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Abstract. Loop layout is a common layout in Flexible Manufacturing Systems (FMSs), in
which machines are arranged around the loop and materials are transported in a unidirec-
tional route only. The objective of the Loop Layout Problem (LLP) is to regulate machines
around a loop to minimize the maximum congestion within a set of parts. Arti�cial
Immune System (AIS), Tabu Search (TS), and Improved Tabu Search (ITS) algorithms
are employed to solve these loop layout problems. The algorithms are tested and validated
through large- and small-sized randomly generated hypothetical problems with a minimum
required machine sequence. The e�ciency of algorithms is compared with that of existing
algorithms for benchmark problems. Computational results reveal that ITS algorithm
outperforms AIS, TS, and existing algorithm for large-sized hypothetical problems.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

One of the principal concerns regarding the layout of
a loop 
exible manufacturing process is distributing
various resources for producing higher e�ciency. Ma-
chines in the present FMS are a vital resource; thus,
it is crucial to ensure that a machine does not need to
remain idle based on the design of a material processing
system. Hence, a vital factor in the functioning
of production systems is to determine a layout so
that material movement between the machines can be
e�cient the most. Di�erent types of machine layout
include line layout, open �eld layout, loop layout,
ladder layout, and robot centered cell.

An overview of the loop layout problems has
been made by many researchers who have already
attempted to solve LLPs. Common approaches are
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linear programming as well as heuristic and meta-
heuristic methods. Afentakis [1] proposed solutions for
the LLPs of a loop network and developed a loop layout
with a graph where the nodes resemble the processing
elements and the links of the Flexible Manufacturing
System (FMS) are resembled by edges. E�cient
material 
ow, operational simplicity, and 
exibility are
some features of the loop network. Cheng and Gen
[2] suggested using hybrid genetic algorithm technique
and neighborhood search methodology to arrive at the
min sum and min max LLP. Bennell et al. [3] described
TS methodology along with a randomized insertion
technique to provide solutions for min max LLP.

Yang et al. [4] detailed a two-step heuristic ap-
proach to FMS with one-loop directional 
ow patterns.
The problem was in the form of integer linear pro-
gramming, which might be de�ned optimally for similar
instant smaller sizes. Many researchers have adopted
a mixed model for providing a solution for a new
�eld layout with closed-loop con�guration problems.
Kumar et al. [5] suggested a dual phase, one of which
involves AIS technique to determine a solution for
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the unidirectional LLP by considering min sum and
min max objectives while shortcuts are formed in the
path of 
ow for the materials in the layout to improve
the overall system performance.

Kumar et al. [6] proposed a solution for deter-
mining the order of the machines over a loop network
to reduce the count of loop traverse of machinable
parts. Nearchou [7] determined DEA to provide a
solution to the LLP and a methodology for decoding
the chromosomes for problems characterized by permu-
tation property. A simulated annealing technique was
proposed by Chae and Peters to determine a solution
to reduce the cost of material handling [8].

AsefVaziri et al. [9] suggested ant colony method
for improving loop-dependent network design with a
shortcut. Hong et al. [10] performed modi�ed ranking
and achieved local improvement using genetic algo-
rithm. Lasrado and Nazzel [11] implemented queuing
theory and genetic algorithm to form a closed-loop
con�guration. Glover and Laguna [12] developed
tabu search which was applied to lead optimization
algorithms in the search for a globally optimal solu-
tion. Uneven area con�guration layout cases where
the motive is to determine a 
exible bay con�guration
with desirable solutions [13]. Potts and Whitehead [14]
proposed a combination of scheduling layout and ma-
chine layout for a manufacturing facility and presented
solutions with the help of an integer programming
model. Yang et al. [15] and Yang Peters [16] applied
fabrication facilities to �nd solutions for forming a lay-
out material processing facility design problem which
remained dependent on a spine layout systems.

Suhardini et al. [17] developed systematic layout
planning to design the industry layout in order to
increase production capacity. Kang et al. [18] devel-
oped a method for determining the optimal location of
production cells in a material handling system with a
central loop. The loop layout problem received very
little attention in the extensive literature review [19].

Alduaji and Hassin [20] devised a linear program-
ming methodology for a circular open �eld layout in
designing FMSs with the goal of reducing production
costs to absolute minimum. Hungerlander et al. [21]
described a directed circular facility layout problem in
which the total weighted sum of all pairs of machine
center-to-center distances measured was minimized.
The best arrangement of a series of cutting tools on
a tool turret is one of the most common real-world
implementations of the loop layout problem.

