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Abstract: 

Time series analysis and accurate forecasting of energy prices are critical for both 

policymakers and market participants. In the practical analysis of price time series, the 

coefficients play vital roles; however, their accurate estimation is a challenging issue as 

they are affected by external factors. This study proposes a new modeling approach for 

Artificial Neural Networks (ANNs) models based on fuzzy logic. For this purpose, we 

reformulated an ANN model as a fuzzy nonlinear regression model to capture the 

advantages of both fuzzy regression and ANN methodologies. This clear-box model can 

be applied to not only uncertain, ambiguous, and complex environments, but it is also 

capable of modeling nonlinear patterns. To illustrate the capability of the proposed 

approach, we report a case study of liquefied natural gas (LNG) prices in Japan’s market 

(the world’s largest natural gas importer). The results support that the performance of 

the proposed approach is acceptable; moreover, it can deal with uncertain and complex 

environments as a clear-box model.  
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1. Introduction 

Analysis and forecasting of energy prices is at the heart of energy management, which 

enables policymakers to manage many frequent tactical decisions such as balancing energy 

demand and risk management. Price fluctuations influence the distribution and flow of various 

resources in the energy market and have substantial economic leverage; however, it is difficult to 

forecast price time series accurately due to their complicated and uncertain nature [1]). 

Accordingly, energy price analysis and forecasting has been the center of attention from both 

academic and practical points of view.  

Different time series forecasting approaches, from statistical to computational 

intelligence have been applied in the past [2]. Based on the number of techniques, the related 

literature is typically divided into two main categories: stand-alone and hybrid methods, 

consisting of one and more than one technique, respectively. Based on the type of the underlying 

technique, stand-alone methods can be divided into three classes, namely Statistical, Causal and 

Computational Intelligence methods. Statistical methods model the dynamic relationship 

between lagged values of determinants and the forecasted price based on historical data. 

Examples include autoregressive (AR) and double seasonal Holt-Winter (DSHW) models [3], 

autoregressive with exogenous inputs (ARX) models [4], threshold ARX (TARX) models [5], 

generalized autoregressive conditional heteroscedasticity (GARCH) based models [6]–[9], 

autoregressive integrated moving average (ARIMA) models [10], [11], semi/nonparametric 

models [12], Seasonal autoregressive integrated moving average (SARIMA) [13], transfer 

function (TF) models [6], and Grey models [14]–[16]. Certain hybrid versions of the mentioned 

methods are also suggested, e.g., wavelet-based models [14], [17].   

Causal methods focus on formulating the dynamic relationships between causal variables 

(determinants) and the forecasted energy price. These models may utilize the least-squares 

method1 to determine the forecasted energy price in terms of its determinants and lagged data 

[18]. Different causal methods, e.g., linear regression (LR) [19], nonlinear regression (NLR) 

[20]–[23] and Logistic or logit regression (LoR) [24] have been widely utilized in the literature. 

Energy price forecasting, similar to many real-life problems, has a nonlinear nature.  

Statistical and causal models, on the other hand, are usually linear in nature [25]; hence they may 

                                                            
1 For further information, see [10]. 
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not perform well with financial data considering some features such as leptokurtosis, volatility 

clustering and leverage effects. In addition, the nonlinear behavior of energy price might become 

too complicated to predict [25]. However, statistical and causal models offer the advantage of 

having a clear internal logic; this is why they are referred to as "white-box"2 methods. 

Computational Intelligence methods such as Artificial Neural Network (ANN) and 

Support Vector Machine (SVM) are widely used in this research area due to their ability in 

handling the hidden features of data as well as their nonlinear modeling capability (e.g., [18], 

[26]–[28]. ANNs are examples of flexible regression approaches but they are different from the 

standard methods in some aspects such as: 1) they do not require a prior assumption of the model 

form in the model building process, 2) they provide better solutions for modeling complex non-

linear relationships compared to the parametric models, and 3) they have high robustness when 

the scope of the appraisal is widened to include aspects such as outliers, non-linearity and other 

kinds of dependence among data. However, ANNs are not capable of handling the problems 

caused by uncertain situations, and they are identified as “black box” techniques. Uncertain 

conditions often arise due to the rapid development of new technologies, or due to imprecise and 

inadequate data in energy pricing.  

