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Abstract 

Drone delivery as a novel approach for parcel delivery has been under the focus of many 

scholars and practitioners. In this regard, this paper introduces a stochastic-fuzzy multi-objective 

optimization model for designing a last-mile delivery system with drones and ground vehicles. 

The first two objective functions aim to minimize the detrimental effects of the delivery system 

on the environment and the total costs. The last objective function maximized the system's 

reliability by considering the breakdown probability of both drones and ground vehicles. Then, 

AUGMECON2 is utilized as an exact method to solve the proposed model. Besides determining 

the number of required drones and ground vehicles, the model indicates locations and capacities 

of facilities where vehicles start their one-to-one trips to meet the customer demands. The 

proposed model is then validated by applying it to a real case study of an e-commerce company 

in Karaj, Iran. The findings suggest that the system's total cost rises when the reliability increases 

and the environmental impacts decrease. Furthermore, when both drones and ground vehicles are 

considered for meeting the customer demands, the delivery system functions better in terms of 

costs, environmental impacts and reliability than when only one mode of delivery is considered. 

Keywords: Drone delivery, last-mile delivery, e-commerce, AUGMECON2, multi-objective 

optimization 

1. Introduction 

The growing number of e-commerce companies and increased parcel volumes to be delivered to 

customers have resulted in the emergence of novel last-mile delivery concepts and tools. One of 

these novel concepts is the utilization of drones, which are also known as unmanned aerial 

vehicles (UAVs) [1]. In addition to the commercial services and package deliveries, the 

applications of drones have also been investigated in emergency search and rescue operations 

[2], medical purposes [3], last-mile distribution of relief goods, and critical medical supplies for 

post-disaster emergencies [4,5]. 

Traffic jams and fuel costs are significant obstacles to delivery operations. UAVs are efficient 

tools to tackle this problem by reducing delivery time and costs [6]. Gong et al. [7] previously 

considered a transportation mode selection based on costs and carbon emissions to reduce 

environmental effects. Mohtashami [8] mentioned that transportation fleets are a significant 
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factor leading to an increase in environmental impacts. However, in terms of energy efficiency 

and CO2 emissions, UAVs proved to have a better performance than other ground vehicles and 

modes of delivery [9]. Park et al. [10] have also compared the environmental impacts of drone 

and motorcycle delivery. They concluded that the global warming potential per 1 km delivery by 

motorcycle is six times more than UAVs. Chiang et al. [11] also proposed a mixed-integer green 

routing model for drone delivery to investigate UAVs' impact on CO2 emissions and cost. This 

study concluded that using UAVs for last-mile logistics is both cost-effective and 

environmentally friendly.  

Considering these points, many companies worldwide, such as DHL, Google, and Amazon, have 

started to employ drones for their last-mile delivery [12]. The applications of drones in parcel 

delivery have mainly been investigated in developed countries and leading e-commerce 

businesses such as Amazon. However, in developing countries such as Iran, drones for package 

delivery purposes are gradually being brought into focus. Since 2016, Digikala, the largest e-

commerce company in Iran, has been investigating the possibilities of using cargo drones for 

parcel delivery. This company has even held a competition and invited the academics and robotic 

teams to design and construct UAVs suitable for delivering 2 kg packages to customers. The 

National Post Company of Iran has recently unveiled its drones for postal package delivery 

[13,14].  

It should also be noted that, like any other type of vehicle, drones are prone to failures and 

breakdowns. Internal technical problems or weather conditions can lead to a drone malfunction 

[12]. However, the breakdown probability of drones has been overlooked in most of the previous 

studies. 

Regarding the discussed points, drones are expected to be widely used by e-commerce and postal 

companies as an efficient last-mile delivery means. Therefore, it is necessary to provide 

optimization models to propose the optimal way of utilizing drones for last-mile delivery that is 

efficient in terms of reliability, environmental and economic aspects. These three aspects have 

never been considered simultaneously in a drone delivery network design. We aim to fill this gap 

by proposing a multi-objective model to study the trade-off among these aspects. 

In this paper, we design a last-mile delivery system network that utilizes a heterogeneous fleet of 

ground vehicles and drones for delivering parcels to a set of customers with stochastic demands. 
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Other sources of uncertainties are also taken into account to make this study more consistent 

with real-world cases. These uncertainties include fuzzy parameters such as costs, drones’ 

battery capacity, and breakdown rates of drones and ground vehicles. The proposed model is 

designed to determine the locations of launching facilities and their capacities, the number of 

required drones and vehicles, and the allocation of customers to each facility and vehicle by 

minimizing total costs, environmental impacts and maximizing the system's reliability. 

Moreover, a real case study in an Iranian e-commerce company is presented to investigate the 

proposed model's applicability. 

The remainder of this paper proceeds as follows: Section 2 presents the literature review. Section 

3 describes the problem and presents our proposed model. In Section 4, the solution 

methodology is presented. In Section 5, the case study is introduced, and in Section 6, the case 

study results are presented. Sensitivity analysis is carried out in Section 7, and managerial 

insights are presented in Section 8. Section 9 concludes the paper and proposes future directions 

to extend the current paper. 

2. Literature review 

Many scholars have reviewed the relevant literature on the utilization of drones in logistics and 

last-mile delivery. Chung et al. [12] studied the optimization problems related to the applications 

of drone and drone-truck operations in urban areas. Otto et al. [15] reviewed papers on the urban 

applications of UAVs. Rojas Viloria et al. [16] reviewed drone routing problems. Macrina et al. 

[17] 's work is another recent survey that reviewed studies on transportation systems where 

deliveries are performed by trucks and drones.  

A large body of literature on drone delivery has focused on studying novel variants of the 

traveling salesman and vehicle routing problems. Previous studies in this context can be divided 

into two major streams: papers that only investigate the drones’ operations and those that 

consider drones working collaboratively with trucks or ground vehicles. 