One of the most important aspects to consider
for a successful and cost-e�ective operation of an au-
tomated guided vehicle system is facility layout design
technique [22]. Rai and Jayswal [23] developed a parti-
cle swarm optimization algorithm for solving the loop
layout problem. The monarch butter
y optimization
approach was presented by the layout design, and the

quickest single-loop material handling path was solved
by Kim and Chae [24]. Wenhan et al. [25] described
a hybrid population-based incremental learning tech-
nique for solving the closed-loop layout problem by
simultaneously searching for the best facility placement
order and the size of the rectangle loop. A multi-stage
stochastic programming approach was utilized by Mo-
hammadia et al. [26] for a sustainable closed-loop sup-
ply chain con�guration design with �nancial decisions.

The major purpose of the circular layout challenge
is to reduce the overall transportation cost of material

ow between facilities. To this end, the appropriate
facility placement sequence as well as the rectangle
loop's optimal size must be determined at the same
time. Although many metaheuristic-based solutions
for solving the circular loop layout problem have been
proposed, those approaches simply use metaheuristics
to �nd the best facility placement sequence, with the
enumeration method determining the ideal size of the
rectangle loop [27].

Saravanan and Ganesh Kumar [28] reviewed the
loop layout problem and described the min max tech-
nique to reduce substantially the congestion in parts of
the sub family given that their attempted minimization
was the same as the amount of congestion reduction
for other parts. In doing so, the min max approach
has been improved; it was found that complicated
problems have been adopted using recent optimization
methods with optimal solutions for LLPs and the
results have been evaluated based on the earlier results
of the algorithms. There is no benchmarking for the
loop layout problem with distance for huge machines
in the literature. However, further research is still
required to look into large-scale issues. Underutilized
metaheuristic algorithms are required to test this type
of the loop layout problem.

In this paper, loop layout problems have been
used by considering large-sized problems with unit
distance to minimize the maximum congestion in
the family of parts. Large-sized problems with unit
distance have been assumed and incorporated to
minimize the maximum congestion among the family
of parts. In order to overcome min max congestion
issues, an improved TS strategy has been developed.
It has been enhanced to solve benchmarking problems
compared to TS, AIS and Sheep Flock Heredity
Algorithm (SFHA). Classic TS paradigm has been
reconstructed with the solutions of the above process
served as ITS method by solving issues.

2. Problem description

In this paper, a loop layout is considered for a spine
layout given that a spine design is relative to the loop
arrangement system for an FMS. The dimensions and
clearance among the machines are considered equal
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with the unit distance. An FMS system is a loop layout
in which machines must be placed in a loop structure
and the materials be transferred in a cycle form, as
shown in Figure 1.

In a unidirectional loop design, only a load-
ing/unloading location exists where parts leave and
enter the manufacturing system. The number of
machines includes n and M = 0; 1; 2; � � �n, where
0 denotes the loading/unloading station. The loop
arrangement model is in the form of transformation
of machines (m1;m2;m3;mn) with a pre�x of load-
ing/unloading station 0. Every part is characterized by
its machining operation to be performed in a sequence.
Now, machining is performed on machine j, followed
by machine i. When the location of machine j is
under machine i, then the part must move over the
area, which is called a reload. The actual number
of reloads required to �nish the machining is termed
as tra�c congestion. Our objective is to provide the
best optimal layout sequence through optimization by
considering a set of machining operation constraints in
hypothetical test problems given in Table 1.

A min sum case involves an attempt to minimize
the congestion of all parts, while a min max case
ensures minimizing the highest congestion existing
among parts of the family [29]. Min max and algo-
rithm performance are ascertained as per the following
formulas:

1. The function for the min max LLP is given below:
Costmin max =max(reload1; reload2; reloadM ): (1)

Min max aim is to account for high variability up
and down in the mix and quantity of demand.
Over time, uniform loading of machines should be
observed so that the number of reloads in total
shafts is high for this layout arrangement;

2. Each resolution determined by the algorithm can-
not be a desirable solution; however, few solutions
are close enough to optimality. The e�ciency of
an algorithm in producing near-optimal solution is
calculated through the average percentage solution
e�ort (SE%) as expressed through Eq. (2):

SE(%) =
neopt
netotal

� 100: (2)

Figure 1. Arrangement of loop arrangement.

neopt denotes the number of estimations per-
formedthrough the proposed algorithm to obtain an
optimal solution (very close to the best solution),
netotal denotes the total number of estimations
performed through the algorithm for all solutions.

For the sake of clarity, illustration regarding the �rst
problem is presented here. The required machine
progress for each part is given in Table 1.

