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In this research, a bidding problem for a wind-power plant participating in a day-

ahead power market with uncertain correlated market prices is studied. A new 

robust optimization approach considering correlation among uncertainty on the 

hourly prices in a day-ahead market is developed. This results in solutions with 

lower level of over-conservatism. For this purpose a new correlated polyhedral 

uncertainty set is introduced. To consider the uncertainty of market clearing 

prices and the value of power produced by wind power producer a bidding 

algorithm is developed. Results of the study using a robust modelling the bidding 

problem reveal that the appliance of the proposed model on the bidding problem 

for a price-taker wind power plant in a day-ahead market with uncertain 

correlated data leads to solutions with superior performance than that of the 

conventional polyhedral uncertainty sets. 

Keywords: Wind power producer; Bidding problem; Robust optimization; 

Uncertainty set; Correlated market price 

1. Introduction 

In a day-ahead market, power producers propose the hourly prices for the following day 

to the market operator. The market operator covers the demanded power via received 
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bids with the minimum prices while regarding the transaction restrictions. The 

maximum value of the accepted hourly prices by the market operator is called market 

clearing price of the hour. As the market clearing prices depend on the prices proposed 

by market participants, the hourly market clearing prices are uncertain, hence 

participants of day-ahead markets try to estimate the hourly market clearing prices in 

order to propose the optimal bid with the maximum profit. For further details on this 

subject the readers are referred to [1]. Several approaches are applied by researchers to 

tackle the uncertainty in optimization problems. Robust optimization approach is one of 

these approaches while assumes that there is no knowledge on the probability 

distribution function. In the robust optimization approach, an uncertainty set includes all 

perturbation that obtained solutions that are robust against all of them. 

Robust optimization approach is used in solving different problems. Researchers has 

developed different robust models for self-scheduling and bidding problems considering 

uncertainties of market clearing prices, demands bid, load variations, power output of 

the wind-power plants etc. Baringo, Baringo and Arroyo [2] formulated the self-

scheduling problem of a VPP based on a stochastic adaptive robust optimization 

approach. Darvishi, Sheisi and Aghaei [3] studied both price-maker roles and price-

taker roles (balancing market). Baringo, Baringo and Arroyo [4] modelled the self-

scheduling problem of a VPP via a stochastic adaptive robust optimization approach. 

Hasanzad and Rastegar [5] modelled the power system SCUC problem under wind 

power generation uncertainty using an adaptive robust approach and solved it by 

Benders Decomposition algorithm. Khaloie and Anvari-Moghaddam [6] investigated 

the problem of determining the optimal generation scheduling of a hybrid thermal-

energy storage system. They utilized the robust optimization approach to mitigate the 

risk of the energy market price uncertainty. Abdalla, Adma and Ahmed[7] considered 
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the correlation existing between the renewable resources uncertainties to determine the 

generation expansion planning methodology based on a new correlated polyhedral 

uncertainty set. Zhang et al. [8] established an uncertainty set and proposed a robust 

dispatching method to cover the uncertainty of the value of the power proposed by wind 

power producers. Gu et al. [9] proposed a robust model for a network including all of 

the solar, thermal, wind producers and storages. Dai et al. [10] modelled the bidding 

problem of a wind power producer trading in an energy market considering the 

uncertainty of the wind power producer output and the value of the demanded power. 

Han, Kardakos and Hug [11] proposed a two-stage robust framework to derive the 

optimal bidding strategies for WPPs while considering the uncertainty of wind power 

generation. 

To study the correlation among successive prices of a power market, the values 

of MCP for seven days, 336 time intervals, starting from April 1 2019 till April 7 2019 

are indicated in Figure1. 

(Figure 1) 

As shown in this figure, the trend of the prices is seasonal. To apply 

Autocorrelation function, the collected data are converted to stationary series using 

Minitab 19.2.0 software. The relevant Autocorrelation function plot is indicated in 

Figure 2. As shown in this figure, there is strong autocorrelations among hourly market 

prices.  

(Figure 2) 

This correlation is not considered in researches that have employed robust 

optimization approach to model the self-scheduling problem. Hence the solutions 

obtained are protected against perturbations with low or even zero probability of 

occurrence that leads to over-conservative solutions. It means that the solutions 
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robustness against perturbations with low probability of occurrence decreases the 

optimality of solutions. In this regard Jalilvandnejad, Shafaei and Shahriari [12] 

developed a robust model for the self-scheduling problem for a power generation 

company based on a couple of polyhedral uncertainty sets that consider the existing 

correlation among hourly prices.  

