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Abstract

TOPSIS is a well-known technique in multiple criteria decision making and has

found several applications in recent years. However, as mentioned in literature TOP-

SIS has several shortcomings. In this paper, we present an extension of TOPSIS

method to determine the weight of decision makers (DMs) in group multiple attribute

decision making problems with interval information. Our method is based on the con-

cept that the best alternative is closer to the positive ideal solution and far away from

the negative ideal solution, simultaneously. The contribution of the proposed method

is that while it overcomes the shortcomings of the TOPSIS method it can be used to

weight the decision making team and ranking the alternatives, as well. The method

is illustrated through three examples.

Keywords: Group multiple attribute decision making; weight of decision makers;

TOPSIS; ranking; interval data

1 Introduction

Multiple attribute decision making (MADM) problems are comparing multiple alterna-

tives based on multiple attributes, which are often inconsistent, ranking alternatives and

selecting the best one. The MADM models have been proposed in many numerous fields

such industry [1], engineering [2], risk assessment society [3], management [4], automobile

industry [5] and etc. Moreover, in recent years the attention of many authors is located on

it and solved these problems with different methods [6, 7, 8, 9, 10, 11, 12]. An important

and easy to use method for solving these problems is the Technique for Order Preference

by Similarity to Ideal Solution (TOPSIS), that is a famous technique for solving MADM

problem which was first introduced by Hwang and Yoon in 1981 [13]. This method is

based on this concept that the best alternative is closer to Positive Ideal Solution (PIS)

and farther from Negative Ideal Solution (NIS), simultaneously. The PIS and NIS are two

virtual alternatives that show the best and worst performances of alternatives based on

attributes, respectively. The ranking of alternatives computed on the basis of closeness
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coefficients of them. The closeness coefficients calculated by dividing the distance of each

alternative from the NIS to sum of the distances of each alternative from the PIS and NIS.

Some researchers extended the TOPSIS method for ranking the alternatives in different

situations [14]. Jahanshahloo et al. [15] extended TOPSIS method for ranking the al-

ternatives with interval numbers. They defined the PIS and NIS for each alternative

separately by real values. The closeness coefficient of each alternative determined with

interval form. Finally with two approaches the intervals of alternatives compared and

ranked them. In 2013 Dymova et al. [16] proposed a new approach to interval extension

of TOPSIS method. They claimed their method has not any heuristic assumptions like

as suggested interval extensions of TOPSIS method which are based on different heuristic

approaches to definition of PIS and NIS, which are not attainable in a decision matrix.

Saffarzadeh et al. [17] proposed a method such that being away from NIS and being

close to PIS have the same effect in alternatives ranking. In their proposed method, the

PIS and NIS are determined as interval numbers and distance of each alternative from

PIS and NIS is calculated by extension of Euclidean distance. Then, a compromise index

is defined to rank the alternatives.

Sadabadi et al. [18] presented an approach based on linear programming to solve

MADM problems. In their methodology two scores are computed for each alternative and

then by integrating these two score the final score of alternative is calculated. Fuzzy data

in MADM problems studied by some researchers such as [19, 20, 21, 22].

Because of complexity of real-life, the decision making take place in group. The group

of Decision Makers (DMs) proposed their opinion about alternatives based on attributes.

In recent decades, some researchers suggested the methods based on TOPSIS method

for solving Group Multiple Attribute Decision Making (GMADM) problems. For exam-

ple, Shih et al. [23] studied the effects of normalization and aggregation approaches in

GMADM problems. They applied two normalization approach (linear and vector normal-

ization) and two mean (arithmetic mean and geometric mean) for aggregation. In their

examples the best and worst alternatives do not changed but other alternative’s ranking

changed. Anisseh et al. [24] proposed a fuzzy extension of TOPSIS method for GMADM

problems under fuzzy environment. They converted the DM’s fuzzy decision matrix into

an aggregated decision matrix. Then the closeness coefficients computed based on TOP-

SIS method.