The layout considered is 13-9-6-19-11-18-5-8-16-
3-17-4-1-14-12-15-7-10-2-20, which means the location
of the machines in the loop including machine 13
in the �rst position, followed by machines 9, 6, etc.
Only one loading/unloading is taken as the beginning
point of the spine loop. Commonly, by evaluating the
development of the demanded part given above, part
1 must visit 6, 3 (upper row), and 4 (lower row), and
need to cross the loading/unloading (one reload) after
the mentioned part. It continues to visit 18, 5, 1, 14, 7
and needs one reload; next, part 1 visits machine 11 and
requires one reload. After that, part 1 visits machines
13, 9, 16, 17, and 2. Further, one reload is needed to
visit machines 8, and 15 so that the process can be
complete. Similarly, part 2 requires �ve reloads, part 3
�ve reloads, part 4 one reload, part 5 seven reloads,
part 6 one reload, part 7 �ve reloads, part 8 three
reloads, part 9 one reload, and part 10 �ve reloads.
The cost min sum value is calculated as follows:

Costmin max =max (part 1 reload; part 2 reload;

part 3 reload; part 4 reload;

part 5 reload; part 6 reload;

part 7 reload; part 8 reload;

part 9 reload; part 10 reload)

=max(4; 5; 5; 1; 7; 1; 5; 3; 1; 5)=7;

Costmin max =part 1 reload; part 2 reload;

part 3 reload; part 4 reload;

part 5 reload; part 6 reload;

part 7 reload; part 8 reload;

part 9 reload; part 10 reload

= 4 + 5 + 5 + 1 + 7 + 1 + 5

+ 3 + 1 + 5 = 37:

Total spine layout distance = 22-unit distance

Total travelling distance = 814
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Table 1. Minimum required sequence for hypothetical problem.

P. no
Number of
machines
and parts

Part no. Machine progress

1 20 & 10

1 6-3-4-18-5-1-14-7-11-13-9-16-17-2-8-15
2 17-9-11-8-10-13-2-16-4-20-18-15-6-3-7
3 13-2-6-3-14-12-15-17-8-1-10-7-20-19
4 7-2-6-11-8-16-1
5 3-17-1-2-20-8-6-19-14-11-15-12-7-16-10-18-4-13-9-5
6 9-2-6-7
7 15-9-19-12-3-6-5-8-14-7-1-2-13-4
8 7-19-5-4-9-16-3-14-13-11-2
9 3-4-1-6-11-20
10 12-6-17-15-13-9-18-14-19-7-11-2-4

2 60 & 5

1 6-11-13-19-14-24-27-31-25-41-50-38-1-58-48-55-2-9-36-53-60
2 2-9-16-20-29-34-39-42-44-46-50-1-25-45-38-53-52-57-60
3 5-10-12-22-26-30-33-40-42-25-14-54-18-49-51-1-8-35
4 8-15-17-21-25-32-38-41-45-54-11-44-12-26-56-58-59
5 1-3-4-18-23-25-28-35-37-40-43-58-60

3 60 & 10

1 5-20-32-43-6-8-12-55-58-19-16-17-35-39-22-40
2 59-55-5-7-15-18-25-36-43-53-28-6-35-46-51-13-58-2-3-14-41-39
3 25-29-21-45-48-15-58-51-4-13-59-53-60-27-16-29-36-33-31-48
4 1-7-15-23-29-36-44-5-8-14-24-33-41-48-57-51-55-60
5 22-28-45-39-16-5-15-25-43-57-60-34-6-9-32-31-48-55-38-19-8-53
6 5-53-44-26-58-60-34-38-25-19-28-35-41-54-10-20-48-57
7 46-35-53-60-15-6-8-1-34-18-44-39-51-50-30-42-10-57
8 1-8-9-15-24-38-46-53-35-29-58-59-30-21-50
9 3-4-6-32-36-11-19-52-59-2-44-47-49-24-29-20-46
10 46-53-57-60-10-15-24-36-49-50

4 60 & 15

1 11-13-8-7-25-24-21-51-9-14-29-56-6-32-33-34-42-48-44-58-2-3-60-17-5-22
2 57-60-59-4-1-15-37-14-5-7-50-26-24-44-36-42-10-2
3 27-30-29-47-15-20-53-58-23-8-7-34-51-6-55-60-24-36
4 9-12-6-17-15-13-30-41-54-58-60-50-43-26-18-14-7-11-23-2-4-25-24
5 33-6-3-41-18-53-56-30-5-1-14-24-38-26-7-11-36-47
6 7-22-60-11-31-18-51-44-1
7 15-19-29-22-33-56-48-44-7-28-23-1-39-24-27-2- 13-4-26-46-11-10-35-21-52-20-18
8 42-51-6-8-14-9-11-3-35-22
9 21-40-10-6-11-32
10 11-13-31-12-1-44-8-59-29
11 23-6-58-9-34
12 10-8-7-59-16
13 31-7-12-20-22-18-6-26-39-44-11-55-52-17-16-21- 10-48-43-4-27-24-25-13-30-40-9-5
14 p5-41-50-37-13-28-19-9-11
15 21-41-6-11-22-52-14
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Figure 2. Working process of AIS algorithm.