Daneshvari and Shafaei [13] improved the uncertainty set presented by Jalilvandnejad et 

al. [14] and introduced a new correlated uncertainty set leading to solutions with 

superior robustness and over conservatism levels compared with the other methods. 

In this research, to avoid over-conservatism of the solutions, the new polyhedral 

uncertainty set that considers the existing correlation among hourly prices is employed 

to model the bidding problem for a wind power plant participating in a day-ahead 

market. To remove void spaces of the uncertainty set corresponding to perturbations 

with negligible probability of occurrence, the borders of the proposed uncertainty set are 

changed corresponding to the correlation level. On the other hand the employed 

uncertainty set includes all probable perturbations that leads to robustness of solutions 

against occurrence of such perturbations. On the other hand, a new bidding algorithm is 

developed to consider the uncertainty of market clearing prices and the value of power 

produced by wind power producer. To this aim, an uncertain bidding problem for a 

price-taker wind power producer is modelled. 

2. Robust approach 

Robust optimization, fuzzy programming, and stochastic optimization are used o model 

the uncertainty existing in real world problems [15]. Robust optimization is applied by 

researchers in different areas among them includes power engineering [16], production 

systems [17], supply chain management [18- 20], etc. 
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Solutions obtained using robust models are protected against all perturbations 

that are included in the corresponding uncertainty sets, hence the applied uncertainty set 

is important. Let's consider the linear programming problem presented below: 

MaxC x   

Ax b  (1) 

l x u    

The uncertain matrix A includes the actual values of uncertain coefficients ija  vary in 

the range of ˆ ˆ,ij ij ij ija a a a   where ija is the nominal value of ija  and ˆ
ija is the 

maximum deviation from the nominal value. In this case, the real value of the uncertain 

coefficient can be formulized as below: 

ˆij ij ijija a a   (2) 

 

 

Where ξij is a random variable perturbing in the range of  1, 1  . In a case when all of 

the absolute values of ij  take values lower than ( 1)   , the uncertainty set obtained 

from the interaction among perturbations is called box uncertainty set that can be 

formulated as follows: 

 ; ,ˆ
A

ij ij ijij ij i
i jU a a a        

(3) 

Soyster [21] took into account the worst value of each coefficient by setting the value of  

 equal to 1 that leads to the most conservative solutions. Figure 3. illustrates the box 

uncertainty set associated with two different values of  . 

(Figure 3) 

As the value of i  increases the corresponding solutions become more conservative. 

Corners of box uncertainty set indicate perturbations with the maximum deviation from 

the nominal value. [22-25] proposed an ellipsoidal uncertainty set to avoid over 
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conservative solutions via omitting corners of the box uncertainty set. The formulation 

of the ellipsoidal uncertainty set is presented as follows: 


22 ;ˆ

A

iij ij ijij ijj

iU a a a 


    


   
(4) 

Where i  adjusts the robustness level. When a problem contains two different 

uncertain parameters, the associated ellipsoidal uncertainty set is illustrated in Figure 4. 

(Figure4) 

The robust models developed under ellipsoidal uncertainty set are convex and has a 

non-linear structure. Bertsimas and Sim [26] introduced the polyhedral uncertainty set 

based on the trade -off between the robustness and optimality level of solutions. The 

proposed polyhedral uncertainty set is formulated as follows: 

;ˆ
A

iij ij ijij ij
j

iU a a a 


    


   (5) 

The protection level  is calculated as follows. This adjusts the robustness level of 

obtained solutions: 

24

1
t

t




  (6) 

As the level of parameter   increases, the over conservatism level of solutions are 

increased.  Figure 5 illustrates the polyhedral uncertainty set for a problem with two 

uncertain coefficients. 

(Figure 5) 

Researchers have applied box, ellipsoidal and polyhedral uncertainty sets on the self-

scheduling problems. Jabr [27] applied a box uncertainty set to model self-scheduling 

problem for a thermal unit participating in a day-ahead market. The ellipsoidal 

uncertainty set is used in self-scheduling models of [28-31]. The studies [16, 32-35] 

formulated robust self-scheduling models under a polyhedral uncertainty set. 
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As mentioned before, correlations among data are not considered in the 

introduced uncertainty sets. It means that applying these uncertainty sets in problems 

with correlated data leads to solutions that are protected against those perturbations with 

very low occurrence probability. Areas C in Figure 6 indicate such perturbations while 

the mentioned uncertainty sets include them. 

