 
other words, the possibility rates of HE in calendaring, 
extruding, beach-off, and Banbury were reported at 38%, 
37%, 18%, and 17% in the mentioned order. Alternatively 
interpreted, Table 6 arranged PIFs such as environmental 
factors, visual impacts on task, inadequate supervision on 
the task, time-constrained load, obsolete technology, lack 
of confidence, poor interaction, impact of physical 
abilities, lack of adequate tools, and inadequate access to 
tools and equipment in order of priority. They can affect 
calendaring, extruding, beach-off, and Banbury tasks with 
the relevant probabilities obtained. For instance, the PIFs 
having ranking 1 with the value or probability of 13.11% 
affected the tasks in Workshop 1. 
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Table 6. The priorities of PIFs for Banbury, extruding, calendaring and beach-off tasks. 
Rank PIFs Ave. (Ti) Normal Ave. (Ti)

1 

Environmental factors 0.573 

0.1311 
Visual impact on the task 0.573 

Inadequate supervision of task 0.573 
Time-constrained load 0.573 
Obsolete technology 0.573 

2 

Lack of confidence 0.594 

0.1264 
Poor interaction 0.594 

Impact of physical abilities 0.594 
Lack of adequate tools 0.594 

Inadequate access to tools 0.594 

3 
Responsibility 0.637 

0.1177 Improper layout equipment 0.637 
Hurry 0.637 

4 
workload 0.702 

0.1068 Stress 0.702 
Leaving work 0.702 

5 Organizational culture 0.788 0.0953 Bad planning production 0.788

6 Complexity 0.896 0.0839 Adverse physical conditions 0.896

7 Bias 0.901 0.0832 

8 
Personal protective 1.026 

0.0733 Doing two or more tasks 1.026 
Improper maintenance 1.026 

9 
Cleaning workplace 1.178 

0.0637 Lack of alertness 1.178 
Functional errors 1.178 

Lack of training and experience 1.178 

10 Deliberate error 1.185 0.0634 

11 
Fatigue 1.359 

0.0553 Personal Grooming 1.359 
Lack of guidelines 1.359 

Workshop 2 can be analyzed in the same manner. The 
highest occurrence probabilities of errors in performance 
respectively (from the highest to the lowest) belonged to 
cutting, tire curing, tire building, and bead assembling. 
Table 5 demonstrates the PIFs arranged in order of priority 
affecting the tasks in the second workshop. Cutting with 
a value of 47.2% received the greatest impact from the 
factors. After that, tire curing with 15.6% and tire building 
and bead assembling with 18.6% were affected by the 
stated factors. The factors had identical effects on tire 
building and bead assembling. Table 7 listed inadequate 
supervision, workplace cleanliness, time-constrained 
load, bad planning, improper equipment layout, personal 
grooming, doing two or more simultaneous tasks, 
environmental factors, and work complexity in order of 
importance. They had the greatest effects on the above 
four tasks in the second workshop. 

Figures 7 and 8 demonstrate the Pareto histograms 
related to the weight (wj) of Tables 4 and 5, respectively. 
They also illustrate the plotted curves of cumulative 
normalized weights.  

Figure 7. The Pareto histogram for the potential error 
percentage in Workshop 1. 

Figures 9 and 10 separately demonstrate the details of 
weights for each individual operator in either workshop. In 
fact, the analyst can detect which operators are prone to 
error probability in  different tasks. For  example, Figure  8 
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Table 7. The priorities of PIFs for bead assembling, cutting, tire building, and tire curing tasks. 
Rank PIFs Ave. (Ti) Normal Ave. (Ti) 

1 

Inadequate supervision of task 2.510 

0.0987 

Cleaning workplace 2.510 
Time-constrained load 2.510 

Bad planning production 2.510 
Improper layout equipment 2.510 

Personal Grooming 2.510 
Doing two or more tasks 2.510 

2 Environmental factors 2.525 0.0981 
Complexity 2.525 

3 
Organizational culture 2.550 

0.0972 Improper maintenance 2.550 
Obsolete technology 2.550 

4 Lack of alertness 2.563 0.0966 Lack of confidence 2.563

5 Responsibility 2.605 0.0951 Workload 2.605

6 

Lack of adequate tools 2.625 

0.0945 

Fatigue 2.625 
Stress 2.625 

Personal protective 2.625 
Impact of physical abilities 2.625 

Lack of guidelines 2.625 
Inadequate access to tools 2.625 

7 

Adverse physical conditions 2.710 

0.0915 
Functional errors 2.710 

Lack of training & experience 2.710 
Poor interaction 2.710 
Leaving work 2.710 

8 Bias 2.818 0.0879 
9 Hurry 2.950 0.0840 
10 Visual impact on the task 3.059 0.0810 
11 Deliberate error 3.284 0.0755 

Figure 8. The Pareto histogram for percentage of potential errors in 
Workshop 2.  