Sundar and Rathinam [18] developed an approximation algorithm and fast heuristics for a 

mixed-integer linear model for a single UAV routing problem with multiple depots that can also 

act as a refueling station for the drone. Kim et al. [19] also contributed to the literature by 

addressing the uncertainty of flight duration (i.e., battery capacity) in the form of a robust 
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optimization model to indicate the number of drones and their flight routes. The authors 

concluded that taking the uncertainty into account minimizes drones' failure rate to return to their 

initial depot. 

Murray and Chu [20] proposed a mixed-integer linear programming model for routing and 

scheduling a drone working collaboratively with a delivery truck to minimize the service time. 

They termed this problem the flying sidekick traveling salesman problem. Ha et al. [21] extended 

the previous paper by introducing a new variant of the traveling salesman problem in which the 

waiting time of both truck and drone is captured and minimized. Agatz et al. [22] modeled the 

Traveling Salesman Problem with a drone and a truck and demonstrated that the truck-drone 

delivery system is remarkably more cost-saving than truck-only delivery. Schermer et al. [23] 

introduced the Traveling Salesman Drone Station Location Problem (TSDSLP), which 

incorporated the Traveling Salesman, Facility Location, and Parallel Machine Scheduling 

problems. Murray and Raj [24] have also extended the original flying sidekicks traveling 

salesman problem by considering parcels be distributed via multiple heterogeneous UAVs with 

different travel speeds, payload capacities, service times, and flight endurance limitations. A 

detailed queue scheduling for UAV arrivals and departures is incorporated within the proposed 

MILP formulation.  

Carlsson and Song [25] investigated the efficiency of a truck-UAV delivery system by real-time 

simulation and theoretical analysis in the Euclidean plane. They concluded that the system's 

efficiency improvement depends on the speed of the truck and UAV. Moshref-Javadi et al. [26] 

Investigated a truck-drone routing problem, where a single truck stops at customer locations and 

launches drones multiple times to satisfy customer demands. The objective function of this 

problem minimizes the customers’ waiting time. A hybrid metaheuristic algorithm based on 

Simulated Annealing and Tabu Search is developed to solve large-size problems. Moreover, 

several bound analyses were conducted to demonstrate the maximum customer waiting time 

reductions compared to the truck-only delivery system. Moshref-Javadi, Lee, et al. [27] 

investigated a more complex problem, where the truck continues its route instead of waiting for 

the drones to return after dispatching. The truck then collects the drones at a different location. 

Salama and Srinivas [28] proposed a new model for clustering delivery locations and routing 

decisions. A fleet of homogenous drones is carried with a single truck to focal points to satisfy 
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customer demands. The authors considered two different policies for indicating focal points: (1) 

limiting the truck stop locations to customer locations and (2) allowing stop locations to be 

anywhere in the delivery region. The case of multiple drones and multiple trucks was furthered 

investigated by considering capacity limitations for both trucks and drones [29]. The proposed 

model seeks to cover two delivery levels consisting of truck routing from the main depot and 

drone routing. Also, two efficient heuristic algorithms are applied for large-size problems. 

Recently, a growing number of studies have investigated facility location problems for drone 

delivery systems. The effectiveness of delivery systems is highly dependent on the location of 

distribution centers. In this regard, Shavarani, Golabi, et al. [30] proposed a bi-objective 

stochastic facility location problem that minimizes uncovered customers and facility 

establishment and drone's total cost procurement simultaneously. In this study, Customers are 

uniformly distributed along the network edges, and their demand follows the Poisson 

distribution. A similar problem in the context of humanitarian relief logistics for the Tehran 

earthquake was studied by Golabi et al. [31] to minimize the aggregated traveling time of people 

to the relief facilities and drones from located facilities to the inaccessible demand points. 

In addition to determining the location of launching facilities, Shavarani, Mosallaeipour, et al. 

[32] considered refueling station establishment for drones as a multi-level facility location 

problem. Moreover, customer demand, distance capacity, and network costs are fuzzy variables. 

The problem's objective function aims to minimize the customer waiting time, which is restricted 

to the M/G/K queueing system. Hong et al. [33] also proposed a MIP formulation and an 

efficient heuristic algorithm to locate recharging stations and construct a feasible drone delivery 

network in an area with obstacles. Kim et al. [34] proposed two planning models for strategic 

(location) and operational (routing) planning for a pick-up and delivery problem of medical 

supplies. 

Dukkanci et al. [35] investigated the energy minimization problem of drone delivery with speed 

range constraints. Chauhan et al. [36] studied a maximum coverage facility location problem 

with drones where drone energy consumption was introduced as a function of distance and 

payload. As the short-term planning period was assumed, the recharging of drone batteries is not 

considered. A three-stage heuristic approach is applied, consisting of a facility location and 

allocation problem, multiple knapsack sub-problems, and a final local search stage. Chauhan et 
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al. [37] then improved the previous paper by considering the uncertainty in initial battery 

availability and drones' battery consumption. To that end, a robust optimization framework is 

utilized, resulting in a more reliable estimation of the actual coverage of drones. Considering 

uncertainty, Kim et al. [38] proposed a stochastic facility location model applicable to 

emergency planning and humanitarian logistics. Chen et al. [39] have also considered uncertainty 

in demand to study revenue and capacity decisions of drone delivery operations. 

Natural disasters, breakdowns, and failures can interrupt supply chains and delivery networks. 

Therefore, the reliability of these networks is one of the most important areas that has been 

studied in different parts of supply chains. The reliability of hub locations, supplying facilities, 

and communication paths have been addressed in multiple studies, such as [40]-[42]. However, 

the reliability of vehicles has rarely been investigated. 

Vehicles are inevitably subjected to breakdowns causing economic losses and customer 

dissatisfaction [43]. Drones may experience breakdowns as well. In addition to internal 

problems, drones' functionality can be affected by weather conditions such as wind, extreme 

temperatures, and humidity [12]. However, taking these factors and the uncertainty involved in 

drones’ operations has been neglected in most previous studies [12]. In general, five main 

strategies are introduced to alleviate vehicle breakdowns. (1) repair the vehicle to resume the 

operation, (2) employing another vehicle from the available ones, (3) rent a new vehicle 

temporarily, (4) quite the broken vehicle and employ the available ones, and (4) quite the broken 

vehicle and prepare a new one [44]. 