(Figure 6) 

To consider the existing correlation among data, Pachamanova [36] introduced a 

formulation appropriate for the situations where the covariance matrix among the 

uncertain coefficients is known. Such perturbations in the formulation of polyhedral 

uncertainty set, proposed by Pachamanova [36], are assumed to be unbounded. 

Therefore the solutions obtained are robust against perturbations out of the uncertainty 

bounds which lead to over conservatism in problems with bounded perturbations. The 

polyhedral uncertainty set proposed in [36] is formulated as follows: 

 
1

2( ( ) ( )
A

A vec A vec AU


   Σ  
(7) 

Where A  and A  represent the matrices of actual values and expected values of the 

uncertain coefficients matrix A , respectively.  vec A and  vec A  are obtained by 

stacking the rows of matrix A on top of one another. 

Bertsimas and Sim [26] introduced another uncertainty set that considers the 

correlation among data. They assumed that all sources of uncertainty and the 

corresponding relation between the sources of uncertainty and uncertain coefficients are 

known while in practice it is difficult to identify such information. Jalilvandnejad, 

Shafaei, and Shahriari [14] develop an uncertainty set that covers probable perturbations 

and removes those perturbations with low probability of occurrence while considering 

the correlation among uncertain coefficients. They bended the borders of the polyhedral 
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uncertainty set to focus on covering perturbations around the diagonals. The proposed 

correlated polyhedral uncertainty set is formulated as follows: 


( )

(1 ( ) ) ; ,
1

ˆ
A i

iij ij ijij ij ijk ij
k j

n
i j

n
U a a a   



  
        

 

   (8) 

Where the existing correlation among uncertain coefficients ja  and 
ka is denoted by  

jk . This is further illustrated in Figure 7: 

(Figure 7) 

As shown in Figure 8, areas named  indicate perturbations with low or even zero 

probability of occurrence that includes the uncertainty set introduced by Jalilvandnejad 

et al. [14] which leads to over conservative solutions. On the other hand, areas named 

  indicate perturbations with high probability of occurrence that are not included by 

the uncertainty set addressed above, hence the obtained solutions are not robust against 

the occurrence of such perturbations. 

(Figure 8) 

In this research, the improved correlated polyhedral uncertainty set proposed by 

Daneshvari and Shafaei [13] as illustrated in Figure 9 is applied to develop a robust 

modelling of a self-scheduling problem for a price taker wind power producer 

participating in a day-ahead market. 

(Figure 9) 

As shown above, perturbations with low probability of occurrence are omitted from the 

proposed uncertainty set. On the other hand, the proposed uncertainty set includes all 

probable perturbations that lead to solutions with superior level of robustness. 

The formulation of the uncertainty set illustrated in Figure 9 is presented as follows: 
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min

(1 ( 1))

( (1 ) ); ,

( )
(1 ( ) ) ; ,

1

1; ,

ˆ
iij ik

k j

ij ij ijij

iik ik
k j

A

i

iij ijk ij
k j

ij

i j
ij

n
i j

n

i j

a a a

U

 

 

 


  

  










    

  


    
 

   
     

  
 
 
  
  

 

 

 
 (9) 

Where the decision making parameter   with values variying in the range of  1, 1   

makes a trade-off between the optimality and robustness of the solutions. To set 1 

maximizes the robustness level of the model but reduces the optimality level of 

solutions. On the other hand, the optimality level of model is maximized when 0 

but the robustness level of solutions is set on the minimum level. Having considered the 

existing regression relationships between the intersection points of the proposed 

uncertainty set borders with horizontal and vertical axes and correlation coefficient  , 

the formulation of the uncertainty set illustrated in Figure 9 is rewritten as follows: 

(1 (1 )( 1))

( )( (1 )(1 )); ,

( )
(1 ( ) ) ; ,

1

1; ,

ˆ
iij ijk

k j

ij ij ijij

iijk ik ijk
k j

A

i

iij ijk ij
k j

ij

i j

n
i j

n

i j

a a a

U

 

 

 


  

  










     

  
     

 

   
     

  
 
 
  
  

 

 

 
 (10) 

3. Self-scheduling problem 

Power producers can be categorized in two types namely price-maker and price-taker 

producers. Prices proposed by Price-makers affect the market clearing prices, while a 

price-taker can't influence the market clearing prices. Power producers participating in 
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day-ahead markets intend to maximize profit by solving the self-scheduling problem of 

the units. For a generation company, solutions obtained via solving the self-scheduling 

problem determine the optimal hourly output of the units. The used notations in this 

paper are as follows: 

t : Market clearing price at t. 

tq : Power produced by wind power producer at t. 

r
: 

The ratio of the real time market price to the day-ahead market price paid 

to the wind power producer for its excess of generation 

t

 : Positive deviation of injected power at from the offered bid at t. 

r
: 

The ratio of the real time market price to the day-ahead market price to be 

charged for deficit of generation 

t

 : Negative deviation of injected power at from the offered bid at t 

 t tC q : Total cost of production at t. 

fixC : 
Fix cost 

inveest

tC : Investment cost at t. 

mtn

tC : Maintenance cost at t. 