Fuzzy regression models are suitable to address such uncertainties, however, these 

models do not map the function with nonlinear behavior. A number of studies have used fuzzy 

time series to forecast energy prices in Australia and Singapore electricity markets [29], and 

Ontario and New England markets [30]; however, recent studies indicate that hybrid models of 

ANN and fuzzy systems outperform standalone fuzzy regression models [25], [31], [32]. These 

models of ANNs and fuzzy systems correspond to a fuzzy model of Takagi–Sugeno, wherein the 

weights of the neural network model are similar to the parameters of the fuzzy system, and 

hence, they behave as black box models. On the other hand, in clear-box models in which the 

coefficients are identified, in addition to the magnitude of the correlation between a certain 

response variable and the determinants, one can also infer the effects of each response variable. 

In the light of the above-mentioned considerations, we propose a reformulated ANN 

model as a nonlinear fuzzy time series capable of dealing with uncertain situations and nonlinear 

functions. The proposed model brings together the advantages of fuzzy linear regression and 

                                                            
2 "White-box models are the type of models which one can clearly explain how they behave, how they produce predictions and 

what the influencing variables are." 
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ANNs models, while mitigating the shortcomings of these two models. As we illustrate with a 

case study on the Japanese LNG market price, the flexibility of the model allows it to be applied 

to uncertain, ambiguous, or complex environments.  

The remainder of this paper is organized as follows. In the remaining subsections of 

Section 1, the techniques embedded in the proposed approach are explained. Section 2 introduces 

the proposed modeling approach and Section 3 is devoted to experiments. Conclusions and final 

remarks are presented in Section 4.  

 

1.1. Regression Modelling 

Generally, let mnx  and my  represent the n
th

 independent variable and the dependent 

variable, respectively, in the m
th

 observation, i  be the parameter associated with the i
th

 

independent variable (i=1,2,.., n), and m be the error term associated with the m
th

 observation. 

The classical regression model can be stated as Equation 1: 

mmnnmm xxy   .....110                          km ,...,2,1                                                 (1)    

 

The regression parameter i  must usually be estimated from sample data. Let i be 

estimated under uncertainty in the adequacy of independent variables or sample data and 10 X , 

then i  falls into the category of fuzzy regression analysis as Equation 2: 
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criteria of goodness of fit. In the form of triangular fuzzy numbers, for i
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, we have Equation 3 
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where 
i

 ~ is the membership function3 of i
~

, i is the center of the fuzzy number, and ic is the 

width or spread around the center of the fuzzy number. According to the extension principle, the 

membership function of the fuzzy numbers 
~~ '

mm xy   can be indicated using pyramidal fuzzy 

parameter  as Equation 4 4 : 
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where   and c denote vectors of model values and spreads, all model parameters, respectively. The 

problem of finding i
~

  is formulated as a linear programming problem (Equation 5)5: 

Minimize    xm

k

m

cS 



1

 

(5) 

Subject to

 

 























0

1

1

c

ch

ch

yxx

yxx

mmm

mmm





 

where the objective function is minimizing the total vagueness (S), which defined as the sum of 

individual spreads of the fuzzy parameters of the model, k is the number of observations, and h is 

the threshold6 of the membership function of Y
~

. 

 

1.2. Neural Network Models 

                                                            
3 This member function is generally developed according to [33]; however, here m= {1, 2, … k}. 
4 A more general definition and further details can be found in [34].  
5 For the first time, [34] developed an LP to find pyramidal fuzzy parameters. 
 6 Fuzzy thresholds support only multi-valued logic. Mathematical functions that yield sigmoidal curves can be used 

to implement fuzzy thresholds. This approach allows establishing points on continuum where decisions are 

triggered. Basic operations and functions on fuzzy logic can be found in [35]. 
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Neural Network (NN) models are a class of flexible nonlinear models that can find patterns 

adaptively from data. Through processing experimental data, these systems transfer the 

knowledge or rules hidden in data to the network’s structure. They can predict a phenomenon’s 

future by taking into account its history. 