As discussed, drones are superior in terms of speed, flexibility in moving, and energy 

consumption. Moreover, they do not need human pilots, can avoid traffics, and are more 

environmentally friendly [12, 20, 21, 26]. However, a significant challenge to drone delivery is 

their limited flying range and carrying capacity [36]. In other words, drones usually can only 

pick up one light package at a time, and their traveling range usually is shorter than that of 

trucks. Moreover, contrary to popular belief, drones are not entirely emission-free. The utilized 

electricity to recharge drones may be generated from fossil fuels, leading to more emissions 

compared to the ground vehicles for long-distance deliveries [12]. Therefore, to improve the 

efficiency and quality of last-mile delivery and reduce transportation costs, drones and ground 

vehicles can be utilized cooperatively to deliver goods to customers [12, 21].  
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From the literature review, it can be concluded that the failures of drones have not been 

considered in almost any of previous drones’ last-mile delivery problems. More importantly, 

three critical aspects of delivery systems, namely environmental, economic, and reliability, have 

not been taken into account simultaneously. The uncertain nature of some parameters of such a 

problem has also been overlooked in many studies. This paper aims to contribute to drone 

delivery literature by considering both fuzzy and stochastic uncertainties involved in a last-mile 

delivery problem of drones. Moreover, in order to have a reliable logistic network, it is necessary 

to take the breakdowns of drones into account, which has been overlooked in previous studies. 

Meanwhile, considering that utilizing drones is not always environmentally friendly and cost-

effective, we construct a model capable of deciding between ground vehicles and drones to 

deliver customer parcels. The proposed model in this paper simultaneously captures facility 

location and allocation decisions in addition to the optimal number of vehicles required to meet 

the customer demands effectively. Due to the problem's multi-objective nature (environmental, 

economic, and reliability aspects), we employed the AUGMECON2 method to solve the model. 

3. Problem description and formulation 

A mixed-integer linear formulation of the last-mile delivery for drones and motorcycle delivery 

is proposed in this section. This model aims to determine the location of depots (i.e., launching 

facilities) and each facility's inventory. It is assumed that there are a given number of customers 

with specific locations and with stochastic demands based on the available historical data. The 

delivery of these demands takes place by either motorcycles or a heterogeneous fleet of drones. It 

is also assumed that demand cannot be split, and each customer should be visited only once by a 

drone or a motorcycle. To propose a more comprehensive decision-making framework, time 

period and changes of parameters from one period to another are also considered. 

Drones considered in this study differ in travel time, launch time, recovery time, and endurance 

[24]. As in this study, only single package delivery is considered. One-to-one deliveries are 

modeled, which is consistent with previous studies and the initial application of drone deliveries 

by companies such as Amazon [36]. Moreover, the consistency between vehicles' capabilities 

and packages in terms of weight and delivery distance is considered. Recharging drones are not 

considered in this study as the batteries can be recharged overnight or between the planning 
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periods [36]. The green aspect of the problem is considered by calculating the environmental 

impacts of both drones and vehicles introduced by Park et al. [10]. The schematic figure of the 

problem under study can be seen in Figure 1. 

 

As discussed, vehicles may face breakdowns. This paper assumes that the number of breakdowns 

in one unit of distance for each type of vehicle (either drone or motorcycle) follows a Poisson 

distribution. This assumption is compatible with previous studies [43, 44]. The following 

formula measures the probability of x breakdowns if X is the number of breakdowns per unit of 

distance and 𝜆 is the defect rate. 

 
!

xe
P X x

x



    (1) 

The notation used in the formulation of this problem is shown in Table 1. 

1      

                 

min   us i s i u v i v

i s i u i v

u i k i k u t v i k i k v t i t

t i k u t i k v i t

Z F y F z F z

f D x f D x ud

  

   

  

  
  (2) 

 2                min v i k v t i k u i k i k u t

t i k v t i k u

Z x D D x        (3) 

 3                min vu i k i k u t i k i k v t

t u i k t v i k

Z D x D x         (4) 

Subjected to: 

            1i k u t i k v t

i u i v

x x      (5) 

             u k t i k u t i k u i u

k

b x D B z     (6) 

       i k v t i v

k

x Mz     (7) 

         i k u t u k tx     (8) 

Facilities 

Drone trips Motorbike trips 

Demand nodes 
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                ( )k t k ti k u t i k v t i t

i u v
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               ( )k t i k u t i k v t s i s
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  1i s

s

y     (11) 

   i u i s

s

z y    (12) 

   i v i s

s

z y     (13) 

  1i u

i

z     (14) 

  1i v

i

z      (15) 

      min 1,  / k tu k t um dem  
  

   (16) 

               ,, , , 0,1 , , , 0i u i v i k u t i k v t i s i t i t i tz z x x y Q ud I      (17) 

The first objective function (2) calculates the total costs, including the establishment cost of 

facilities, the fixed costs, traveling costs of drones and fuel vehicles, and missed demands. The 

second objective function (3) determines the total emissions of the delivery system. The third 

objective function (4) maximizes the reliability of the system. Based on formula (1), the most 

reliable case is when there are no defects for vehicles ( 0)X  . According to the concept of a 

Poisson distribution function, if we want to maximize the reliability for the two means of 

delivery, we can write: 

 
           

           

max 0 max

~ min

vu i k i k u i k i k v

u i k u i k

D x D x

vu i k i k u i k i k v

u i k u i k

P X e

D x D x

 

 

    
 

   
  (18) 

Constraint (5) ensures that each customer can be visited by at most one compatible drone or one 

delivery vehicle. Constraint (6) enforces the energy consumption constraint on all the drones. To 
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calculate the average energy requirement of drone 𝑢 per distance ( )ub , the one-to-one energy 

consumption formula introduced by Figliozzi [9] is used. Considering the customer and time 

period, we can write the change the proposed formula by Figliozzi [9] as follows: 