In group decision making environment, DMs have different skills, knowledge, and expe-

riences. In numerous GMADM problems, the difference of knowledge and experiences of

DMs (importance or weight of DMs) is not considered in decision making process and all

DMs have the same importance and weights. Obviously, this is unreasonable in real envi-

ronment and causes error and uncertainly in final solution. In recent years, some methods

based on TOPSIS method have suggested to determining the weight of DMs. For example,

Ataei et al. [25] presented the ordinal priority approach method for calculating the DMs’s

weight. They first determined the DMs and their priorities. After prioritization of the

DMs, attributes are prioritized by each DM. Then, each DM ranked the alternatives based

on each attribute. By solving the presented linear programming model of this method,

the weights of the attributes, alternatives and DMs obtained simultaneously.

Yue [26] determined the weight of DMs based on TOPSIS method. First he considered
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the mean of all decisions as PIS. Then assumed the NIS in two parts. The left and right

NIS were minimum and maximum of all decisions, alternatively. Finally by using the

closeness coefficient of TOPSIS method, the weight of DMs calculated. Also with these

calculated weights, the decisions aggregated and derived a group decision. The values of

each alternative in his row, added and obtained the score of that alternative. The ranking

of alternatives are performed with these scores. Besides, Yue [27] extended this method

for GMADM problems with interval numbers. First normalized the decision matrix with

interval numbers in two steps. Then by using the weight of attributes, computed the

weighted normalized decision matrix. The PIS defined as the mean of all weighted nor-

malized decision matrix. The minimum of the left values of intervals and maximum of the

right values of intervals considered as left and right NIS, respectively. Finally closeness

coefficient of each DM computed based on TOPSIS method. The normalized closeness co-

efficients defined as weight of DMs. The group decision matrix computed as aggregation

of weighted normalized decision matrix with computed weights. Each row added and the

degree of possibility of intervals calculated. The sum of the degree of possibility of each

row is the score of corresponding alternative. In 2012, Yue [28] used the mentioned method

but changed the definitions of PIS and NIS to intersection and union of intervals of all

DMs. Yue [29] computed the weight of DMs in interval forms. He defined PIS as mean ,left

NIS as minimum and right NIS as maximum of all matrix of DMs. Then the left (right)

closeness coefficient calculated as minimum (maximum) of closeness coefficients calculated

with distances of each DM from PIS and left NIS (PIS and right NIS). The interval weight

of DMs computed with normalized intervals with left and right closeness coefficients. Liu

et al. [30] computed the weight of attributes with mean and standard deviations. The

weight of DMs calculated with TOPSIS method like as Yue [26]. In 2018, Yang et al. [31]

for determining the weight of DMs, computed the weighted normalized decision matrix as

the Yue [27] method. Then putted the left and right values of intervals in two matrix and

called lower and upper decision matrix. For each of these matrix, calculated the group

decision matrix. Then performed rough group decision matrix. They computed the lower

and upper PIS and NIS based on best and worst performances, respectively. The mean of

lower and upper PIS and NIS considered as overall PIS and NIS. The closeness coefficients

calculated as TOPSIS method. These closeness coefficients supposed as weight of DMs.

In spite of all advantageous and applications of TOPSIS method, this method has some

disadvantageous. One of these disadvantageous is related to normalization. When the nor-

malization method changes, the ranking also changes. Another flaw of TOPSIS method is

the way of aggregate the distances of each alternative from PIS and NIS. There are several

methods for aggregation, such as, the classic method of TOPSIS, sum of these distances

and subtract of two distances. Some researchers introduced two weights as the relative

importance, one for benefit attributes and other for cost attributes. Kuo [32] represented

the closeness coefficients of TOPSIS method is irrespective of the weights of distances of

an alternative from the PIS and NIS. In other words, not important what weights the

DM assigns to these two distances, the ranking results would not vary as if DM has no

preference for these two distances. For solving this flaw, Kuo reduced the original prob-

lem to a new problem with two attributes only, the distances of an alternative from the

PIS and NIS as a cost attribute and a benefit attribute, respectively. The new closeness
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coefficient suggested with considering two weights corresponded to two new attributes. In

his method, the weights changed with respect to DM’s opinion and not unique. Diwivedi

et al. [33] suggested the weights putted in exponent of distances of an alternative from

the PIS and NIS. Opricovic and Tzeng [34] proposed the TOPSIS method and this flaw.

They pointed to Lai et al.[35] paper and stated that this issue remained as open question.