The relationship between the output  my and the inputs mnmm xxx ,..., 21  in a neural network 

model has the following mathematical representation as Equation 6: 
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where ).,...,3,2,1;,....,2,1(, Qqniw qi  and ),....,2,1,0( QqWq   are model parameters called 

connection weights; n is the number of input nodes; 



n

i

miqiqmq xwWgX
1

, ).( ; Q is the number 

of hidden nodes, and f and g are the transfer functions that are often used as a logistic function7. 

In this sense, the neural network is equivalent to a nonlinear multiple regression model. In 

practice, a network consisting of one hidden layer that has a small number of hidden nodes 

generally works well in out-of-sample forecasting [35]. This may be due to the overfitting effect 

typically found in the neural network modeling process. An over-fitted model has a good fit to 

the sample used in the model building process but has poor ability of generalization of data out 

of the sample[35].  

To improve the performance of artificial neural networks, certain data mining approaches 

are often applied in the network training process, namely, Dynamic, Multiple, Prune, Exhaustive 

prune data-mining methods, as well as Networks with Radial Basis Function (RBFN) [36]8.  

Dynamic Method: In this method, first an initial topology for the network is created and 

then during the training process this topology is modified by adding or deleting hidden parts of 

the network. This method is very suitable when there are nonlinear relationships between 

variables. Under these conditions, the dynamic model has a great deal of flexibility in regression 

applications (for prediction) to explain nonlinear behaviors of response variable. In addition, the 

performance of this model is evaluated in situations where the observations are time series. 

                                                            
7 Transfer functions are used to model the behavior of intended functions and can be chosen based on LR or trial and 

error.   
 



Page 6 of 19 

 

Multiple Method: This method first creates several different topologies of possible 

scenarios (although their number depends on the data selected for training) and puts each of them 

in parallel in the training process. After the training phase, the model with the least squared 

errors is chosen as the final model. 

Prune Method: The main idea of this type of network is that the efficiency of the network 

can be increased by eliminating some connections between neurons (weights). These networks 

consider a selection criterion, which is usually "the inverse of the network error" on a portion of 

the training data. If this value is increased, it indicates the correct progress of the network, 

otherwise the network is growing to no avail and the algorithm stops. On the other hand, after 

adding new network neurons using this selection criterion, one of the weights is removed if this 

value is increased, which indicates that the decision is correct, and otherwise the weight is 

returned. This method usually takes a long execution time, but improves the model by removing 

redundant variables and results in increased model generalization. 

Exhaustive Prune Data-mining Method: Similar to the prune method, the process begins 

with a very large network and then the weakest units are removed from the input and hidden 

layers during the training process.  

 

2. Formulating the Proposed Model 

In this section, we explain how we reformulate an ANN model as a fuzzy nonlinear 

regression model that is capable of dealing with uncertain situations and nonlinear functions. 

This proposed model brings together the advantages of both fuzzy regression and ANN models 

while their mentioned deficiencies are decreased.  

 

The steps are summarized as follows: 

Step 1. Replace the crisp parameters ).,...,3,2,1;,....,2,1,0(, Qqniw qi  and 

),....,2,1,0( QqWq  with fuzzy parameters in the form of triangular fuzzy numbers 

).,...,3,2,1;,....,2,1,0(~
, Qqniw qi  and ),....,2,1,0(~ Qqwq  according to Equation 

(2) as Equation 7:  
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Step 2. Determine the membership function of the fuzzy parameters 

),,(~
, iqiqiqqi cbaw  and ),,(~

qqqq fedw  in the form of triangular fuzzy numbers as 

shown in Equations 8 and 9, respectively9: 
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9  a<b<c are triangular fuzzy numbers and membership(b)=1, while b need not be in the “middle” of a and c. Basic 

operations and functions on these fuzzy logic can be found in [37]. 
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Otherwise; 

The transfer functions (f and g) are assumed to be saturated linear transfer functions 

(Satlin), and the connected weights between the input and the hidden layers are 

considered to be of a crisp form for simplicity. 