 
      2 2t b

k tu k t u u

p r

g
b m m dem

s  


      (19) 

Where: 

s  = constant velocity travel speed 

g  = gravity acceleration 

 s  = lift-to-drag ratio 

p  = total power transfer efficiency 

r  = battery recharging efficiency 

t

um

 = UAV mass tare, i.e. without battery and load 

b

um  = UAV battery mass 

The next constraint (7) ensures that customers can receive service from a facility by a vehicle 

only if the vehicle is assigned to that facility. Constraint (8) ensures that a drone can visit a 

customer only if the drone is compatible with that customer’s demand. Constraint (9) shows the 

balance between the missed demands, the amount of product that has been sent to the customers, 

and the demand of each customer in each period of time. The following constraint (10) shows 

that the number of products sent to the customers cannot surpass the facility's capacity. It also 

shows that the demand of customers can be met by a facility only if it had been established. The 

next constraint (11) ensures that each facility can be established with one size. Constraints (12) 

and (13) indicate that each vehicle or drone can be allocated to a facility only if the facility is 

established. The next two constraints (14) and (15) indicate that each drone or vehicle can be 

allocated to at most one facility. Constraint (16) shows how the compatibility of drones and 

customers’ demands can be evaluated. The next constraint (17) shows the range and types of 

different variables. 
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4. Methodology 

4.1. Possibilistic chance-constrained programming 

Some of the proposed problem's critical parameters must be estimated mostly by relying on 

experts' subjective opinions due to their fluctuating and uncertain nature and the unavailability of 

historical data in the phase of designing the last-mile network. Therefore, we formulate these 

imprecise parameters as possibilistic data in the form of trapezoidal fuzzy numbers as follows: 

 

   , , ,p m m o

s s s s sF F F F F   

 , , , p m m o

u u u u uF F FF F       

 , , ,p m m o

v v v v vF F F F F   

 , ,  ,p m m o

u u u u uf fF f f        

 , , ,p m m o

v v v v vf f f f f   

 , , ,p m m o

u u u u u       

 , , ,p m m o
v v v v v          

 , , ,p m m o

v v v v v          

 , , ,p m m o

u u u u u       

 , , ,p m m o

u u u u uB B B B B   

It should be noted that cost-relevant parameters are normally treated as fuzzy parameters as we 

cannot get hold of the historical data in the designing phase when no previous data is available 

on the establishment costs and employment costs of drones and vehicles. Therefore, these 

parameters are treated as fuzzy numbers, which experts can estimate based on their judgments 
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and knowledge. These parameters have also been considered uncertain and fuzzy in similar 

studies such as [32]. 

Usually when dealing with the uncertain constraints involving possibilistic or fuzzy data in their 

left and/or right-hand sides, the possibilistic chance-constrained programming (PCCP) approach 

is utilized [45]. This method has been applied in a vast variety of studies (e.g., [45] – [47]). In 

this method, a minimum confidence level of satisfaction as a safety margin can be set by the 

decision-maker (DM) to control these uncertain constraints' confidence levels. 

To that end, the two standard fuzzy measures, i.e., the possibility (Pos) and necessity (Nec) 

measures, are usually applied [45, 48]. Utilizing possibility or necessity measures depend on the 

DM's optimistic or pessimistic attitude about the possible level of occurrence of an uncertain 

event involving possibilistic parameters. In other words, when the DM has a conservative 

attitude towards satisfying the possibilistic chance constraints, using the necessity measure is 

more meaningful [48]. Here, due to the nature of the problem, using necessity measures seems 

more rational so as to ensure the satisfaction of possibilistic chance constraints, at least in the 

pre-defined confidence levels. 

The crisp equivalent of the proposed model can be formulated by using the expected value for 

the objective function and the necessary measure for the possibilistic chance constraints. For 

more convenience, the compact form of the model is proposed as follows [48]: 

 

min

. .

0,1 ,   0

Z Fy Cx

s t

Cx Ey

y x

 



 

   (20) 

Considering the imprecise parameters, the basic possibilistic chance-constrained programming 

model can be written as follows: 

 
 

min

. .

0,1 ,   0

Z E F y E C x

s t

Nec Cx Ey

y x



      

 

 

   (21) 
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The crisp counterpart of the above model is stated as follows: 

 

 

2 2
min

4 4

. .

1

0,1 ,   0

p m o p m o

m p

F F F C C C
Z y x

s t

Cx E E y

y x

 

      
    
   

    

 

  (22) 

In this approach, DM decides several values for confidence levels, and the final value is chosen 

based on a subjective manner and based on the DM’s choice. Thus, there is no guarantee that 

each confidence level's selected value is the best possible choice [48]. 

In the proposed model, the objective functions (2)-(4) and constraint (6) deal with fuzzy 

parameters. With regard to the mentioned approach, the crisp equivalent of these equations can 

be written as below, where   is considered as the confidence level of constraint (6). 

1    

         

           

2 2
min  

4 4

2 2

4 4

2
'

4

p m o p m o

s s s u u u
i s i u

i s i u

p m o p m o

v v v u u u
i v i k i k u t

i v t i k u
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v v v
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4.2. Stochastic programming 

To solve our model with stochastic demand, chance-constrained programming is applied as a 

stochastic programming approach [49]. Chance-constrained programming was proposed to 

describe constraints with some probability levels. Chance-constrained programming is 

commonly used when the probability distributions of the uncertain parameters are known for 

DMs. The deterministic equivalent formulation can be obtained by defining a predetermined 

confidence level θ to satisfy constraints with stochastic parameters. We can refer to [50]-[52] as 

examples of utilizing chance-constrained programming in hub location, e-commerce facility 

location, and a green supply chain network design problem. A general form of the method can be 

proposed as follows, in which iB  and iA  are stochastic variables:  

min

. .

