
 

1 
 

Performance Improvement of the Hybrid Switch Reluctance 

Motor by Notching Method 

Saeed Hasanzadeh
1 *

(Corresponding author), Hossein Rezaei
2
, Hadis Taheri

3
 
 

*,1 -Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran 

(e-mail: hasanzadeh@qut.ac.ir, phone: +98-9127123710) 

2 - Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, 

Babol, Iran & Mazandaran Regional Electric Company, Sari, Iran. (e-mail: hosseinrezaei1367@nit.ac.ir, 

phone: + 98-9111545092) 

3- Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran (e-

mail: hadistaheri1997@gmail.com, phone: +98-9198227371) 

 

Abstract- Hybrid switch reluctance motors are the family of switch reluctance motors (SRMs) that 

attenuate the magnetic saturation and increase the air gap magnetic flux by exploiting permanent magnets. 

The permanent magnet auxiliary air gap flux can affect the average torque and ripple. Commonly, the 

torque ripples reduction comes with the average torque drop. In this paper, the torque ripple reduction and 

average torque improvement are achieved for a 6/10 pole hybrid switch reluctance motor by inserting two 

symmetrical notches on its rotor. Also, the lengths of magnet and rectangular notches are optimized by the 

finite element method and sensitivity analysis. The comparison of the optimized design with the initial one 

carried out by finite element proves the efficiency of the proposed model.  

Keywords: Hybrid Switch Reluctance Motor (HSRM), Finite Element Method (FEM), Ripple Torque, 

Average Torque, Notching. 

1. INTRODUCTION 

Simple structure, fault tolerance, reliability, and robustness due to no winding structure of rotor in switch 

reluctance motors have attracted particular attention in domestic applications [1-3]. Also, by using PMs, 

the hybrid SRMs (HSRMs) can develop higher average torque and better starting capability with less-

saturated core operation [4-5]. However, the high torque ripple is estimated as a major drawback that limits 

its applications.  

Increasing rotor pole numbers in [5] leads to a higher starting torque, lower high-speed torque, and 

better torque ripple. Also, the saturation performance, average, and starting torques are improved by 

adding PMs to SRM. In [6], the laminated stator and rotor topology is proposed to improve average torque 

and torque ripple using short-flux magnetic paths. However, this design causes the core product to be 
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complicated. The stator tooth angle, rotor pole arc, and PM thickness are optimized for better torque 

development and load capability by FEM in the modular-stator HSRM [7-8]. In [9], a Genetic Algorithm 

(GA) is carried out for optimizing the dimensions of rotor tooth, stator yoke, and stator window with the 

objective of maximum average torque and minimum torque ripple. The objective function of high starting 

torque, low torque ripple, and high efficiency are proposed in [10] to optimize the rotor and stator pole arcs 

and an outer rotor diameter of an HSRM by FEM. Although, in some research, the SRM torque ripple is 

considered an objective in the optimization, its torque ripple does not resolve and is still high and remains 

a challenge. In [11], the torque ripple is decreased significantly through notching rotor structure, which 

strongly impacts the flux harmonics and torque ripple minimization. However, the average torque is also 

weakened by inserting a single notch into the rotor structure. A notching method is a practical approach 

inserted on the rotor/stator topology to reduce torque ripple, noise, and power factor [12-13]. Despite its 

simplicity and effectiveness in improving several performance indexes, this approach is not paid full 

attention to in most papers that deal with HSRM design and optimization. The reduction of developed 

torque is another challenge in the notching method. The method presented in this paper can be developed 

and implemented on linear machines with similar hybrid structures [14-15]. 

In this paper, the structure of an HSRM is improved by adding two symmetrical notches on the rotor. 

After that, the PM length and notching span are optimized by FEM in order to improve the average torque 

in a minimum PM length and torque ripple. The organization of this paper is as follows: In Section 2, the 

initial design and topology of HSRM are described. Section 3 of the paper deal with the principles and 

parameters of the design and methods of reducing the proposed motor ripple, such as the longitudinal 

dimensions of the magnet. Section 4 describes the design of the new rotor structure for the proposed motor. 

Section 5 presents the results of the simulations, and the final conclusions are made in Section 6. 