3. Methodology

3.1. Arti�cial immune system algorithm
AIS is an e�cient search methodology resembling the
procedure of analytical immunology and the immune
system found in organisms. In AIS, clonal choice
and a�nity maturation of the immune system causing
immune systems to grow to prevent the infection of for-
eign organism in the human body bear a resemblance
[30]. These antibodies produced antigens; they are
multiplied by cloning based on the selection process.
The cloned cells mutate and produce an a�nity among
antibodies, helping antigens neutralize and eliminate
infectious organisms. New antibodies are developed
by receptor editing and mutations, and the clones are
proportional to the a�nity to the antigen. As a route to

transformation, a considerable number of bad cells are
removed [31]. The working process of AIS is described
in Figure 2. AIS algorithm consists of the following
steps:

Step 1: Initialize a random population;

Step 2: Perform a�nity assessment for every indi-
vidual;

Step 3: Clonal choice; select the `n' good string
depending on the a�nity;

Step 4: Clonal expansion; clone the `n' good strings
with the reproduction size, thus increasing with the
a�nity;
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Step 5: A�nity maturation; mutate every string to
obtain the antibodies and then, retain the strings for
the next new population;
Step 6: Meta dynamics; restore the `r' strings with
new reproduced ones. Strings of lower a�nity have
the highest chance to be replaced;
Step 7: Refer to Steps 2 to 8 unless a certain level
of criterion is achieved.

Numerical example of AIS:

Step 1: The �rst population (P ) strings are obtained
randomly up to the limited size. For instance, the
sequence 8 6 4 3 1 5 7 2 10 13 9 12 11 14 18 17 16 15
20 19 is considered a layout string;
Step 2: The Objective Function Value (OFV) and
the a�nities are computed for randomly produced s
in the population. The a�nity value is determined
using the formula:

A�nity = 1=OFV: (3)

Step 3: Choose the cloning individuals and lay the
choice of the individuals on the a�nity value;
Step 4: Obtain the cloning rate and describe it
below:

Cloning rate =

Solution a�nity value x population size
Total a�nity in the population

: (4)

This step involves creation of more individuals
through cloning with minimum OFVs in comparison
to maximum OFVs. This step helps determine the
alternative clones that exist in the population.
Step 5: Consider the existing string for inverse and
pairwise mutations as follows:

- Inverse mutation: It is obtained through reversing
of the machines between 5 and 14 as follows:

Original string �!8 6 19 4 3 1 57 2 10 13 9 12

11 14 18 17 16 15 20;

Mutated string �!8 6 19 4 11 12 9 13 10 2 7 5 1

3 14 18 17 16 15 20:

Mutated string is lower than the existing string;
then, the modi�ed string replaces the existing one.
The pairwise mutation is obtained over the original
string.

- Pairwise Mutation: It is obtained through the
exchange of the machines between 7 and 17, as
follows:

Original string �!8 6 19 4 3 1 5 7 2 10 13

9 12 11 14 18 17 16 15 20

Mutated string �!8 6 19 4 3 1 17 7 2 10 13

9 12 11 14 18 5 16 15 20

In the post process after pairwise mutation, OFV of
the mutated string is smaller than that of the pre-
vious string. Then, the original string is eliminated
through mutated string; otherwise, the initial string
is maintained.
Step 6: Eliminate R% of the solutions having a
high value with the same R% of randomly created
solutions;
Step 7: Implement Steps 2 to 7 for necessary
iterations.

Parameter settings are population size (P ) = 60, the
number of low-a�nity antibodies to be replaced (R) =
20, and termination criteria (n) = 300 iterations.