,j tb : 
A binary variable, equals to 1 if the wind power output includes the block j 

at t. 

tk : Correlation coefficient between t and k. 

 : 
Uncertainty budget 

j : Perturbation of uncertain coefficient j. 

 : Decision making parameter with values in the range of  0,1  

For a price-taker wind power producer, the self-scheduling problem can be 

formulated as follows: 

, , , ,
,

1

) ))( ((
T DA invest mtn fix

t w t w t w t wtt w
t

Max q C C Cr r
   



        (11) 

, 1

m m

j t j j
Qb Qb Qb


   , 2,...,

j
t j N   (12) 

1,, 1
(1 )

m m

j tj t j j
MQb Qb Qb b 

     , 2,...,
j

t j N   (13) 
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min

1, 1

m

t
Qb Qb Q   t  (14) 

min

2,1, 1
.(1 )

m

tt
MQb Qb Q b     t  (15) 

,1, 1,
.. j tt t

MQb Qbb    t  (16) 

min

,
.

t

j tt
j

q Qb Q u   t  (17) 

t t t

 
     t  (18) 

t t t
qW   t s (19) 

 

As it written above, in equation (11), the price-taker wind power producer tries to 

maximize the total revenue minus the corresponding total cost. Constraints (12) to (19) 

imposes that the wind power producer offers should not be higher than the generation 

capacity of the installed units and calculate the total energy deviations. These technical 

constraints specify the range of each bidding block and force each block to be used once 

the previous bidding block is fully utilised. 

As mentioned before, actual market clearing prices for different hours of a day 

market, i.e. 
t , are correlated uncertain variables varying in a range of ˆ ˆ,t t t     

 
. 

In this case, 
t can be formulated as: 

ˆ
tt t t
    (20) 

Where t  is the nominal value and ˆ
t t  denotes the deviation term from the actual 

price. As mentioned in (7), the perturbations considered in the uncertainty set proposed 

by Pachamanova [36] are assumed to be unbounded so that it leads to over conservative 

solutions. To decrease the over conservatism level of the solutions, Jalilvandnejad et al. 

[12] restricted the bounds of the uncertainty set introduced by Pachamanova [36] by 

adding the constraints of a box uncertainty set assuming 1  as follows: 
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; 1;ˆ ˆ
A

jk ij j j kj k k
j k

jU a a a ar  


     


   (21) 

They illustrated the robust counterpart of the uncertain self-scheduling problem for a 

generation company under the uncertainty set presented in (21). The details are 

presented at below: 

1
; 1;

) )

ˆ ˆ

ˆ( )(
t

A

jk ij j j kj k k
j k

tt t t t
t t

j

N
Max MAX

t
U a a a ar

C qq q
  

  


     


 

 

   

(22) 

q

t
q S


  

In this relation,  tC q  indicates the producer's total cost and  

q

S

is a set of all feasible solutions of the problem under the unit’s technical constraints. 

On the other hand, the self-scheduling problem presented in (22) under the uncertainty 

set introduced by Jalilvandnejad et al. [14] is written as follows: 



1

( )
(1 ( ) ) ; ,

1

)

)

ˆ

( )(

ˆ

t

A i

iij ij ijij ij ijk ij
k j

t t
t

t t tn t
i j

n

N
Max

t

MAX

U a a a

C qq

q
   



 




  
       

   




 




 

(23) 

This model is a nonlinear model and hence, Jalilvandnejad et al. [12] rewrote this model 

by replacing the deviation term of the objective function with its corresponding dual 

problem. The model is written as follows: 

(24) 
 1

) ))( ( (
T invest mtn fix

t t t tt t
t

t t
t t

N
Max q C C Cr r

WZ


   



     

 

  

 
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(25) 
∀𝑡 

( )
(1 ( ) ) ( )

1
ˆiT

t k t tttk tt
k t T

N qWZ z r r
N

 
   



 
      

  

    

(26) 
∀𝑡 , 0

t tWZ   

(27) 
 

q

t
q S


  

In the next section, the robust self-scheduling problem (11)-(19) is modelled under the 

improved correlated polyhedral uncertainty set proposed by Daneshvari and Shafaei 

[13] and the results are compared with those obtained using the model presented in [14]. 