Figure 9. The analysis of individual operators A, B, C, and D in 
Workshop 1. 
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Figure 10. The analysis of individual operators A, B, C, D, E, F, G, H, I, G, and K in Workshop 2. 

indicates that the factors had the greatest effects on 
extruding (42.1%) and Bannury (31%) for Operator A1. 
For Operator B1, the factors had the greatest effects on 
calendaring (70.2%). In addition, extruding for Operator 
C1 and Banbury for Operator D1 showed the greatest 
potential of error. The last bar in the histogram displays 
the average weights of the four operators in Figure 8. 
Furthermore, Figure 10 indicates that a similar analysis 
can be provided for the second workshop. 
      In Figure 10, “Ave” shows the mean weights of 
operators. Bead assembling for Operator A2 displays a 
value of 86% (the highest value in second workshop), 
whereas the same value for “Ave” is the lowest (15.6%). 
Considering the prioritization of PIFs to mitigate the 
effects of the latter factors, it is advisable to implement 
such methods and measures as training operators to 
compensate for their lack of self-confidence, improving 
environmental factors (i.e., light, temperature, noise), 
concentrating on tasks, purchasing new equipment and 
gears, recruiting new operators to make up for the time-
constrained load, designing and locating a new site for the 
workshop, cleaning or executing 5S at the workplace, and 
further cooperation among workers. 

As discussed earlier, the second phase can be started as 
follows. In this section, not all factors are utilized to 
determine the relationships between different PIFs. Although 
we used significant correlation coefficients between PIFs, 
the relationships of factors in the IDAC model and the 
special relationships of factors in the ATP industry were 
determined through the calculations made by the industry 
experts. In fact, this model is a simplified version in which 
the important factors are taken into consideration. Evidently, 
the factors affect an operator’s performance. The numbers 
next to each arrow in Figure 11 represent the correlation 
coefficients of two related factors. Also Figure 11 show the 
factor “fatigue” with a probability of 0.606 affects not only 
the operator’s total performance (human error) but also the 
input on non-alertness. This factor with a correlation 
coefficient of 0.49 affects “alertness” and directly impacts an 
operator’s performance (human error). The factors 
connected to “operator” directly affect an operator’s 

behavior. Moreover, each factor exists in two states: 
“present” and “non-present”, i.e., the factor in question 
having a specified probability can be “present” or “absent”. 
In this model, the factors having the greatest ability are used 
with respect to the factors that directly or indirectly affect an 
operator’s performance. The “operator” in this model having 
a probability of 0.630 is affected by the factors, there is an 
occurrence possibility of error. With the probability of 0.369, 
the operator can be error-free, whereas “stress”, “non-
alertness”, and “fatigue” play the most crucial roles in an 
operator’s performance. 
     Figure 12 demonstrates what share is allotted to each 
factor in case human errors occur. For example, if the 
probability of human error is 1, the probability of lack of 
alertness is 0.747. Moreover, if there is an error or the 
operator commits an error, this model has the capability of 
predicting conditional probabilities of each factor. According 
to the data in Figure 12, the factors related to “lack of 
confidence, bias, complexity, fatigue, doing two or more 
simultaneous tasks, lack of alertness, inadequate supervision, 
and stress” are the ones undergoing the most changes in the 
form of probability escalation. 

5. Conclusion

The Linear programming techniques for Multidimensional 
Analysis of Preference (LINMAP) and Bayesian Belief 
Networks (BBNs) can provide useful information regarding 
PIF ranking and the occurrence probability of Performance 
Influencing Factors (PIFs). As planned, the factors were 
ranked and the operators’ tasks were prioritized. In other 
words, the error potential percentage of each task was 
determined. Therefore, it is easy to determine what factors 
had the greatest effect on the performance of operators 
(Tables 6 and 7). In addition, Tales 4 and 5 reported the error 
potential percentages. The method also separately obtained 
the operators’ error percentages in delivering their tasks. The 
BBNs helped better perceive the relationships between PIFs 
and the mutual effects of factors. By means of BBNs, a 
predictive  model like  that of  Figure 12 can be developed. 
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Figure 11. The BBN of PIFs for the ATP industry. 

LINMAP and BBNs are used in lieu of ANP or AHP. The 
latter techniques contain too many pairwise comparisons. 
This study aimed to provide the rankings of the assigned 
tasks towards determining the error potential possibilities 
and prioritizing PIFs. According to the literature, it is 
essential to prioritize factors and the assigned tasks with the 
aim of improving operators’ performance and developing a 
more proper layout for instructions and work conditions. 
Moreover, establishing a relationship between factors and 
the degrees of their mutual effects can greatly help manage 
this complex set skillfully. 
      There was no need for many confusing pairwise  
comparisons. The methods required short-time training, fast 
implementation, and  observation of the  relationships 
between factors and their mutual effects. Finally, factors  and 

activities were simultaneously ranked. 

Limitations/shortcomings and development of future 
studies 

This is the first ever study to employ LINMAP to rank human 
factors. However, the methods were non-integrated in this 
study, and it was essential to adopt a BBN to estimate the 
presence probability of each factor in human error. 
Henceforth, for the development of future studies, it is 
necessary to compare this model with other models of human 
error assessment. It is also desirable to measure and discuss 
the validity, reliability, and accuracy of this model. PIFs can 
be classified similarly to the IDAC model, and similar 
groups can be ranked on the basis of factors. Therefore, 
overlapping can be prevented. 
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Figure 12. The occurrence probability of PIFs in case of HEs. 
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