3.2. Tabu Search (TS) algorithm
Normally, the Tabu Search (TS) is framed [32{33] from
the local search technique. Tabu search procedure
of the chains changes from one location to another.
The solution obtained by TS is the best local optimal
that can be determined. Accordingly, a superior part
of the solution region is discovered, while comparison
of local search and Tabu search involves a wider
space for achieving better solutions. The return to
the local optimal resulting from TS is dependent on
the technique of prohibitions in which few moves are
frozen from period to period. However, it accounts
for few complications including the maximum number
of local optimal solutions in the region and lookout
pattern, and this state is termed as deterministic
chaos. The �nal local solution and the generations
are left; however, the solution lookout is in a narrow
solution region. Therefore, if this portion does not have
the global domain, it can be identi�ed by the search
technique with the restricted element of the key region.

3.3. Improved Tabu Search (ITS) algorithm
ITS is recommended to overcome the di�culties of the
conventional tabu search and idea of intensi�cation
and reconstruction structure which is grounded on
three stages of intensi�cation and reconstruction which
accepts a solution. The ITS proceeds a new optimized
solution which is regenerated further, and this process
continues. The best output identi�ed through the
iterative operation is determined and stored, and this
outcome would be the prospective consequential result
of ITS. The same process is obtained for the number
of creations to attain the optimal result [34{38]. The
process of ITS is detailed in Figure 3.
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Figure 3. The process of the ITS algorithm.

Step 1: Initiate the �rst string S0. Select the number
of iterations k = 1. Select S1 and set S0 = S1;
Step 2: Select the best Sc in the local string N (Sk):
(a) If the move Sk ! Sc tabu list, set Sk+1 = Sk

and go to Step 3;
(b) If Sk ! Sc is not tabu list, set Sk+1 = Sc
Increase the reverse move to the beginning of the tabu
list and remove the entry on the end. If the objective
function G(Sc) < G(S0), set S0 = Sc.
Step 3: Set k = k + 1. Stop if end criteria are
completed; otherwise, go to Step 2;
Step 4: Intensi�cation: Reconstruct the current
string;
Step 5: Reconstruction: Keep a certain level of
diversi�cation;
Step 6: Accept solution.

The exploitation and exploration of the alternative
determine the selection of candidate strings for the
diversi�cation operator until a criterion is met.

3.3.1. ITS numerical example
The numerical example is illustrated in the case of
a problem with 5 m/cs and 3 parts. The required
machine sequences for each part are assumed as given
below:

- Part 1 : 3-2-1
- Part 2 : 1-2
- Part 3 : 4-1-5

Initial sequence is 5 2 1 4 3 (initial population size 5).
A numerical example of the ITS algorithm is illustrated
through a step-by-step procedure:

Step 1: S0 = S1 =(5-2-1-4-3). G(S1) = 4. Set L = fg
Step 2: N(S1)=f (2-5-1-4-3)

(5-1-2-4-3)
(5-2-4-1-3)
(5-2-1-3-4)g5

With respective reload costs = f4; 4; 3; 4g
Sc = S0 = S2 = (5-2-4-1-3)
Set L = f(1; 4)g
Step 3: k = 4, stop if criteria are satis�ed;
otherwise, refer to Step 2;
Step 4: Intensi�cation. This phase enhances the
present solution and is applied to the freshly rebuilt
solution, unlike the �rst iteration, which intensi�es
the initial solution (i.e., the \output" of construc-
tion). Experimentation indicates that the expensive
runs of tabu search-based improvement technique are
unnecessary. The simple tabu search iterations save
a signi�cant amount of CPU time. When used in
conjunction with the diversi�cation operators, classic
tabu search might �nd more near-optimal solutions
than extensive runs of basic tabu search.
Step 5: Reconstruction. A method of solution
reconstruction allows you to move away from the cur-
rent local optimum to other sections of the solution
space. As a result, maintaining a degree of variety
at this step is critical. If it is too high, the resulting
algorithm may resemble a clean random multi-start,
and if it is too minimum, the procedure may return to
the same solutions on which the reconstruction was
performed. It operates in the same manner as GA's
mutation procedure does. During the reconstruction
method, at the layout solution of K percentage for
total nC2 (total number of pairings that may be
exchanged) the pair of facilities are interchanged with
locations.
Step 6: Solution acceptance. In exploration, only
the currently best local optimum is chosen. Each
locally optimal solution might be a possible candidate
for study diversi�cation. Under extreme conditions,
it is possible to create a new solution from the ground
up. It is feasible to achieve the so-called where-you-
are approach. In this respect, any new local optimum
is accepted for the reconstruction process regardless
of solution quality. The exploitation approach is
employed for candidate selection under the diversi�-
cation operator in the described ITS-based heuristic
strategy.
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The ITS's usual 
ow is as follows. It all starts
with the development of a one-of-a-kind solution using
the traditional TS technique. As a result, the best
option was identi�ed �rst. A given solution is also
reconstructed, resulting in a new one. The purpose
of rebuilding is not to completely eliminate the current
solution. However, since parts of this optimum may
mirror those of the globally optimal solution, it is ideal
that the ultimate solution would inherit certain traits
from prior local optimums. As soon as the perturbation
procedure is completed, the result is passed to the
TS method, which begins immediately. The ITS then
returns to form a new optimized solution, which is
rebuilt (or be replaced with another local optimum),
and so on. Throughout the iterative process, a better
solution is discovered and remembered. This method
is used for the needed iterations to get the best result.