As mentioned in Kuo’s method, the distances of an alternative from the PIS and NIS are

two types. first is a cost attribute and second is a benefit attribute. So summing two

attributes from two types is unreasonable. Another flaw of TOPSIS method that relate to

aggregation method is, it might a DM that is closer to PIS than other DMs, rank worse

than others and it is inconsistency of the previous definition of TOPSIS method that the

best alternative is closer to PIS and farther from NIS, simultaneously. In this paper, we

propose a method to overcome these flaws of TOPSIS method without needing to consider

the weights. The structure of this study is as follows:

In section 2, we review the TOPSIS method and extension of this method for interval

numbers express in section 3. Section 4 proposes our method. It is illustrated through

using some examples in section 5. Section 6 concludes the paper.

2 The TOPSIS method

In this section we review the TOPSIS method for multiple attribute decision making

(MADM) problems. TOPSIS is a well-known method for solving the MADM problems

that was proposed by Hwang and Yoon at first. The TOPSIS method chooses the best

alternative that is closer to PIS and far away from NIS, simultaneously, where the PIS is

the best virtual decision and the NIS has the maximum distance from the PIS.

Suppose A = {A1, ..., An} be the set of n alternatives and U = {u1, ..., um} be the set of

m attributes. We have two types of attributes, benefit attributes and cost attributes. We

denote the benefit attributes set by U1 and cost attributes set by U2 where U1
⋂
U2 = ϕ

and U = U1
⋃
U2. The value of ith alternative based on jth attribute that defined by DM

is shown by xij . The steps of TOPSIS are as follows:

Step 1. Normalize the values xij to the corresponding normalized values rij with the

following formulation

rij =
xij√√√√ n∑
i=1

x2ij

, i = 1, ..., n, j = 1, ...,m

(1)

Step 2. Calculate the weighted normalized values by the product of each normalized

value rij in its weight wj

vij = wj rij , i = 1, ..., n, j = 1, ...,m (2)

Step 3. The PIS which is the best value for each attributes compute as follows

v+j =

 max
1≤i≤n

{vij} uj ∈ U1

min
1≤i≤n

{vij} uj ∈ U2
(3)

4



And the NIS which has the most distance from PIS characterize as follows

v−j =

 min
1≤i≤n

{vij} uj ∈ U1

max
1≤i≤n

{vij} uj ∈ U2
(4)

Step 4. Calculate the distance of each alternative from the PIS and NIS

S+
i =

√√√√ m∑
j=1

(
v+j − vij

)2
, i = 1, ..., n

S−
i =

√√√√ m∑
j=1

(
vij − v−j

)2
, i = 1, ..., n

(5)

Step 5. The closeness coefficient of ith alternative compute as

RCi =
S−
i

S+
i + S−

i

, i = 1, ..., n (6)

Step 6. Rank all the alternatives according to the decreasing order of RCis. RCis show

closest to PIS and farthest from to NIS, simultaneously.

3 Extended TOPSIS

In this section we review the extended TOPSIS method for GMADM problems with

interval numbers that proposed by Yue [26].

Definition 1. A nonnegative interval number a is a set of the form {x | 0 < al ≤ x ≤ au},
which denoted by a = [al, au] ([36]).

With the notations of the previous section and additional assumptions that there is t DMs,

{DM1, DM2, ..., DMt}, where each DM obtained his/her preferences of each alternative

based on attributes with a matrix. the Xk (k = 1, 2, ..., t) is decision matrix of the DMk

as follows:

Xk = ([x
k(l)
ij , x

k(u)
ij ])n×m =

u1 u2 ... um

A1

A2

...

An


[x

k(l)
11 , x

k(u)
11 ] [x

k(l)
12 , x

k(u)
12 ] ... [x

k(l)
1m , x

k(u)
1m ]

[x
k(l)
21 , x

k(u)
21 ] [x

k(l)
22 , x

k(u)
22 ] ... [x

k(l)
2m , x

k(u)
2m ]

...
... ...

...