( )

0

i i i

Z Cx

s t

Pr A x B

x





 



   (27) 

Note that the following constraint has the confidence probability of 
i , where 0 1i  . 

The equivalent deterministic formulation of the stochastic model can be obtained as below, 

where 
iB  and 

iA  indicate the means of iB  and iA , and 
iB  and 

iA  show the standard 

deviations of iB  and iA . As we considered that the stochastic parameters follow a normal 

distribution,  1 1 i    Demonstrates the inverse of cumulative standard normal distributions. 

    1 1
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         



     



  (28) 

Constraint (9) and (10) deal with customers’ demand as a stochastic variable following a normal 

distribution in the proposed last-mile delivery problem with drones and motorcycles. 
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The confidence level of constraints (9) and (10) are ,   , respectively. Using representing kt  as 

the mean of customer demands and kt  as the standard deviation of demands in period t , 

constraints (9) and (10) can be written as below: 

   1 1

               ( 1 . )( ) ( 1 . )kt kt i k u t u k i k v t i t kt kt

i u v
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 1
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k u v s

x x M Cap y            (30) 

4.3. Deterministic equivalent of the model 

Considering the points above, we can write the final deterministic equivalent of the model as 

below: 
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Subjected to: 
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       i k v t i v
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   (45) 

               ,, , , 0,1 , , , 0i u i v i k u t i k v t i s i t i t i tz z x x y Q ud I      (46) 

4.4. Multi-objective programming 

The epsilon-constraint method is one of the most popular approaches to solve multi-objective 

models. This method shows the trade-offs between the objective functions by generating a set of 

exact Pareto optimal solutions. In this method, the problem is reformulated as a single objective 

problem where one of the objective functions is selected as the primary objective function. The 

other objective functions are transformed into additional constraints. The E-constraint method 

has various advantages over other Pareto-generating methods, such as the weighted sum method. 

However, there are also some drawbacks, such as generating weakly Pareto-optimal solutions. 

To overcome this shortcoming, Mavrotas [53] proposed the augmented epsilon constraint 

method (AUGMECON). Later, Mavrotas and Florios [54] proposed an improved version of the 



18 
 

augmented epsilon constraint method (AUGMECON2). AUGMECON2 is a general-purpose 

method; however, Mavrotas and Florios [54] noted that this method is particularly suitable for 

Multiple-Objective Integer Programming models. 

To use this method, first, the range of each objective function needs to be determined through 

lexicographic optimization. A lexicographic optimization method is a sequential approach in 

which a priority is considered for the objective functions based on the DM’s opinion. The 

lexicographic method gives a particular kind of Pareto-optimal solution that considers an order 

for the importance of the objectives. In the lexicographic optimization method, a sequence of 

single-objective constrained optimization problems is solved. To put it differently, the highest 

priority objective function is first minimized concerning the problem’s constraints. The second 

objective function is then minimized while adding a new constraint binding the first objective 

function to its optimal value obtained from the previous step. This procedure is continued until 

the last objective function [55]. 

After indicating the ranges of objective functions, the following model should be constructed: 
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Where k k
k k

k

i r
e lb

g


    

klb  lower bound of objective function k, 

ki  iterations, 

kg  total number of intervals, 

kr  range of objective functions. 
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5. Case study 

Digikala is an Iranian e-commerce company that was founded in July 2006. The company 

initially aimed to sell digital products but gradually expanded its business to various categories 

of products such as cosmetics, clothing, home appliances, books, toys, art pieces, sports 

equipment, fresh vegetables, meat and poultry, beverages, etc. We limit the scope of products to 

fresh foods and beverages as these types of orders need to be delivered promptly for delivering 

which the drones and motorbikes are suitable. This category of product encompasses 19% of 

orders [56]. 

It is noteworthy that supply chain and delivery network design plays a key role in e-commerce 

business management. Thus, problems comprised of location, routing, and inventory have 

received much attention [57]. To validate the proposed model, we apply the model to a real case 

study in Karaj, using the available data of Digikala’s sales [58]. Karaj is the capital of Alborz 

province, and it is one of the largest urban areas of Iran.  

According to the available Digikala open data, during nine days, 2136 orders were placed in 

Karaj in August 2018. Therefore, on average, 237 orders are placed daily. Considering that 

approximately 19% of orders are in the fresh food category, 45 orders should be delivered daily. 

We also took the average 2.2% annual increase in the sales volume from 2018 to 2019 [56]. 

Subsequently, 100 demand nodes have been randomly selected, as shown in Figure 2. Digikala 

has one warehouse located southeast of Karaj to process and send the orders. The location of this 

warehouse and another potential location are considered the potential locations for establishing 

launching facilities (i.e., warehouse). 

Facility locations with their capacities, the allocation of 100 demand nodes, the amount of unmet 

demand, and the required number of motorbikes and drones will be determined for this case by 

employing the proposed model. 

The values of other parameters are extracted as shown in Table 2. It should be noted that drones 

or vehicles with more costs have higher technologies and consequently have fewer 

environmental impacts and breakdown rates. 
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6. Results 

The results of the mentioned case study are depicted in Figures 3 and 4. 

In order to investigate the performance of the model, we assumed that the DM sets both the 

confidence level of stochastic constraints and the confidence level of fuzzy constraint 0.8. One of 

the Pareto solutions is selected to demonstrate the results of the case study under investigation. 

For 2 53.9536  , 3 0.0048  ,  the values of 1641965.793, 0.005, and 53.365 are obtained for 1Z , 

2Z , 3Z ,  respectively. Both potential facility points are established from which drones and 

motorcycles delivered customers' demands. The result shows that 15 drones and eight 

motorcycles are assigned to facility point 1 to deliver customer orders. Drones satisfy the orders 

of 27 customers, and motorcycles cover the orders of 31 customers. Facility point 2 launched a 

fleet of 22 heterogeneous drones to deliver the demand of 37 customers. Besides, two 

motorcycles are employed to meet five customer orders. The results are summarized in Table 3. 