 

Step 4. Similar to Step 3, the membership function of my~  is given as Equation 11 and is 

modified considering Equation 4 as Equation 12: 
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           Otherwise; 

 

Step 5: Finally, the criteria of minimizing total vagueness, S (the sum of individual spreads of the 

fuzzy parameters) is used according to Equation 5 to develop the linear programming 

problem as follows10 : 
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3. Experiments 

In recent decades, the popularity of natural gas has increased considerably because it 

causes no local pollutants (that is, being a “clean fuel”), and because it generates relatively lower 

carbon emissions compared to coal. Rapid rise in global gas demand has turned the gas markets 

from a “buyer’s market” into a “seller’s market”. Therefore, the study and forecasting of gas 

prices based upon actual data and market information, using efficient modeling and forecasting 

approaches has become a timely and important area of study.  

In this section, we study the Liquified Natural Gas (LNG) price in the Japanese market to 

test our proposed forecasting model. Japan is the world’s largest LNG importer and one of the 

three largest gas markets worldwide. Nonlinearity and complexity of the LNG price function and 

the uncertainty due to lack of data on influencing variables cause LNG price forecasting to be a 

suitable candidate for using the fuzzy logic approach [40].  

Based on the related literature [18], [41]–[44], 15 direct and indirect (auxiliary) 

determinants were identified which are provided in Table 1 together with their statistical 

summary information. The related data was collected from February 2008 to February 2020 in 

monthly terms from International Energy Consortium (IEC) database11. The data from 2008 to 

2017 was used for training and the rest of the dataset was used for testing. Outliers was removed 

from the training data set.   

To estimate the weights of the related ANN model, five well-known data mining 

approaches (dynamic, multiple, prune, exhaustive prune, and RFBN) were applied. To reach the 

best network configuration using the Neuro Solution toolbox in MATLAB software, different 

networks including 1-3 hidden layers, variable number of neurons in hidden layers, and different 

activation functions were tested. Finally, the network with the least Mean Square Error (MSE) 

for each approach was selected as the optimum network. 

                                                            
11 https://www.energy.gov/ 
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The values of the training termination criteria are: )5(*1 E for Mean Square Error; 200 for 

the maximum number of each epoch; and )10(*1 E for the minimum error gradient of each 

epoch. Table 2 provides further information to compare the relative importance of the input 

factors for each neural network model. 

The values of performance indicators Mean Absolute Percentage Error (MAPE), Root 

Mean Square Error (RMSE) and Absolute Fraction of Variance (R
2
) for the five networks are 

provided in Table 3, and one of these models is chosen to examine the proposed approach.  

where MAPE shows the mean ratio between the error and the actual values are calculated as 

Equation 14: 

 

                                                                                                                                          (14) 

 

where iŷ  is the predicted value by the ANN model iy is the actual value of the response process 
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R
2
 takes a value between zero and one, where values closer to one indicate a good fit.  

Exhaustive prune network is chosen with 4 input variables which are "Brent oil price", 

“mean oil price of Oman and Dubai”, “gasoline price”, and “mean price of Japan’s imported 

petroleum”. As “Brent oil price” and “mean price of Japan’s imported oil” variables have a 

correlation coefficient of 67.8%, “Brent oil price” was eliminated and the variable of “the related 

year” was added to the input variables considering the performance of the network. 









m

i
i

ii

y

yy

m
MAPE

1

)(
100

1  



Page 11 of 19 

 

  The best configuration of the Exhaustive Pruned Network is determined to be N
(4-4-1)

 

which is shown in Figure 1.
 12   The weights and biases of the mentioned network are given in 

Table 4. 