[x
k(l)
n1 , x

k(u)
n1 ] [x

k(l)
n2 , x

k(u)
n2 ] [x

k(l)
nm , x

k(u)
nm ]


(7)

by the following steps the DM’s weight construct:

Step1. Compute the normalized decision matrix Rk (k = 1, 2, ..., t) with two steps as

follows

5





y
k(l)
ij =

x
k(l)
ij

n∑
i=1

x
k(u)
ij

, y
k(u)
ij =

x
k(u)
ij

n∑
i=1

x
k(l)
ij

, uj ∈ U1

y
k(l)
ij =

1/x
k(u)
ij

n∑
i=1

1/x
k(l)
ij

, y
k(u)
ij =

1/x
k(l)
ij

n∑
i=1

1/x
k(u)
ij

, uj ∈ U2

(8)

And

r
k(l)
ij =

y
k(l)
ij√√√√ n∑

i=1

((
y
k(l)
ij

)2
+

(
y
k(u)
ij

)2) , r
k(u)
ij =

y
k(u)
ij√√√√ n∑

i=1

((
y
k(l)
ij

)2
+

(
y
k(u)
ij

)2) (9)

Step2. Compute the weighted normalized decision matrix Vk = ([v
k(l)
ij , v

k(u)
ij ])n×m.

Step3. Define the PIS A+ = ([v
+(l)
ij , v

+(u)
ij ])n×m as

v
+(l)
ij =

1

t

t∑
k=1

v
k(l)
ij , v

+(u)
ij =

1

t

t∑
k=1

v
k(u)
ij (10)

Step4. Define the NIS A− = ([v
−(l)
ij , v

−(u)
ij ])n×m as

v
−(l)
ij = min

1≤k≤t

{
v
k(l)
ij

}
, v

−(u)
ij = max

1≤k≤t

{
v
k(u)
ij

}
(11)

Step5. Calculate the distances of DMk from PIS

S+
k =

√√√√ n∑
i=1

m∑
j=1

((
v
k(l)
ij − v

+(l)
ij

)2
+

(
v
k(u)
ij − v

+(u)
ij

)2)
(12)

Step6. Calculate the distances of DMk from NIS

S−
k =

√√√√ n∑
i=1

m∑
j=1

((
v
k(l)
ij − v

−(l)
ij

)2
+

(
v
k(u)
ij − v

−(u)
ij

)2)
(13)

Step7. Determine the closeness coefficient of DMk

RCk =
S−
k

S−
k + S+

k

(14)

Step8. Determine the weight of DMk as

λk =
RCk

t∑
k=1

RCk

(15)
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4 The proposed method

In this section, first we explain a drawback of extended TOPSIS method (hereafter called

ET method), and then proposed our method for solving this flaw.

Suppose that DMj has the shortest distances from A+ and A−, simultaneously and DMk

has the farthest distances from A+ and A−, simultaneously. It is clear that both have

one positive score (DMj has the shortest distances from A+ and DMk has the farthest

distances from A−) and one negative score (DMj has the shortest distances from A−

and DMk has the farthest distances from A+). So they must have the equal closeness

coefficients and ranked similar. But by using ET method, until ended the computations,

we do not have a certain ranking and may have different closeness coefficients. Also it may

that a DM that is closer to PIS than other DMs, rank worse than others. For clarifies this

discussion, suppose that the DMj rank better than DMk, then RCj > RCk and therefore:

RCj > RCk ⇒
S−
j

S+
j + S−

j

>
S−
k

S+
k + S−

k

⇒ S+
j <

S−
j S

+
k

S−
k

Let, DMk has this property that S+
k = S−

k . Then all alternatives DMj with S+
j > S+

k

and S+
j < S−

j have the better rank than DMk, since

S+
j < S−

j ⇒ S+
j + S−

j < 2S−
j ⇒

S−
j

S+
j + S−

j

>
1

2
⇒ RCj >

1

2

On the other hand,

RCk =
S−
k

S+
k + S−

k

=
1

2

Then RCj > RCk. But since S+
j > S+

k , DMk has less distance to PIS than DMj .

For solving this flaw, the following method is proposed.

We compute the values of
{
S+
1 , S

+
2 , ..., S

+
t

}
by steps (1-6) of the previous section. Then

consider them as cost attributes, since small values of S+
k are better. Now set

S+∗ = max
1≤k≤t

{
S+
k

}
, S+

− = min
1≤k≤t

{
S+
k

}
And define

S̃+
k =

S+∗ − S+
k

S+∗ − S+
−

(16)

It is clear that S̃+
k ∈ [0, 1].