4. Robust modelling under an improved correlated polyhedral uncertainty set 

Here, the robust counterpart of the self-scheduling problem presented in (11)-(19) is 

modelled using the improved correlated polyhedral uncertainty set proposed by 

Daneshvari and Shafaei [13]: 

1

(1 1 ( 1))

( )( (1 )(1 )); ,

( )
(1 ( ) ) ; ,

1

1; ,

) ))

ˆ

( ( (
T

iij ijk
k j

ij ij ijij

iijk ik ijk
k jA

i

iij ijk ij
k j

ij

invest mtn fix

t t t tt t
t

i j

n
i j

n

i j

N
Max

a a a

U

q C C Cr r

 

 

 


  

  











   




    

  


    


  
    

  

 

    



 

 

 

  

( )ˆ
t t t tt tt

t

qMax r r 
   









 
 
 
 
 
  

   
 

 

(28) 

q

t
q S


 (29) 

 

In this model, given vector of optimal solution *q , the deviation term of the objective 

function is formulated as follows: 

*

( )ˆ
t t t tt tt

t

Max q r r 
   

    
(30) 



14 

 

(1 (1 )( 1))

( )( (1 )(1 ))

iij ijk
k j

iijk ik ijk
k j

 

 

 

  





    

   

 

 
 ∀𝑖, 𝑗 (31) 

( )
(1 ( ) )

1

i

iij ijk ij
k j

n

n
  



 
   

 

  
∀𝑖, 𝑗 (32) 

0 1
ij

  
∀𝑖, 𝑗 (33) 

The dual problem of (30)-(33) is also formulated as follows: 

( )( (1 )(1 ))
t tttk ijk

t k t t t

Min NM Z  


 
      

 
     

 (34) 

*

( ) ( 1 (1 )(1 ))

(1 ( ) )
1

ˆ

k t ttk ijk
k t k t

tktk tt
k t

n

n

NM M

qN Z r r

  

 

 

   



      

 
      

 
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∀𝑡 (35) 

0
tM   ∀𝑡 (36) 

0
tN   ∀𝑡 (37) 

0
tZ   ∀𝑡 (38) 

q

t
q S


  ∀𝑡 (39) 

 

Where tM , tN and tZ  are dual variables for constraints (31) , (32) and (33) 

respectively. If this problem has a feasible and bounded solution, the equivalent model 

of the non-linear model (28)-(29) can be replaced by a linear model presented at below: 

( ( ) ))

( )( (1 )(1 ))

(
invest mtn fix

t t
t

tt ttk ijk
t k t t t

Max

N

q C C Cr r

M Z 



 

   



   

      

   

   
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(40) 

*
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n
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qN Z r r
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 

 

   



      

            

 
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∀𝑡 

(41) 

0
tM  ∀𝑡 (42) 

0
tN  ∀𝑡 (43) 

0
tZ  ∀𝑡 (44) 

q

t
q S


 ∀𝑡 (45) 

 

As shown above, the self-scheduling problem for a wind power plant is formulized as 

the linear programming problem (40)-(45) that considers the existing correlation 

between data. In the next section, the performance of the presented model is compared 

with that of the other covariance based models. 

5. Experimental results 

In order to study the performance of the proposed model, its performance is compared 

with that of the conventional polyhedral uncertainty set, covariance based polyhedral 

uncertainty set presented by Pachamanova [36], correlated polyhedral uncertainty set 

presented by Jalilvandnejad et al. [14], for this purpose, the self-scheduling problem for 

a price-taker wind power producer participating in Iranian day-ahead market is studied 

under different protection level. 

To start with, the nominal prices for six months namely February, April, June, 

August, October and December 2019 of Iranian day-ahead market are used. As 

illustrated in [12], there is a strong correlation among hourly prices of Iranian day-ahead 
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market. The data from other countries would also follow the similar pattern. Therefore, 

it is expected that models containing correlated perturbations lead to solutions with 

lower level of over conservatism. The technical data applied for a price-taker wind 

power plant is presented in Table 1: 

(Table 1) 

Bertsimas and Sim [26] introduced the price of robustness as the change in the value of 

the objective function initiated by alteration in the protection level that can be 

formulated as follows: 

D R

D

F F
thepriceofrobustness

F

 
  
 

 (46) 

Where DF  and RF  are the values of the objective function in the deterministic and 

robust problems respectively. The self-scheduling problem is modeled and solved under 

the mentioned robust models. Figure 10 represents results obtained using the market 

clearing prices of October 2019. 