2. PERMANENT MAGNET-REINFORCED HYBRID SWITCH RELUCTANCE MOTOR 

The HSRM topology is depicted in Fig. 1. The initial design parameters of the hybrid reluctance switch 

motor are selected based on reference [9] and listed in Table 1. The initial design consists of 6 stator poles, 

and 10 rotor poles with permanent magnets (PMs) adjusted adjacent to the stator pole. The operation of the 

HSRM is based on the use of a PM. The function of the magnets attenuates the magnetic saturation at the 

stator pole and increases the magnetic flux in the air gap, which can significantly increase the output 

torque. The HSRM magnetic equivalent circuit is symmetrical, and the magnetic excitation (MMF) is 

provided by the magnet and the field current in each phase. The operation of the magnetic core at the knee 

point of the B-H curve causes the nonlinear behavior of the HSRMs, creating harmonics and torque ripple, 

consequently. 
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3. OPTIMIZED DESIGN 

In this section, the design improvement and optimization are carried out to mitigate the torque 

performance. As so, two symmetrical notches are inserted on the rotor, and to evaluate the ripple 

performance and average torque, the impact of PM length and notch dimensions are analyzed by FEM 

sensitivity analysis. Fig. 2 shows a modified design by creating notches in rotor poles with the notching 

method. 

3.1. Notch creation on the rotor 

In the HSRM, magnetic torque is produced by the interaction of rotor parts and stator teeth. The internal 

gravitational force between the teeth and the motor poles tries to maintain a balance between the stator 

teeth and the rotor sections; to reduce this equilibrium, it is necessary to minimize the effect of harmonic 

flux changes on the air gap. 

Creating symmetrical, small, and smooth notches at the end of rotor poles reduce the harmonic 

distortion of air-gap flux and torque ripple. On the other hand, the developed torque is decreased due to an 

increase in the effective air gap and flux weakening. Therefore, the average torque should be observed in 

addition to investigating the impact of notches on the torque ripple. To this end, the notch height and 

number should be carefully selected in order to avoid the average torque drop. Two symmetrical notches 

with 2 mm height are inserted at each rotor pole since a structure with more than two notches and 2 mm 

height causes a significant reduction in the average torque. Also, the optimum notching span will be found 

via sensitivity analysis. According to Fig. 3, two rectangular notches are inserted symmetrically at the end 

of rotor poles to reduce air-gap flux and torque ripple harmonics. The notching span n can be derived as a 

function of notching height hn, efficiency  and rotor radius R1.  

(1) 
1

n
n

h

R
  

In the proposed model, the notching span n varies between 0 and 1 with a step of 0.1, and the size of 

notching height hn is fixed at the value of 2 mm. Harmonic distortion of air-gap flux is managed by 

selecting the correct notching span value, which reduces torque ripple. 

However, like other common methods for torque ripple reduction, the notching method reduces torque 

ripple and average torque, which is not optimal. Therefore, it is necessary to check the magnetic part to 

compensate for the average torque reduction. For this purpose, the optimum PM length can be selected by 

considering the torque ripple, average torque, and PM cost. 
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3.2.The Effect of PM Length on Average Torque 

Like the electromagnet coil, the PMs create Magnetomotive force proportional to their length and 

magnetization (magnetization length) in which the developed magnetic flux passes through various air 

paths. As a consequence, the flux density increases by increasing magnetization length. On the other side, 

as the length of magnetization increases, the PM flux closes in the longer air gap paths and is weak, 

reducing the developed torque. Therefore, an excessive increase of PM magnetization length can 

deteriorate torque performance. As depicted in Fig. 4 and Table 2, in the notchless rotor structure, 

increasing the PM length reduces the torque ripple significantly 

while the average torque does not increase necessarily. Therefore, there is an optimum PM length for each 

rotor structure. The following section evaluates the torque performance in different notching spans and PM 

lengths via FEM. As listed in Table 3, the PM length varies between 5 to 10 millimeters in models I1 to I6. 

In each model, the notching span changes from 0 to 1 with the step of 0.1 while the notching height is 

constant. As a result, the optimum PM length and notching span can be derived. The developed torque 

versus PM length is illustrated in Fig. 4. Also, the average torque, torque ripple, and variations percentage 

compared to the initial design are also written in Table 2. 