Similarity, the values of
{
S−
1 , S

−
2 , ..., S

−
t

}
are computed using Steps (1−6) of the previous

section and they are considered as benefit attributes (Since big values are better). Now set

S−∗ = max
1≤k≤t

{
S−
k

}
, S−

− = min
1≤k≤t

{
S−
k

}
And define

S̃−
k =

S−
k − S−

−
S−∗ − S−

−
(17)
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It is clear that S̃−
k ∈ [0, 1].

Now set

ξk = S̃+
k + S̃−

k (18)

If ξk = 0, then S̃+
k = 0, S̃−

k = 0. So DMk has the shortest distance from NIS and the

farthest distance from PIS. Therefore this DM is the worst one . Also if ξk = 2, then

S̃+
k = 1, S̃−

k = 1. So DMk has the shortest distance from PIS and the farthest distance

from NIS and consequently this DM is the best.

Lemma 1. 0 ≤ ξk ≤ 2.

Proof : The proof is clear and hence omitted. ■

Lemma 2. Suppose that DMj has the shortest distances from A+ and A−, simultaneously

and DMk has the farthest distances from A+ and A−, simultaneously. Then, DMj and

DMk has the same rank.

Proof : Suppose that DMj has the shortest distances from A+ and A−, simultaneously

and DMk has the farthest distances from A+ and A−, simultaneously. Then

S+∗ = S+
k , S+

− = S+
j , S−∗ = S−

k , S−
− = S−

j

Therefore 
S̃+
j =

S+∗−S+
j

S+∗−S+
−
=

S+
k
−S+

j

S+
k
−S+

j

= 1

⇒ ξj = 1 + 0 = 1

S̃−
j =

S−
j −S−

−
S−∗−S−

−
=

S−
j −S−

j

S−
k
−S−

j

= 0

And 
S̃+
k =

S+∗−S+
k

S+∗−S+
−
=

S+
k
−S+

k

S+
k
−S+

j

= 0

⇒ ξk = 0 + 1 = 1

S̃−
k =

S−
k
−S−

−
S−∗−S−

−
=

S−
k
−S−

j

S−
k
−S−

j

= 1

Hence, DMj and DMk has the same rank. ■

Lemma 3. If DMj has the shorter distance from PIS and the farther distance from NIS

than DMk, then DMj has the better rank than DMk.

Proof : Since DMj has the shorter distance from PIS than DMk, So

S+
j < S+

k ⇒ S+∗ − S+
j > S+∗ − S+

k ⇒
S+∗ − S+

j

S+∗ − S+
−

>
S+∗ − S+

k

S+∗ − S+
−

⇒ S̃+
j > S̃+

k
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And DMj has the farther distance from NIS than DMk, So

S−
j > S−

k ⇒ S−
j − S−

− > S−
k − S−

− ⇒
S−
j − S−

−

S−∗ − S−
−

>
S−
k − S−

−
S−∗ − S−

−
⇒ S̃−

j > S̃−
k

Therefore

S̃+
j + S̃−

j > S̃+
k + S̃−

k ⇒ ξj > ξk ■

In sum, the steps of the proposed method are as follows:

Step 1. Define the decision matrix Xk (k = 1, 2, ..., t).

Step 2. Utilize Eqs.(8-9) to compute the normalized decision matrix Rk (k = 1, 2, ..., t).

Step 3. Compute the weighted normalized decision matrix Vk (k = 1, 2, ..., t) using Eq.(2).

Step 4. Calculate the PIS and NIS by Eq.(10) and Eq.(11), respectively.

Step 5. Utilize Eqs.(12-13) to determine the distances of DMk from PIS and NIS, re-

spectively.

Step 6. Compute the closeness coefficient of DMk with Eq.(18).

Step 7. Calculate the weight of DMk as λk =
ξk
t∑

k=1

ξk

.

5 Illustrative examples

In this section we illustrate the proposed method using three examples.

Example 1. This example has been taken from Yue [26, 27].

“The Pearl River Delta Regional Air Quality Monitoring Network (the Network) was

jointly established by the Guangdong Provincial Environmental Monitoring Center (GDEMC)

and the Environmental Protection Department of the Hong Kong Special Administrative

Region (HKEPD) from 2003 to 2005. It came into operation on November 30, 2005 and

has been providing data for reporting of Regional Air Quality Index to the public since

then. The Network comprises 16 automatic air-quality monitoring stations across the

Pearl River Delta region. All stations are installed with equipment to measure the am-

bient concentrations of respirable suspended particulate (PM10 or RSP), sulphur dioxide

(SO2) and nitrogen dioxide (NO2).