As mentioned, the input weights and biases of the Exhausted Prune Model are considered 

of a crisp form for simplicity. To obtain the center and the interval width for hidden weights (i.e., 

qc and
qe )

 
as unknown parameters with the assumption of h=0.5, the proposed method is 

formulated as the following linear programming problem: 

where m is the number of trained data and q is the number of neurons in the hidden layer of 

Exhaustive prune networks. The center and width of hidden weights (
qc and 

qe )
 
obtained using 

GAMS Software are presented in Table 5. 
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Comparing the values of performance indicators in Table 6, we observe the proposed model to 

achieve an improvement in R
2
 of 0.26%, a decrease in MAPE of 3%, and a decrease in RMSE of  

2 USD compared with the Exhausted Prune ANN Model. These results validate that 

reformulating the ANN model based on the fuzzy regression model tends to improve the 

performance of the ANN model. The ANN model, in turn, outperforms both the linear and the 

fuzzy regression models. The proposed model also offers the advantage of addressing 

uncertainty and complexity as a clear box model. 

 

 

4. Conclusion and Final Remarks 

Emerging computational intelligent approaches has led to significant advances in 

forecasting energy price time series. In this regard, Artificial Neural Network (ANN) models 

have been extensively used; however, these models are identified as black box techniques and 

they are not capable of handling problems that involve uncertainty. Fuzzy regression models, on 

the other hand, are a good choice for addressing uncertainty; however, they cannot map the 

function with nonlinear behavior.  

In this study, we reformulated an ANN model as a fuzzy nonlinear regression model that 

can deal with both uncertain situations and nonlinear functions. This novel modeling approach 

can be applied to uncertain, ambiguous, and complex environments due to its flexibility. As a 

case study, the price function of liquefied natural gas (LNG) in the Japanese market was 

formulated based on the proposed modeling approach. The performance of the proposed model 

was compared to those of conventional approaches such as the selected neural network, fuzzy 

regression, and linear auto regression models. Based on a number of performance indicators, the 

proposed model is shown to have the best performance.  

To add up, the proposed approach is applicable to complex, nonlinear and ambiguous 

environments due to embedded ANN and fuzzy mechanisms. It is robust to inconsistency and 

noise in data as well as the presence of high dimensionality and collinearity. Besides, it performs 

as a clear box model and provides higher generalization capability.  The ability to deal with 

                                                                                                                                                                                                
13 Satlin is a neural transfer function. This transfer function calculates a layer’s output from its net input. It clips the 

input to [-1, 1]. This function is chosen based on trial and error. 
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uncertain, limited, and non-crisp data would allow this approach to be preferred over 

conventional alternatives.  
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Figure 1. Network structure of Exhaustive prune model 

Table 1.  Statistical information on influencing variables of LNG price in the Japanese market 

Table 2. Comparison of the relative importance of input variables for each neural network model 

Table 3. Numerical results of performance indicators R
2
, RMSE, and MAPE for ANN models 

 

Table 4. The weights and biases of the Exhaustive Prune Model  

Table 5. Center and width of hidden weights 
qw    

Table 6. Numerical results of performance indicators R
2
, RMSE, and MAPE for the proposed model and the 

alternative models 
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 Figure 1. Network structure of Exhaustive prune model 

 

 

Table 1.  Statistical information on influencing variables of LNG price in the Japanese market 