Parameter setting includes initial population sizes
= 19, 59. When the number of disimproving moves
reaches maximum, no neighbor is generated or an
infeasible solution occurs for TS, k = 40%, number
of iterations = 300.

4. Result and discussions

To describe the e�cacy of the AIS, TS, and ITS, the
hypothetical test problems mentioned in Table 1 and
benchmark problem taken from Saravanan and Ganesh
Kumar are assessed [39]. First, 1 to 4 problems are
randomly created and hypothetical test instances are
examined. Problem 1 consists of 20 machines with
10 parts with small machine and small part in size.
Problems 2 to 4 (60 machines with 5 parts, 60 machines
with 10 parts, and 60 machines with 15 parts) with
machines and the part size increase. The large number
of machines is assumed to be the same as that in the
previous papers and the technique e�cacy is tested.
The results of AIS and ITS are given in Table 2. In this
latter, the 5th and 6th test problems were adopted from
the literature for layout problems with 50 machines and
10 and 20 parts. The comparative results of AIS, TS,
ITS and existing SFHA are presented in Tables 3 and
4. The projected system is coded in the MATLAB and
language overall tests are computed using a Pentium-
IV Microsoft windows system.

The performance of the AIS and ITS is compared
in the case of the hypothetical problems based on
the min max approach, unit distance, and solution
e�ort. Further, the benchmark problems based on
the min sum and min max approaches were resolved
without distance and solution e�ort. From Table 2
and Figures 4, 5, and 6 for the hypothetical test
problem 1, AIS achieves an optimum result compared
to ITS. ITS for test problems 2 to 4 outperforms AIS
with a minimum distance. For the test problems,
ITS outperforms AIS in terms of percentage Solution

Figure 4. Comparison of ITS and AIS for large-sized
loop layout problem with min max.

Figure 5. Comparison of ITS and AIS for large-sized
loop layout problem with unit distance.

Figure 6. Comparison of ITS and AIS for large-sized
loop layout problem with SE (%).

Figure 7. Comparison of min max vs min sum for
problems with 20 M/Cs 10 parts, 60 M/Cs 5 parts, 60
M/Cs 10 parts, and 60 M/Cs 15 parts.

E�ort (SE)%. The lower value SE% indicates the
quick convergence which leads to the optimum result
for large-sized problems. Machine size and part size
increased, which can change the simple problem into a
complex problem.

The proximity of solutions in both approaches
speci�es the consistency of the performance of a speci�c
tool. As can be seen in Figure 7, the other method
presents scattered solutions for min max and min sum.
However, ITS presents minimum point for min max
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Table 2. Outcomes of AIS and ITS for the hypothetical problem.

P. no
NoM

& NoP
Algorithm

Cost
min sum

Cost
min max

Unit
distance

SE%
Congestion

for each
part

Desirable order
of machines

1 20 & 10
AIS 37 7 814 27.2 4-5-5-1-7-1-5-3-1-5

13-9-6-19-11-18-5-8-
16-3-17-4-1-14-12-15-
7-10-2-20

ITS 40 8 880 27.5 6-5-4-1-8-1-4-3-1-7

11-12-8-16-3-10-18-14-
5-13-7-15-20-17-4-1-9-
2-6-19

2 60 & 5

AIS 32 9 1984 64.9 9-7-6-5-5

2- 41- 46- 36- 14- 19-
58-10- 49- 53- 32- 22-
27-5- 31- 29- 44- 56-
35-39- 17- 30- 52- 33-
11-16- 55- 6- 50- 28-
24- 9-3- 42- 47- 25-
20- 60-45- 23- 18-
57- 1- 40-13-8- 48-
7- 12- 51- 37- 15-
59- 54- 38- 43- 21-
4- 26- 34