In what follows, we will present a comprehensive evaluation of the air quality in Guangzhou

for the Novembers of 2006, 2007, and 2008 for the 16th Asian Olympic Games. The

air-quality monitoring stations can be considered as DMs. For convenience, we select

three air-quality monitoring stations located in Guangzhou from the 16 air-quality mon-

itoring stations across the Pearl River Delta region, i.e., D = {DM1, DM2, DM3} =

{LuhuPark,Wanqingsha, T ianhu}. The measured values are shown in Tables 1− 3.

The monthly air quality for the Novembers of 2006, 2007 and 2008, respectively, can be

considered as alternative. For convenience, let A = {A1, A2, A3} be the set of alternatives,

U = {u1, u2, u3} = {SO2, NO2, PM10} be the set of attributes.”
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Table 1. Air quality data derived from Luhu Park monitoring station X1

Alternative SO2 NO2 PM10

A1 [0.013, 0.129] [0.028, 0.144] [0.021, 0.136]

A2 [0.013, 0.107] [0.038, 0.139] [0.047, 0.155]

A3 [0.003, 0.042] [0.018, 0.054] [0.014, 0.150]

Table 2. Air quality data derived from Wanqingsha monitoring station X2

Alternative SO2 NO2 PM10

A1 [0.040, 0.161] [0.034, 0.093] [0.047, 0.199]

A2 [0.047, 0.127] [0.040, 0.081] [0.102, 0.206]

A3 [0.014, 0.113] [0.016, 0.086] [0.030, 0.187]

Table 3. Air quality data derived from Tianhu monitoring station X3

Alternative SO2 NO2 PM10

A1 [0.006, 0.118] [0.004, 0.053] [0.003, 0.174]

A2 [0.015, 0.046] [0.001, 0.026] [0.021, 0.157]

A3 [0.009, 0.034] [0.005, 0.019] [0.011, 0.103]

The normalized decision matrix by Step 2 calculated and shown in Tables (4-6).

Table 4. Normalized air quality data derived from Luhu Park monitoring station R1

Alternative SO2 NO2 PM10

A1 [0.0019,0.2194] [0.0270,0.5007] [0.0121,0.5383]

A2 [0.0022,0.2194] [0.0280,0.3689] [0.0106,0.2405]

A3 [0.0057,0.9506] [0.0721,0.7788] [0.0110,0.8075]

Table 5. Normalized air quality data derived from Wanqingsha monitoring station R2

Alternative SO2 NO2 PM10

A1 [0.0154,0.3178] [0.0433,0.3991] [0.0291,0.5215]

A2 [0.0195,0.2705] [0.0498,0.3392] [0.0281,0.2403]

A3 [0.0219,0.9081] [0.0469,0.8480] [0.0310,0.8171]

Table 6. Normalized air quality data derived from Tianhu monitoring station R3

Alternative SO2 NO2 PM10

A1 [0.0069,0.7891] [0.0014,0.2381] [0.0008,0.9557]

A2 [0.0178,0.3156] [0.0028,0.9524] [0.0008,0.1365]

A3 [0.0241,0.5261] [0.0038,0.1905] [0.0013,0.2607]

For the weight vector w = (w1, w2, w3) = (0.4, 0.2, 0.4) of attributes, the next step is to

computing the weighted normalized decision matrix By Step 3, which are show in Tables

7-9.
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Table 7. Weighted normalized air quality data derived from Luhu Park monitoring station V1

Alternative SO2 NO2 PM10

A1 [0.00074,0.08775] [0.00541,0.10013] [0.00485,0.21532]

A2 [0.00090,0.08775] [0.00560,0.07378] [0.00426,0.09621]

A3 [0.00228,0.38025] [0.01442,0.15576] [0.00440,0.32298]

Table 8. Weighted normalized air quality data derived from Wanqingsha monitoring station V2

Alternative SO2 NO2 PM10

A1 [0.00615,0.12714] [0.00867,0.07981] [0.01165,0.20862]