(Figure 10) 

As shown above in terms of the price of robustness, conventional robust model results 

in the largest value. This is in the line with the assumption that the hourly prices are 

correlated, but such a correlation is not considered in the uncertainty set defined in the 

conventional model. On the other hand, as the value of protection level decreases, the 

performance of the other models have less deviations while by increasing the value of 

the protection level, the solutions obtained using the model introduced by Pachamanova 

[36] have smaller price of robustness than those model introduced by Jalilvandnejad et 

al. [12] and the model proposed when the value of parameter  is close to 1. It is 

because by increasing the value of protection level, the borders of both correlated 

polyhedral uncertainty set proposed by Jalilvandnejad et al. [12] and also the proposed 
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correlated polyhedral uncertainty set converge to the borders of the conventional 

polyhedral uncertainty set. On the other hand, the decision making parameter   used in 

the proposed model lets the decision makers to set the borders of the improved 

correlated polyhedral uncertainty set as the obtained uncertainty set which covers just 

those perturbations with low or high probability of occurrence. As a result, the solutions 

corresponding to those cases that the value of   is close to 0 have smaller values of the 

price of robustness. As shown in Figure 10, for a risk seeker wind power producer 

which chooses small value of protection level to gain more profits, the proposed 

correlated polyhedral uncertainty set leads to solutions with smaller or equal values of 

the price of robustness than that of the other models investigated. Figure 11 illustrates 

the performance of the proposed robust self- scheduling models. 

(Figure 11) 

As shown above, setting values close to 0 for parameter   leads to improvement in the 

value of solutions price of robustness. On the other hand, to study the performance of 

the proposed model, the probability of violation is calculated for each solution. For this 

purpose the nominal hourly prices for six months i.e. February, April, June, August, 

October and December 2019 of Iranian day-ahead market are used, therefore there are 

6*30*24=4320 hourly prices that are used to run the model and the corresponding 

probabilities of violation are calculated. The graphical results are presented in Figure 

12. 

(Figure 12) 

In Figure 12, X is the probability of violation, and Y is the value of objective function. 

In this figure, each point is obtained based on the value of the protection level, hence as 

the value of the protection level decreases the probability of violation and also the value 

of the objective value are increased.  
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As shown in this figure, since the conventional uncertainty set does not consider 

the existing correlation among data, leads to results with the highest value of the 

probability of violation. On the other hand, the results obtained from the models 

developed based on the proposed uncertainty set have lower values of probability of 

violation than the results obtained from the other models. The results show that 

decreasing the value of the decision making parameter  improves the performance of 

the model. Hence the model developed based on the proposed model with the decision 

making parameter 0  has the lowest values of the probability of violation. In this 

case, the borders of the uncertainty set obtained include just correlated data. On the 

other hand, as the value of the decision making parameter   increases, the performance 

of the proposed model gets closer to the performance of the model proposed by 

Jalilvandnejad et al. [14]. The presented results reveal that the proposed model leads to 

solutions with lower level of over conservatism and outperforms the conventional 

models in terms of robustness. Thus, it is recommended to apply the proposed robust 

optimisation approach to model uncertain production and scheduling problems. 

6. Wind power uncertainty 

As the value of wind power production depends on the wind speed, the wind power 

uncertainty that leads to uncertainty of wind power units output plays an important role 

in the self-scheduling and bidding problems of wind power producers. Because of the 

uncertainty of wind speed, determining the bidding strategy is difficult for WPP's [36]. 

To consider uncertainty factors existing in WPP's self-scheduling problem, the 

improved correlated polyhedral uncertainty set proposed by Daneshvari and Shafaei 

[13] is used as follows. In this relations it is assumed r r r   . 
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( ( ) ))(
invest mtn fix

t t
t

Max q C C Cr r
 

        
 

(47) 

, , 1,

m m

j t j t j t
Qb Qb Qb


   , 2,...,

j
t j N    

(48) 

1,, , 1,
.(1 )

m m

j tj t j t j t
MQb Qb Qb b 

     , 2,...,
j

t j N    

(49) 

min

1, 1,

m

t t
Qb Qb Q   

t   

(50) 

min

2,1, 1,
.(1 )

m

tt t
MQb Qb Q b     

t   

(51) 

,1, 1,
. .j tt t

MQb Qbb    
,t j   

(52) 

min

,
.