4. SIMULATION RESULTS 

In this section, the HSRM performance is analyzed to evaluate and compare torque ripple and average 

torque in different magnet lengths and notching spans at a rotational speed of 1000 rpm and a field current 

of 20 amperes with FEM simulations. The flux lines and their spectrum are also drawn in Fig. 5. The 

specifications of the finite element model are listed in Table 4. 

This sensitivity analysis aims to find the appropriate rotor notch and PM length values to achieve a 

minimum torque ripple in an acceptable average torque; as stated in the previous section, six different 

modes are designed, applied, and simulated on the initial design. The variations of average torque and 

torque ripple are derived through FEM with respect to notching spans in different PM lengths and are 

illustrated in Fig. 6 and Fig. 7. In model I1, the PM length is 5 mm, and the range of notching span varies 

between 0 to 1 mm with a ratio of 0.1. According to Fig. 6 and Fig. 7, the torque ripple and average torque 

decrease in the same way. However, the torque ripple is intensified when the notching span varies from 0.1 

to 0.2 mm. 

The results show that compared to the initial model, the torque ripple and average torque are reduced up to 

13.9% and 1.6%, respectively. In other words, a larger notching span leads to having a more significant 

impact on ripple reduction. In Model I2, the magnet length was considered to be 6 mm. increasing the 
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magnet length positively affects improving the objectives of average torque and ripple. As seen in Fig.s 6 

and 7, increasing PM length does not necessarily strengthen the average torque. This mainly occurs from 9 

to 10 millimeters PM length, in which the average torque is weakened in all notching spans. Although 

increasing the PM length strengthens the magnetic flux and developed torque due to magnetic MMF 

amplification, the magnetic reluctance is increased at high PM lengths. It attenuates the flux field and 

output torque. Therefore, the PM length always reduces the torque ripple but does not always increase the 

average torque. 

5. OPTIMUM DESIGNS OF HSRM 

This paper defines the objective function based on achieving maximum average torque minimum torque 

ripple and considering the PM cost by placing PM length into the function. As so, the objective function is 

defined as: 

(2)  Cos
100

ave

PM Length
t Function a T b Ripple       

where Tave is the average torque, the "a" coefficient should be negative to minimize the cost function, 

whereas the "b" coefficient has a positive value. These coefficients are selected depending on the 

designer's emphasis. The design variables are PM length and notch dimensions. In equation (2), the other 

design parameters, such as air gap PM thickness, are assumed to be constant. The definition of the cost 

function is entirely a matter of taste, and we define it in such a way as to emphasize the main goal, which is 

to increase the average torque and decrease the ripple in a minimum PM cost.  

This function shows that the lower the torque ripple and the higher the average torque, the smaller the 

numerical value of the target function in a defined and limited PM length. The optimum designs yielding 

minimum cost functions are attained, as shown in Fig. 8. As written in Table 5, in addition to torque 

performance, the back-emf total harmonic distortion (back-emf THD) and power factor are improved in 

the optimum designs. Although the HSRM material cost increases with the PM length in the optimum 

designs, a remarkable improvement in the torque ripple and average torque makes them financially 

reasonable. 

The first optimum design is calculated with an emphasis on the average torque (-0.25, 0.75). It is shown 

that there is a 9.77% development in the average torque and 66.3% improvement in the torque ripple. Also, 

there is another improvement in THD and PF by 6.5% and 6.3 % compared to the initial state. 

Comparisons of developed torque in the optimum designs with the initial notchless topology are illustrated 

in Fig. 9. Due to improvement in average torque, torque ripple, THD, and PF, this motor is significantly 

optimized. By selecting the weighting factors to (-0.3, 0.7) in the (2) cost function, the second optimum 

design is obtained with a magnet length of 8 mm and a notching span of 0.9 mm. In this design, a 63.6% 
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reduction in the torque ripple and a 7.2% increase in the average torque have occurred. Improving the THD 

and PF is also achieved to 5.4% and 6.05%, respectively.  

Table 5 shows that although the second design has less improvement than the first design in average 

torque and ripple, a 20% saving in the PM consumption is observed. Since its performance is close to the 

first design, this optimum point can be a desired alternative for low-cost applications. Also, in Table 5, the 

optimum designs may be compared with the experimental results obtained in [9]. As can be observed, the 

experimental set-up in [9] offers better average torque during severe torque ripple. The first optimum point 

reaches 89.5% of Tave value in [9] and 64% improvement in torque ripple by consuming 100% more 

magnets. The average torque reaches 87.4% of Tave in [9] for the second optimum design, while a 61.5% 

reduction in torque ripple with 60% more PM consumption than the PM in [9]. 