A2 [0.00780,0.10820] [0.00995,0.06784] [0.01125,0.09613]

A3 [0.00877,0.36325] [0.00937,0.16960] [0.01240,0.32684]

Table 9. Weighted normalized air quality data derived from Tianhu monitoring station V3

Alternative SO2 NO2 PM10

A1 [0.00278,0.31564] [0.00027,0.04762] [0.00030,0.38229]

A2 [0.00713,0.12626] [0.00056,0.19047] [0.00034,0.05461]

A3 [0.00964,0.21043] [0.00076,0.03809] [0.00052,0.10426]

By Step 4, the PIS and NIS are shown as Table 10 and 11, respectively.

Table 10. Positive ideal solution

Alternative SO2 NO2 PM10

A1 [0.00323,0.17684] [0.00478,0.07585] [0.00560,0.26874]

A2 [0.00527,0.10740] [0.00537,0.11070] [0.00528,0.08232]

A3 [0.00690,0.31798] [0.00818,0.12115] [0.00577,0.25136]

Table 11. Negative ideal solution

Alternative SO2 NO2 PM10

A1 [0.00074,0.31564] [0.00027,0.10013] [0.00030,0.38229]

A2 [0.00090,0.12626] [0.00056,0.19047] [0.00034,0.09621]

A3 [0.00228,0.38025] [0.00076,0.16960] [0.00052,0.32684]

The distances from PIS and NIS, S+
k and S−

k , are calculated by Step 5, which are

shown in Table 12.

Table 12. Distances of each air-quality monitoring station from PIS and NIS.

Distances DM1 DM2 DM3

S+
k 0.1537 0.1356 0.2841

S−
k 0.3089 0.2872 0.3166

The closeness coefficients and weights of air-quality monitoring stations are calculated

by Steps 6 and 7 of ET method, respectively. These closeness coefficients, weights and
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their ranking are summarized in Table 13.

Table 13. Closeness coefficients, weights and ranking of air-quality monitoring station with ET method.

Monitoring stations RCk λk Ranking

DM1 0.6678 0.3563 2

DM2 0.6793 0.3625 1

DM3 0.5270 0.2812 3

As we see in Table 13, based on ET method DM2 has the best rank and DM3 has the

worst rank. But Table 12 shows that DM2 and DM3 have one positive score (DM2 is clos-

est to PIS andDM3 is farthest from NIS) and one negative score (DM2 is farthest from PIS

and DM3 is nearest to NIS). So they must have the same rank and DM1 should be ranked

as best. Therefore the ranking order of ET method is not reasonable. Now consider the

proposed method, the results are shown in Table 14. As we see, ξ2 = ξ3 and λ2 = λ3 and

DM1 is selected as s the best. Hence, the proposed method provides the reasonable result.

Table 14. Closeness coefficients, weights and ranking of air-quality monitoring station with proposed method.

Monitoring stations ξk λk Ranking

DM1 1.6146 0.4467 1

DM2 1.0000 0.2767 2(3)

DM3 1.0000 0.2767 3(2)

Example 2. The ET method has another drawback: If a DM is closer to PIS than

other DMs, this DM might be ranked worse than others. We show this problem through

a simple example:

Suppose that we have 4 DM such that their distances from PIS and NIS are as the second

and third column of Table 15. The weights and ranking of DMs with ET and proposed

methods are as shown in four last columns of Table 15.

Table 15. Distances, weights and ranking with ET and proposed method.

Decision Makers S+
k S−

k λk of Rank λk of Rank

ET method proposed method

DM1 0.5196 0.5196 0.2291 4 0.2763 2

DM2 0.6082 0.7810 0.2576 2 0.2430 3

DM3 0.6000 0.8485 0.2684 1 0.3231 1

DM4 0.6164 0.7071 0.2448 3 0.1575 4

As we see, DM1 has the equal distance from PIS and NIS. Also this DM is closer to

PIS than other DMs, but its weights with ET method is less than others, and, conse-

quently is ranked worse than others. But by using proposed method the DM1 has the

second rank. This is true, because according to second and third column of Table 15, the

DM3 has one positive score, since this DM has the farthest distance from NIS. The fourth

DM has one negative score, because this DM is farthest from PIS. And the DM1 has one
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positive score and one negative score, since DM1 is nearest to PIS and is farthest from

NIS. So DM3 is ranked as first and DM4 is located at last place. By the proposed method

(the last two columns), DM3 is ranked as first and DM4 obtains the last rank. So the

proposed method constructs the reasonable results.