In this illustrative example, 50 drones and 12 motorcycles can be used for delivery; however, the 

solution indicates that 37 drones and ten motorcycles are allocated to the established facilities. 

As mentioned earlier,    u k t  is the parameter which presents the compatibility of drone u with the 

demand of customer k . Customer orders that are not compatible with drones’ features, such as 

the maximum carrying load, are assigned to motorcycles. In order to ensure that the model 

reflects this assumption, the results were investigated. For instance, 1 4 1  gets a value of zero, 

while 1 4 3 1x   equals 1, which means customer four is assigned to motorcycle number 3 since it is 

not compatible with the available drones. Besides, no unmet demands are observed in the 

selected solution. 

7. Sensitivity analysis 

This section investigates the impact of some of the critical parameters on the objective functions 

and the model's outputs.  
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7.1. Impact of the number of available vehicles 

One of our study's main purposes was to compare two modes of transportation (i.e., motorbikes 

and drones) in a last-mile delivery system in Karaj. Therefore, a different number of drones and 

motorbikes and the Lexicographic optimization method's corresponding results are shown in 

Table 4. The certainty level ), ,( ,    is fixed on 80% in the following results. 

As shown, a combination of drone/motorbike in Karaj’s last-mile delivery system leads to a 

lower level of the total cost. When both drones and motorbikes are utilized, and the proportion of 

drones in the vehicles' fleet is higher, the total costs are approximately six times more than when 

there are more motorbikes. The system's adverse environmental effects are remarkably lower on 

the plus side, and the delivery system is more reliable. Therefore, the number of drones and 

motorbikes in the delivery system can be determined concerning the relative importance level of 

objective functions for the DM of the last-mile delivery project of Karaj.  

When only one type of delivery mode is considered, total costs increase notably. However, when 

only drones are utilized, the environmental impacts are at their lowest level, and the system's 

reliability is higher. This is consistent with the previous studies emphasizing the superiority of 

drones in lower CO2 emissions and environmental impacts [10,11]. 

7.2. Impact of drones’ efficiency 

The efficiency of drones can be related to the weather, battery usage during take-off and landing, 

and the drones' initial conditions. To take the uncertainties involved in the mentioned factors, we 

investigate the impact of the drones’ efficiencies on the required drones and the objective 

functions. To that end, the value of p r   has been changed from 60% to 100%. However, it 

should be noted that 100% of efficiency is not likely to occur in reality. The value of p r   shows 

the power transfer efficiency from the battery to the propellers and the energy that is lost when 

batteries are recharged [9]. The results of the Lexicographic optimization are demonstrated in 

Figure 5. 

It should be noted that the certainty level (i.e., confidence level) is fixed at 80%, as depicted, 

total costs (green line) decrease as the efficiency of drones increases. That is, the number of 
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required drones decreases when higher efficiencies are considered for drones as more efficient 

batteries can help drones fly for longer hours, and consequently, each drone can meet the 

demands of more customers. The results can be observed in figure 6. 

Interestingly, the delivery system of Karaj is more reliable when the efficiency of drones is 

lower. This stems from the fact that less efficient drones travel shorter distances, and as a result, 

they experience fewer breakdowns. However, when drones' efficiency is higher, fewer drones are 

utilized, and consequently, they have to travel long distances, which exposes them to more 

breakdowns and failures.  

7.3. Impact of the confidence level of uncertain constraints 

In this section, the effect of confidence level ), ,( ,    of uncertain constraints is investigated 

on the objective functions of the problem. 

As demonstrated in Figures 7 and 8, the confidence level remarkably affects Karaj's parcel 

delivery system's first objective function (total costs). Therefore, it can be concluded that if the 

DM wants to have higher levels of uncertainty for the uncertain constraints and variables, they 

should expect more total costs for the delivery system. Confidence level; however, does not seem 

to have a notable effect on the other two objective functions.  

7.4. Impact of the number of potential facilities 

We have also investigated the impact of increasing the number of Karaj potential locations for 

launching the drones. The results summarized in Table 5 demonstrate that, in general, 

considering more potential locations in Karaj leads to a decrease in the delivery system's total 

costs. Moreover, fewer drones are employed as the distance from launching facilities to the 

customers becomes shorter. 

Also, it is understood that the system's reliability decreases when more potential facility 

locations are considered. This is also consistent with the results of the sensitivity analysis on the 

drones’ efficiency. 
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7.5. Impact of the capacity size of facilities 

In this section, we investigated the effect of capacity sizes on the objective functions and critical 

variables. Two supplying capacities (2500 and 4000) had been considered for the case study that 

facilities could be established with either of these sizes. It is obvious that the establishment cost 

of facilities also rises as capacity sizes increase. As shown in Figure 9, when half of the capacity 

sizes are considered, total costs rise considerably. Also, one of the facilities faces unmet demand. 

Moreover, the environmental effect is lower. The system is pretty reliable, which stems from the 

fact that fewer deliveries have been carried out due to the supply shortage of facilities. When 

increasing the capacity sizes, total costs increase slightly, and other objective functions have 

relatively static values. The capacity sizes also affect the number of established facilities. 

According to the results shown in Table 6, when capacity sizes increase tenfold, only one facility 

is established. However, in other cases, both of the potential facilities in Karaj are established. 

8. Discussion and managerial insights 

This study explores a last-mile delivery problem in an Iranian e-commerce company to locate the 

capacitated facilities and allocate the available drones and motorbikes to the established facilities 

to satisfy given demands. The mathematical formulation seeks to optimize three objectives 

comprised of the system's total cost, the environmental impact of ground and air transportation 

vehicles, and their reliability considering the breakdown probabilities of vehicles.  