Influencing variables         Unit        
Mean    

value     
Std.dev 

Interval Mean growth 

rate   Max Min 

British ICE natural gas price /$MMBtu 4.95 2.80 14.33 1.66 0.10 

Henry Hub natural gas price /$MMBtu 4.33 2.81 13.71 1.41 0.13 

WTI oil price /$MMBtu 6.65 4.46 23.16 1.90 0.11 

Brent oil price /$MMBtu 6.45 4.46 22.96 1.70 0.12 

Mean price of Japan’s imported oil /$MMBtu 6.65 4.65 22.78 1.94 0.16 

Mean oil price of Oman and Dubai /$MMBtu 6.44 4.65 22.57 1.73 0.16 

Price of liquified petroleum gas (LPG) /$MMBtu 6.96 3.90 19.18 2.17 0.09 

Oil fired in oven (1%) /$MMBtu 4.63 3.02 17.37 1.48 0.11 

Oil fired in oven (3.5%) /$MMBtu 4.09 2.80 15.79 1.32 0.10 

Gasoline price (0.2%) /$MMBtu 7.90 5.58 28.18 2.16 0.13 

Oil fired oven (180) /$MMBtu 3.91 2.71 14.89 1.09 0.12 

International gas consumption TCM 0.210 0.020 0.25 0.18 0.02 

International gas production BCM 0.213 0.023 0.25 0.18 0.025 

International oil consumption MMbl/d 6.543 0.454 7.32 5.79 0.017 

International oil production MMbl/d 6.359 0.402 7.01 5.68 0.015 

 

 

 

 



Page 18 of 19 

 

Table 2 Comparison of the relative importance of input variables for each neural network model 

Input Variables Dynamic  Multiple Prune 
Exhaustive 

prune 
RFBN 

British ICE natural gas price 0.098 0.185 0.056 - 0.109 

Henry Hub natural gas price 0.158 0.505 0.434 - 0.117 

WTI oil price 0.042 0.042 0.068 - 0.110 

Brent oil price 0.085 0.056 0.102 0.164 0.112 

Mean price of Japan’s imported petroleum  0.177 0.174 0.183 0.285 0.115 

Mean oil price of Oman and Dubai 0.021 0.089 - 0.152 0.116 

Price of liquid petroleum gas (LPG)  0.032 0.054 0.079 - 0.110 

Oil fired oven (1%) 0.114 0.055 0.118 - 0.112 

Oil fired oven (3.5%) 0.234 0.182 0.138 - 0.129 

Gasoline price (0.2%) 0.009 0.174 - 0.549 0.116 

Oil fired oven (180) 0.024 0.115 - - 0.140 

International gas consumption  0.021 0.179 0.159 - 0.140 

International gas production 0.071 0.103 - - 0.138 

International oil consumption 0.078 0.149 - - 0.137 

International oil production 0.0175 0.194 0.16 - 0.115 

 

Table 3. Numerical results of performance 

indicators R
2
, RMSE, and MAPE for ANN 

models 

Indicator 

 

Network 

R2 RMSE MAPE 

Dynamic 0.8441 0.017 1.812 

Multiple 0.8743 0.012 1.211 

Prune 0.8722 0.012 1.287 

Exhausted Prune 0.8675 0.016 1.521 

REBN 0.8125 0.019 1.803 
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Table 4. The weights and biases of the Exhaustive Prune Model  

Input weights  Hidden weights  Biases 

1,iw  
2,iw  

3,iw  
4,iw   qw   jw ,0

 
0w  

-2.5677 10.3961 -2.0112 16.0023  -2.6790  -13.2756  -1.6221 

1.3113 17.2834 8.5331 -0.2344  0.0402  3.0111   

4.6701 -1.8766 -11.9012 14.7558  14.6723  -8.3783   

0.2349 20.9123 -2.7663 5.03777  5.2310  -5.2311   

 

 

Table 5. Center and width 

of hidden weights 
qw    

 qe  
qc  

0w  -1.6221 0.478 

1w  -2.6790 0.882 

2w  0.0402 0.016 

3w  14.6723 2.583 

4w  5.2310 1.771 

 

Table 6. Numerical results of performance indicators R2, RMSE, and MAPE for the proposed model and the 

alternative models 
Model 

Indicator Proposed 
Exhausted 

Prune ANN 

Fuzzy 

regression 

Linear 

regression 

R2 0.8701 0.8675 0.7901 0.7733 

MAPE 1.491 1.521 2.2988 2.4611 

RMSE 0.014 0.016 0.019 0.021 

 