ITS 29 8 1798 33.3 6-8-6-6-3

1-2- 19- 6- 9- 58-
41-23- 36- 31- 53-
5- 44-48- 26- 8- 52-
30- 42-20- 25- 3- 16-
55- 59- 28- 33- 11-
37- 15- 50- 40- 45-
14- 39- 17- 22- 27-
12- 51- 56- 34- 47-
54- 4- 29- 7- 46- 32-
10- 18- 57- 43- 21-
60- 38- 24- 13- 35- 49

3 60 & 10

AIS 64 9 3968 69.4 7-9-8-8-7-6-8-6-3-2

54-10-20-49-15-46-12-
59-37-24-7-29-3-25-34-
51-39-17-4-26-21-43-1
-23-18-40-28-50-45-6-42-
32-31-53-48-9-57-14-
36-11-33-58-19-2-16-
38-55-13-35-30-52-5-
27-22-44-41-60-8-47-56

ITS 62 9 3844 47.1 5-7-5-5-7-9-8-7-6-3

55-24-58-19-28-36-6-45-
2-33-41-31-9-44-48-27-
8-47-52-30-42-20-25-3-
16-11-49-32-10-22-1-5-
57-35-40-18-12-7-46-
51-29-15-54-4-43-21-
60-50-14-13-38-39-59-
37-53-17-56-34-23-26
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Table 2. Outcomes of AIS and ITS for the hypothetical problem (continued).

P. no
NoM

& NoP
Algorithm

Cost
min sum

Cost
min max

Unit
distance

SE%
Congestion

for each
part

Desirable order
of machines

4 60 & 15

AIS 81 13 5022 74.2 9-7-6-10-8-4-10-
3-0-3-1-1-13-4-2

60-12-34- 21-17-51-56-
43-4-23-45-40-1-49-10-
6-27-15-37-59-20-54-5-
44-30-8-52-47-41-19-58-
7-11-14-26-48-39-25-50-
32-28-57-35-18-31-9-
13-53-46-29-42-24-3-22-
55-16- 33-38-36-2

ITS 78 12 4836 55.3 8-6-6-10-7-4-11-
3-1-2-2-1-12-4-1

7-25-59-34-46-29-37-
51-24-3-56-12-21-48-
43-4-23-45-40-1-50-
10-6-28-54-39-17-9-
35-32-5-44-49-27-55-
33-38-16-11-2-41-36-
15- 19-58-18-22-13-
52-57-26-30-8-60-20-
42-14 31-53-47

Figure 8. Comparison of the ITS with others for
min max approach, SE (%), CPU to the 50-machine,
10-part benchmark problem [16].

Figure 9. Comparison of the min max and min sum
approaches to the benchmark problems with 50 machines
in 10 and 20 parts [16].

and min sum and displays closer solutions for both,
thus specifying the consistency of the tool performance.

From Tables 3{4 and Figure 8{9 for the bench-
mark test problem 5, ITS achieves the optimum result
compared to IT, AIS, and SFHA with less solution

Figure 10. Comparison of the algorithm convergence for
min sum approach to the problems with 50 machines and
10 parts.

e�ort. Moreover, it outperforms AIS and TS [40,41].
ITS outperforms TS, AIS, and SFHA in the case of test
Problem 6. When the performance of the ITS method
was evaluated with the min max, the �ndings indicate
that it performed well for all of the large-sized test
issues. The percentage of solution e�ort represents the
algorithm pace of convergence to the best answer. In a
number of test issues, ITS outperformed TS, AIS [42],
and SFHA at a faster convergence rate.

Figure 10 shows that the answer reaches con-
vergence within 300 cycles for con�gurations. Best
congestion is 95 produced and the ITS gives almost
faster convergence for all of the layout problems than
TS and AIS. TS produced the same results at the end
of the iterations.

The results from the experiments indicate that
the AIS exhibits proper performance in �nding a near-
optimum solution to the 20-machine size problem.
When the problem size increased from 20 to 50 or 60
machines, the performance of ITS in determining the
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Table 3. Comparison of the improved tabu search algorithm with other algorithms for 50-machine, 10-part problem [16].