As mentioned in section 2, drone delivery has been under the focus of both practitioners and 

academics. Many well-known companies, such as DHL, Google, and Amazon, have been 

investing in employing drones in their last-mile parcel delivery processes. Also, there is a large 

body of literature on optimizing drone delivery processes. However, most of the case studies in 

this area of research belong to developed countries. Therefore, it is required to propose proper 

mathematical models for designing drone delivery networks in developing countries. Using 

drones for package delivery purposes is gradually being brought into focus in such countries. For 

example, in Iran, Digikala, one of the largest Iranian e-commerce companies, has shown interest 

in using cargo drones for package delivery. In this regard, we proposed a multi-objective 

mathematical model to present a last-mile package delivery network using both ground vehicles 

and drones for Digikala in Karaj. 
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The study of Chauhan et al. [34] is the closest paper to this paper. However, we extended the 

model to consider the possibility of assigning both drones and ground vehicles to facilities with 

respect to the compatibility of drones and customer demand. Moreover, Chauhan et al. [36] 

considered drone energy consumption as a function of distance and payload without 

investigating drones' environmental impacts and their energy consumption. This has also been 

covered in our proposed model by adding an objective function associated with environmental 

impacts. The environmental aspect of delivery plays a pivotal role in managerial decisions.  

Additionally, considering breakdown probabilities for both delivery vehicle types has not been 

investigated in last-mile delivery literature. Shavarani, et al. [32] set the customer demand, 

distance capacity, and network costs as fuzzy variables in the facility location problem of a 

refueling station for drones. Kim et al. [38] presented a facility location model of humanitarian 

logistics using drones with stochastic flight distance. However, in our study, a comprehensive 

model is proposed to account for both the fuzzy and stochastic nature of critical parameters. 

In section 7, the impact of some parameters such as the number of available vehicles, the drones’ 

efficiency, the confidence level of uncertain constraints and the number of potential facilities on 

the values of objective functions and variables were examined. Based on the results yielded by 

the sensitivity analysis, managerial perspectives can be discussed as follows:    

According to Table 4, it is suggested to the managers of the drone delivery project of Karaj to 

only use drones instead of ground vehicles if the environmental objective has a higher priority 

and an adequate budget is available to satisfy higher costs. In other words, as the environmental 

impact of the system is at its lowest level when only drones are utilized, concerning this 

objective and regardless of the costs, utilizing a drone fleet is suggested to be considered. 

Suppose the management faces budget limitations and budget shortages, which is normally the 

case. In that case, it is recommended to reduce the number of drones and used the ground vehicle 

instead until they meet their budget level. As a result, the costs of the delivery system of Karaj 

decrease; however, it leads to an increase in the system's environmental impacts. Moreover, it is 

suggested to have more drones than motorbikes in the delivery as the system's reliability is also 

in a better condition when the transportation fleet consists of more drones. 

Figures 5 and 6 suggest that the management should take drones' efficiency into account when 

planning for a drone delivery system as it significantly affects the system's reliability and total 
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costs. Suppose the management wants to reduce the total costs. In that case, they should use 

drones with more efficient batteries and consider serious plans for periodic maintenance to keep 

drones' efficiency high. Moreover, they should realize that inevitable factors can affect drones’ 

efficiency. Hence, they should consider their drones’ efficiency lower than they expect to be 

prepared for possibly higher costs. Interestingly, when drones with higher battery efficiency are 

considered, the management should expect more breakdowns as fewer drones are utilized and 

each travel longer distances which prone them to more failures. Again, this shows the importance 

of considering proper maintenance plans to the management, which is out of this study's scope 

but can be an interesting research area for future studies. 

According to figure 8, when there is a higher level of uncertainty involved in the project and 

critical parameters of the problem, the management of the drone delivery project of Karaj should 

assign more budget for the costs to implement the project feasibly. 

According to Table 5, the management should consider a trade-off between the number of 

potential facilities and the number of utilized drones to achieve the preferred level of reliability 

for the delivery system in Karaj. If the management decides to establish more facilities, the 

number of used drones decrease. As a result, there will be a decrease in the system's reliability 

observed in Table 5. The same result is achieved in a reverse manner. Additionally, if it is not 

possible for the management to increase the number of drones, the issue could be resolved by 

increasing the number of potential facilities. Moreover, even when ten possible locations for 

facilities are considered, only three have been established for the particular case study. 

Therefore, it can be concluded that three established facilities can meet customers' demand in the 

best possible way as the costs are lower and the reliability level is relatively acceptable.  

Sensitivity analysis on the capacity sizes shows that the capacities considered are the most 

suitable for the case under study. So, it is suggested to the management to consider 2500 units as 

the supplying capacities for establishing potential facilities as it leads to fewer costs and all the 

demand can be satisfied with these supplying capacities. Moreover, according to Figure 9, 

increasing the capacity to a certain level leads to an improvement in total costs, environmental 

aspects, and system reliability. However, the DMs in Karaj should be aware that increasing 

capacities has no noticeable effect on improving the objective functions given the current 

conditions and assumptions. 
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9. Conclusion 

In this paper, a stochastic-fuzzy multi-objective optimization framework was developed to 

design a last-mile delivery system. The proposed model is capable of indicating the following 

variables: location and capacity of launching facilities, the number and types of required 

vehicles, the allocations of customers to each facility, and the amount of unmet demand in each 

time period. Moreover, this model considers the trade-offs between three objective functions as a 

novel feature, including total cost, reliability, and environmental impacts. To check the 

applicability of the proposed model, it is applied to a case study in an Iranian e-commerce 

company. Furthermore, several sensitivity analyses are carried out to study the impacts of critical 

parameters on the objective functions and decision variables' values. Results demonstrate that the 

confidence level of uncertain parameters impacts the total cost of the system considerably. 

Findings suggest that the best delivery system includes drones and ground vehicles (i.e., 

motorbikes). Moreover, drones' efficiency and the number of potential facility locations play an 

important role in determining the optimal number of required drones. 

For future research, metaheuristic algorithms can be used to solve this model and compare the 

results to those of the current study obtained by AUGMECON2 as an exact method. Considering 

the breakdowns of facilities can also be studied as another extension of the proposed model. 