tt j t
j

q Qb Q u   ,t j  

 

(53) 

t t t

 
     

t   

(54) 

t t t
qW   

t   

(55) 

Where 
t  and tW  are real values of market clearing price and wind power at 

time t. the presented model can be reformulated as below by replacing constraints (54) 

and (55) in (47): 

( ( ( ) ))(
invest mtn fix

tt t t
t

Max rq q C C CW       
 

(56) 

, , 1,

m m

j t j t j t
Qb Qb Qb


   , 2,...,

j
t j N    

(57) 

1,, , 1,
.(1 )

m m

j tj t j t j t
MQb Qb Qb b 

     , 2,...,
j

t j N    

(58) 

min

1, 1,

m

t t
Qb Qb Q   

t   

(59) 
min

2,1, 1,
.(1 )

m

tt t
MQb Qb Q b     

t   

(60) 

,1, 1,
. .j tt t

MQb Qbb    ,t j   

(61) 
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min

,
.

tt j t
j

q Qb Q u   ,t j  
 

(62) 

As there is no uncertainty in constraints (57) to (62), the model addressed above 

can be presented as follows: 
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(63) 

q

t
q S


   (64) 

 

As k  and k  are correlated perturbations that 0 1k   and 0 1k   then 

0 1k k    can be replaced by the slack perturbation  . Consequently the model (63) 

- (64) can be written as the following relations: 
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Given the optimal solution *q , the uncertain part of the mentioned objective 

function can be reformulated as below: 
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The dual problem of model (67) to (76) can be presented as follows: 
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Where tM , tZ , tN , tM , tZ , tN , wtM , wtN  and wtZ  are dual variables. If this 

problem has a feasible and bounded solution, the equivalent model of the non-linear 

model (65)-(66) can be replaced by a linear model presented at below: 

 



24 

 

( ( ( ) )))

( (1 )(1 ))

( (1 ) 1 )

( (1 ) 1 )

(
invest mtn fix

t tt t
t

t ttk tk
t k t t

t wt tk tk
t t k t

wt twt tk tk
t t t k t

tt
t t

Max rq q CW C C

NM

Z M

N Z M

N Z

   

  

   

 

 

 

 



 

 

 







    

    

    

     

 



   

   

    

 

 

t  (84) 

( 1 (1 )(1 )) ( )

(1 ( ) )
1

ˆ

t k ttk tk
k t k t

tk t ttk
k t t

n

n

NM M

N wZ r

    





  

 

 



     

 
    

  

 


 

 

t  (85) 

*

( 1 (1 )(1 )) ( )

(1 ( ) ) ( (1 ) )
1

ˆ

wt wk wttk tk
k t k t

twtwktk t
k t t

n
r rW

n

NM M

qN Z

  





  

 

 



     

 
      

 

 

 
 

t  (86) 

( 1 (1 )(1 )) ( )

(1 ( ) )
1

ˆ ˆ

t k ttk tk
k t k t

tktk tt
k t t

n

n

NM M

N Z Wr

    





  

 

 



     

 
    

  

 


 

 

t  (87) 

, , 0
wt wtwtNM Z   t  (88) 

, , 0
t ttNM Z 

  t  (89) 

, , 0
t ttNM Z 

  t  (90) 

q

t
q S


  t  (91) 

7. Bidding strategy for wind power producer 

    In this section, the third step of the bidding procedure provided in [37] is studied 

using a new bidding algorithm. To this aim, the algorithm proposed by Baringo and 

Conejo [16] is considered. They used a polyhedral uncertainty set to make their bidding 
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to the power market. On this line they divided a range of possible values for uncertain 

market clearing price to n-1 equal ranges. In the first step, the highest bidding point with 

the maximum values for (λt, qt) is obtained when the maximum value for market 

clearing price is used to solve the self-scheduling problem. In the next step, the 

uncertainty range of market clearing price is reduced to 
max min

max max,
1

t t
t t

n

 
 
  

  
  

and 

the self-scheduling problem is solved to obtain the second bidding floor. In each 

iteration of the bidding algorithm proposed in [16] the market clearing price uncertainty 

range is added by 
max min

1

t t

n

 


 . To obtain a bidding diagram with n floors, these steps 

are replicated n times. As Baringo and Conejo [16] set the value of uncertainty budget 

to 24, considering the uncertainty range for market clearing prices has no effect on the 

values of the uncertain coefficients 
t  and the algorithm selects the minimum values for 

market clearing prices in every replication.  For example, although the algorithm 

considers the uncertainty range  
max min

max max1 ,
1

t t
t tk

n

 
 
  

   
  

 for the market 

clearing price in the kth replication, the value of the market clearing price is equal to its 

predefined value  
max min

max 1
1

t t
t k

n

 


 
   

 
. In other words, the modelled robust self-

scheduling problem would be considered as an ineffective. 