Algorithm Cost
min sum

Cost
min max

SE
(%)

CPU
time

Congestion for
each part

Optimal order
of machines

min max approach

SFHA 103 23 25.4 10.3
23-10-4-10-
11-20-9-6-
8-2

50-41-14-23-34-6-18-32-17-1
5-39-44-19-47-48-11-4-31-
30-25-13-40-24-22-12-46-2-
28-33-16-49-43-36-10-7-37-
8-20-42-45-3-38-26-1-5-27-
9-21-29-35

AIS 103 23 27.1 10.9
23-6-6-8-12-
22-11-6-6-3

49-23-43-32-22-14-44-19-36-
10-33-37-31-26-24-15-18-
34-47-40-3-27-1-20-41-35-
50-46-28-13-2-11-38-30-
39-42-25-6-4-29-5-9-21-
48-7-12-17-8-45-16

TS 117 26 30.2 12.7
26-9-7-10-
13-25-14-6-
6-1

41-44-36-29-15-17-31-35-
27-32-30-19-40-1-24-7-3-
43-16-20-14-37-18-12-46-
22-21-38-10-23-8-48-9-4-
50-26-45-28-42-2-5-6-49-
25-13-11-39-33-34-47

ITS 95 22 21.9 9.8
22-8-5-10-8-
19-11-4-6-2

8-40-9-18-22-47-5-34-7-
35-16-36-33-44-27-10-19-
50-3-38-43-15-26-21-25-37-
17-39-20-42-45-13-30-
1-6-12-32-4-46-48-31-41-
11-2-28-24-14-23-29-49

best solution was enhanced. A large number of local
optima across the solution space, repeating sequences
or presence of cycle search con�guration, and chaotic
attractors are some of the downsides of traditional TS.
Although the TS chaotic attractors are distinguished
by \getting stuck" because of the absence of cycles and
local optima, the search is still limited to a \small
region" of the solution space [43]. As a result, the
search method will only look at a small portion of the
solution space.

ITS, unlike TS, widens its search space with
each generation to �nd a better solution and avoid
local minima. Reconstruction and intensi�cation are
the two primary tactics. The �rst strategy requires
reconstructing the existing solution that shifts away
from the current location to a new one in the solution
space. The second technique applies local re�nement
to a \ruined" solution [44] based on the classic TS

methodology; theoretically, the enhanced solution is
better than the responses of previous iterations. The
principal purpose of ITS is to �nd near-optimal feasible
solutions by repeating these stages multiple times.

5. Conclusion

This paper proposed Improved Tabu Search (ITS)
and Arti�cial Immune System (AIS) to solve the loop
design problems using min max approach. Computa-
tional results show that ITS algorithm outperformed
the AIS algorithm for the small-size problem. Further
results demonstrated that ITS outperformed AIS algo-
rithm to solve large-sized problems with less solution
e�ort through exploitation and exploration. ITS is a
principle-based optimization policy that \reconstructs
and improves" to provide better outcomes than other
algorithms. In addition, for large-scale benchmark
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Table 4. Comparison of the improved tabu search algorithm with others for 50-machine, 20-part problem [16].

Algorithm Cost
min sum

Cost
min max

SE
(%)

CPU
time

Congestion for
each part

Optimal order
of machines

min max approach

SFHA 129 23 55.9 14.1
6-3-5-6-8-12-23-6-7-
5-4-3-3-7-5-3-2-10-7-4

50-2-29-20-40-36-41-27-26-11-
34-31-19-30-22-45-39-9-46-8-
23-15-18-25-4-13-17-44-5-49-
38-10-43-35-37-33-28-14-48-
3-16-6-7-42-21-32-47-12-1-24

AIS 125 21 56.0 15.5
7-3-4-7-8-12-21-6-7-
6-4-3-1-7-4-3-0-11-7-4

37-11-50-27-30-31-1-21-24-
26-23-28-9-13-4-34-19-49-
22-32-45-48-6-39-25-41-14-
46-33-44-3-5-42-29-16-36-
10-38-15-18-43-47-12-2-40-
7-8-35-17-20

TS 132 24 57.5 19.7
8-5-3-5-7-9-24-8-7-6-
5-3-2-6-5-5-2-11-6-5

2-8-39-4-44-16-30-27-33-38-9-
35-37-36-43-14-32-47-46-3-31-
28-26-24-11-5-15-7-25-21-49-
6-45-1-41-34-19-23-29-20-12-
18-42-40-10-22-48-17-50

ITS 124 21 51.1 12.9
6-5-3-5-9-10-21-4-4-4-
5-4-3-10-6-3-2-10-6-4

44-37-32-17-41-15-45-25-8-20-
13-12-47-49-28-11-43-50-30-
23-10-18-29-14-6-26-1-36-3-
2-9-7-22-19-38-16-39-40-42-
48-31-33-4-34-5-46-21-24-27-35

problems, ITS outperformed TS, AIS, and Sheep Flock
Heredity Algorithms (SFHA). Min-max and min sum
provided a more accurate solution for both, pointing
to the tool consistency in performance. The novel
approach and the mathematical model can be adopted
to solve bidirectional LLPs in the future.
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