6. CONCLUSION 

In this paper, optimum designs of a 6/10 pole hybrid switch reluctance motor are presented, which 

optimizes the notching span of the rotor and PM length to improve its performance. Different notching 

spans and PM lengths were investigated. Finally, two optimum designs are obtained based on the cost 

function satisfying torque ripple and average torque in the minimum additional PM cost. The proposed 

model with a notching span of 0.4 mm and a PM length of 10 mm has been selected as the first optimum 

design. Compared to the notchless initial model, the torque ripple is improved by 66.3%, while the average 

torque is enhanced by 9.8%. In the second design with more emphasis on torque ripple, these improving 

percentages are 63.6% and 7.2% for torque ripple and average torque, saving 20% in PM cost. Also, the 

proposed optimum designs decrease harmonic distortion and strengthen the power factor. 
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Fig. 1. The initial design of HSRM 

 

 
 

 
Fig. 2. A modified design by creating notches in rotor pole with notching method 

 
Fig. 3. Notch design model and parameter 
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Fig. 4. Developed torque vs. rotor position in various PM lengths for notchless rotor structure 

 

 
Fig. 5. Flux lines and flux density spectrum 

 

 

 
Fig. 6. Variations of average torque versus notching span in various PM lengths 
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Fig. 7. Variations of torque ripple versus notching span in various PM lengths 
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Fig. 8. (a) First, (b) Second optimum designs of HSRM (PM length and notching span) 
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Fig. 9. Developed torque vs. rotor position in initial and optimum designs 

 

Table 1. Design Parameters of HSRM 

Outer diameter of the stator (mm) 120 

Air gap (mm) 0.3 

Phase 3 

Number of coils 140 

PM Thickness (mm) 3 

Rotor diameter (mm) 63.7 

Power (watts) 770 

Speed (rpm) 1000 

 

 

 

Table 2. Average torque and torque ripple vs. PM length in notchless rotor structure 

PM length (NdeFeB) Average torque (N-m) 

Variation of Tave 

decrease (-) 

increase (+) 

Torque ripple (%) 
Variation of ripple 

decrease (-) increase (+) 

Initial design PM=5mm 5.95 0% 72.62 0% 

PM=6mm 6.1004 +2.48% 68.69 -5.41% 

PM=7mm 6.142 +3.18% 63.6 -12.41% 

PM=8mm 6.082 +2.178% 55.69 -23.31% 

PM=9mm 5.935 -0.296% 43.29 -40.74% 

PM=10mm 5.661 -4.89% 38.15 -47.46% 
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Table 3. Motor models with different PM lengths and notching spans  

Model 
PM Length 

(mm) 
Notching Span 

Notching Height  

(mm) 

I1 5 Range 0 to 1 with a ratio of 0.1 2 

I2 6 Range 0 to 1 with a ratio of 0.1 2 

I3 7 Range 0 to 1 with a ratio of 0.1 2 

I4 8 Range 0 to 1 with a ratio of 0.1 2 

I5 9 Range 0 to 1 with a ratio of 0.1 2 

I6 10 Range 0 to 1 with a ratio of 0.1 2 

 

Table 4. Finite element specifications 

Timestep 0 to 0.015 (1.67e-4 Sec) 

Solution type Transient 

Mesh information 

14549 nodes 

1523 line elements 

7244 surface elements 
 

Table 5. Optimum designs of HSRM (PM length and notching span) 

 PM length Span Tave (N-m) Ripple (%) Back-emf THD (%) PF (%) Factors 

Initial Design 5 mm 0 5.95 72.6 56.6 0.413 - 

1st Optimal Design 10 mm 0.4 
6.54 

(+9.8%) 

24.5 % 

(-66.3%) 

52.9 

(-6.5%) 

0.439 

(+6.3%) 

a = -0.75 

b = 0.25 

2nd Optimal Design 8 mm 0.9 
6.38 

(+7.2%) 

26.4 % 

(-63.6%) 

53.5 

(-5.4%) 

0.438 

(+6.1%) 

a = -0.3 

b = 0.7 

Experimental results in [9] 5 mm 0 7.3 68.5 % - - - 
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