Example 3. We consider an example where the core enterprise of the virtual enter-

prise has to select a partner for a sub-project and proposed in Ye and Li [37]. The partner

selection decision is made on the basis of five main attributes including Cost, Time, Trust,

Risk and Quality. Cost, Time and Risk are cost type, while Trust and Quality are benefit

type. There are four partners have been identified as alternatives, and four decision mak-

ers are responsible for the partner selection problem. The decision matrix and the vector

of corresponding weight of each attribute are given in Table 16.

Table 16. The decision matrix and the vector of corresponding weight of each attribute

DM Attribute and weight Cost Time Trust Risk Quality

DM1 C1 [10, 12] [21, 25] [80, 84] [0.95, 0.98] [0.95, 0.96]

C2 [11, 15] [24, 25] [84, 85] [0.92, 0.93] [0.96, 0.97]

C3 [12, 13] [22, 24] [87, 89] [0.88, 0.91] [0.96, 0.97]

C4 [14, 16] [18, 20] [91, 93] [0.89, 0.90] [0.99, 1.00]

Weight 0.22 0.17 0.25 0.15 0.21

DM2 C1 [9, 13] [24, 25] [79, 82] [0.93, 0.94] [0.96, 0.98]

C2 [11, 12] [21, 23] [83, 84] [0.92, 0.94] [0.97, 0.98]

C3 [10, 12] [22, 23] [88, 89] [0.89, 0.91] [0.98, 0.99]

C4 [15, 16] [19, 20] [89, 92] [0.90, 0.92] [0.99, 1.00]

Weight 0.19 0.18 0.22 0.16 0.25

DM3 C1 [11, 13] [19, 22] [74, 78] [0.96, 0.97] [0.93, 0.96]

C2 [12, 14] [18, 25] [76, 80] [0.93, 0.96] [0.94, 0.96]

C3 [12, 15] [21, 22] [82, 85] [0.90, 0.92] [0.95, 0.96]

C4 [13, 17] [18, 23] [86, 88] [0.91, 0.94] [0.97, 0.98]

Weight 0.21 0.19 0.23 0.17 0.20

DM4 C1 [13, 14] [22, 23] [76, 78] [0.95, 0.96] [0.94, 0.95]

C2 [13, 15] [19, 23] [81, 82] [0.94, 0.95] [0.93, 0.94]

C3 [16, 18] [20, 22] [84, 86] [0.89, 0.92] [0.94, 0.95]

C4 [15, 17] [19, 21] [87, 88] [0.88, 0.91] [0.95, 0.96]

Weight 0.24 0.18 0.21 0.18 0.19

The weight of DMs and ranking of them with ET and proposed method are shown in

Table 17.
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Table 17. The weight and ranking of DMs with ET and proposed method.

DMs λk of Rank λk of Rank

ET method proposed method

DM1 0.21 4 0.19 4

DM2 0.28 1 0.30 1

DM3 0.28 1 0.23 3

DM4 0.23 3 0.28 2

As we see, with the ET method, DM2 and DM3 have equal weights and thus ranking

the same. But using proposed method, No two DMs have the same weight. In addition,

different ranking has been achieved, so that DM3 is third and DM4 has the second rank.

6 Conclusion

One of the most important subject in GMADM problem is determining the importance

of DMs or the weight of each DM in decision making process. TOPSIS is a well-known

method, that suggested for solving this problem. The basic idea of TOPSIS method is:

The chosen decision is closest to PIS and farthest from NIS, simultaneously. But, TOPSIS

method has some flaws. One of these flaws is related to aggregation method. TOPSIS

aggregated two measures that are in two types, benefit and cost types. Based on this ag-

gregation, TOPSIS may introduce a decision as the best decision; however this decision is

only farthest from NIS and not closer to PIS. Also the closeness coefficients of this method

is not reasonable enough. In this paper we proposed a method to determine the weight of

DMs and overcome to the shortcomings of TOPSIS method. For future research one can

do the sensitivity analysis such as done in [38] or extend the proposed approach in fuzzy

decision making.
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