On the other hand, the uncertainty of wind power is not been considered in the 

literature. To this aim, here a new bidding algorithm that considers the uncertainty of 

market clearing prices and the uncertainty of wind power is introduced as shown in 

Figure 13: 

(Figure 13) 
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8. Bidding algorithm evaluation 

To evaluate the introduced bidding algorithm, the nominal market clearing prices of 

Iranian power market and the wind speed data registered for Manjil weather station  

June till  july 2021 are used. The applied technical data are same as those presented in 

section 5. The results obtained using the introduced algorithm are presented in Figure 

14: 

(Figure 14) 

The results obtained using the introduced algorithm reveals that the performance of the 

introduced bidding algorithm is superior that the other method. In addition the results 

show that the proposed model leads to solutions with lower level of over conservatism 

and results in higher profit than the other methods.   

9. Discussions and conclusions 

In this study, a bidding problem for a price-taker wind power plant participating in a 

day-ahead market with uncertain correlated hourly prices is studied. To prevent over 

conservatism a new correlated polyhedral uncertainty set is presented. A decision 

making parameter is used in defining the borders of the proposed correlated polyhedral 

uncertainty set. This leads decision makers to define the uncertainty set in a way that it 

only includes the perturbations with the probably occurrence. The results of the study 

revealed that the appliance of the proposed model on the self-scheduling problem for a 

price-taker wind power plant in a day-ahead market with uncertain correlated data leads 

to solutions with smaller values in terms of the price of robustness and lower level of 

over conservatism.  

In this study a new bidding algorithm was introduced that considers an 

uncertainty on market clearing prices as well as wind power. The results revealed that 
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the performance of the proposed bidding algorithm along with the new self-scheduling 

model leads to solutions with lower level of over conservatism and higher profit values 

for a wind power producers participating in power markets. 
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Table 1. WPP’S DATA 

Figure 1.The values of market clearing prices. 

Figure 2.Autocorrelation function plot of market clearing prices. 

Figure 3.Box uncertainty set. 

Figure 4. Ellipsoidal uncertainty set. 

Figure 5. Polyhedral uncertainty set. 

Figure 6.Areas with low or zero probability of occurrence included by box, ellipsoidal 

and polyhedral uncertainty sets. 

Figure 7.Correlated polyhedral uncertainty set in terms of different correlations and 

protection levels [14]. 

Figure 8.Areas with high probability of occurrence which includes correlated polyhedral 

uncertainty set and areas with low probability of occurrence covered by polyhedral 

uncertainty set and areas with ρ = 0.8 and Γ = 0.6. 

Figure 9.The proposed borders of the improved correlated polyhedral uncertainty set for 

different values of β. 

Figure 10.A comparison among robust self-scheduling models under different 

uncertainty sets with respect to the price of robustness. 

Figure 11.Performance of the proposed models compared with those of other robust 

models. 

Figure 12.Graphical results of solving the self-scheduling problem under different 

uncertainty sets. 
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Figure 13.The introduced bidding algorithm for wind power producers. 

Figure 14.The bidding diagram for t=9. 

 

 

 

 
Table 1 

𝑪𝒎𝒕𝒏 

($ 𝑴𝑾𝒉⁄ )∗ 

𝑪𝒊𝒏𝒗𝒆𝒔𝒕 

($ 𝒉⁄ )∗∗ 
𝑷𝑴𝑨𝑿(𝑴𝑾) 

4 658 30 

*Maintenance/operation cost of wind turbine equals to 35 $/kW/year. 

**The wind turbine investment cost equals to 1250 $/kW with lifetime of 25 Years. 
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Figure 12 
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polyhedral uncertainty set proposed 

by Jalilvandnejad et al. (2016) 

  

(c) The model based un the improved 

correlated polyhedral uncertainty set 

proposed by Daneshvari and Shafaei 

(2021), 𝛽 = 1. 

(d) The model based un the improved 

correlated polyhedral uncertainty set 

proposed by Daneshvari and Shafaei 

(2021), 𝛽 = 0.5. 

 

 

(e) The model based un the improved 

correlated polyhedral uncertainty set 

proposed by Daneshvari and Shafaei 

(2021), 𝛽 = 0. 

 

Figure 14 
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