Moreover, proposing a model for preventive or corrective maintenance of drones and other types 

of delivery vehicles can be an interesting area for future research. Also, the vehicles may face by 

a partial breakdown, which causes the vehicle to provide the service (delivering parcels) at a 

lower rate instead of stopping service completely [60]. Therefore, considering the partial 

breakdowns could be an interesting problem for future research. 
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Figure 10. Schematic figure of the delivery system under study 

 



34 
 

 

Figure 11. Demand nodes and potential facility locations in Karaj 
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Figure 12. 3D Pareto front for confidence level of 80% 
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Figure 13. 2D Pareto fronts for confidence level of 80% 

 

Figure 14. Sensitivity analysis on the efficiency of drones 
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Figure 15. Sensitivity analysis on the efficiency of drones 

 

 

 

Figure 16. 3D Pareto fronts for different confidence levels 
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Figure 17. 2D Pareto fronts of different confidence levels 

 

 

 

Figure 18. Impact of capacity sizes on objective functions 
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Table 7: Description of notations 

Notations 

Indices and Sets 

k K   Set of demand nodes 

i I   Set of location for potential facilities 

u U   Set of available drones 

v V   Set of delivery vehicles 

s S   Set of facility sizes 

t T   Period of time 

Parameters 

sF   Fuzzy establishment cost of a facility with size s   

uF    Fuzzy fixed cost of employing drone u   

vF   Fuzzy fixed cost of employing vehicle v   

𝑓 ′̃
𝑢

 Fuzzy traveling cost of drone u  per distance 

vf   Fuzzy traveling cost of vehicle v  per distance 

sCap   Supplying capacity of a facility with size s   

 k tdem   Stochastic demand of customer k  in period t   

   u k t   Compatibility of drone u  with demand of customer k  in period t    

   u k tb   Energy requirement of drone u  to carry the demand of customer k  in 

period t , in Wh per distance 

uB   Battery capacity of drone u   

um   Maximum mass that drone u can carry 

u   Break down probability of drone u in unit of distance 

v   Break down probability of vehicle v in unit of distance 

u   The environmental impact of 1 km drone delivery 

v   The environmental impact of 1 km vehicle (i.e. motorbike) delivery 

 i kD   Euclidean distance between facility i and customer k for drones 

 i kD    Rectilinear distance between facility i and customer k for vehicles 

   Penalty for missed demands 

Decision variables 

 i sy   1, if facility i with size s is established; 0 otherwise 

     i k u tx   1, if customer k is served by drone u from facility i in period t ; 0 

otherwise 

     i k v tx    1, if customer k is served by vehicle v from facility i in period t ; 0 

otherwise 

 i uz   1, if drone u is assigned to facility i ; 0 otherwise 
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 i vz    1, if vehicle v is assigned to facility i ; 0 otherwise 

 i tud   Unmet demand of facility i in period t   

 

 

 

Table 8. Data for the case study. 

Case study’s data 

Indices and Sets 

k K  100 

i I  2 

u U  50 

v V  12 

s S  2 

t T  1 

Parameters 

(0.8 , ,1.2 )m m m

s s s sF F F F  
 m

sF  ~ Uniform (100000,150000) USD 

      0.8 , ,1.2m m m

u u u uF F F F       
 m

uF   ~ Uniform (3000,5000) USD [32] 

(0.8 , ,1.2 )m m m

v v v vF F F F   
m

vF  ~ Uniform (4000,6000) USD [59] 

  0.8 , ,1.2m m m
u u u uf f f f      

 m

uf   ~ Uniform (0.006,0.014) USD [32] 

(0.8 , ,1.2 )m m m

v v v vf f f f   
m

vf  ~ Uniform (0.3,0.7) USD [32] 

 k tdem   ~ Normal (2.5,12) 

(0.8 , ,1.2 )m m m

u u u uB B B B   
m

uB  ~ Uniform (666,888) [36] 

um   ~ Uniform (4.5,5.5) kg [9,36] 

(0.8 , ,1.2 )m m m

u u u u      
m

u  ~ Uniform (0.01,0.03) 

     (0.8 , ,1.2 )m m m
v v v v        

 m

v  ~ Uniform (0.04,0.06) 

(0.8 , ,1.2 )m m m

u u u u       
m

u  ~ Uniform (3.4× 10−7,5.2× 10−7) [11] 

(0.8 , ,1.2 )m m m

v v v v         
m

v  ~ Uniform (4.36× 10−6,6.5× 10−6) [11] 

sCap   2500, 4000 kg 

p r    ~ Uniform (0.66,1) [9]  

 s   ~ Uniform (2.5,4.5) [9,36] 

t

um   ~ Uniform (10,10.2) kg [9,36] 

b

um   ~ Uniform (0.04,0.06) kg [9,36] 
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Table 9. Results of the case study 

Established 

facilities 
Drone Motorbike 

Number of recovered 

customers 
Unmet demand 

Facility 1 
15  27 0 

 8 31 0 

Facility 1 
22  37 0 

 2 5 0 

Sum 37 10 100 0 

 

 

Table 10. Sensitivity analysis on the number of available vehicles. 

Number of available 

|motorbikes|  |drones| 
Objective 1 Objective 2 Objective 3 

|50|  |12| 220397.3 0.015 138.421 

|12|  |50| 1360919 0.006 66.845 

|50|  |0| 4.71E+13 0.014 132.604 

|0|  |50| 1.09E+14 3.88E-04 3.58 

 

 

Table 11. Sensitivity analysis on the number of potential facility locations 

Number of 

potential facilities 
Objective 1 Objective 3 

Number of 

established facilities 

Number of 

employed drones 

1 1531512 67.995 1 38 

2 1360919 66.845 2 28 

4 1277807 67.247 3 24 

6 1284640 67.503 4 23 

8 1252052 68.321 3 24 

10 1249576 68.414 3 23 

 

Table 12. Sensitivity analysis on the capacity sizes 

Capacity sizes 
0.5Cap

  
Cap   2Cap   10Cap   

Number of established facilities 2 2 2 1 

 


