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Abstract. Recently, there has been a surge in the use of metaheuristic algorithms to
design materials with optimum performance. In this paper, the RPSOLC (Repulsive
Particle Swarm Optimization with Local search and Chaotic perturbation) metaheuristic
algorithm was used to design Diamond-Like Carbon (DLC) thin �lms with improved
hardness. Based on the Box-Behnken design, 15 independent DLC deposition experiments
are performed in a PECVD (Plasma-Enhanced Chemical Vapor Deposition) setup by
varying the CH4-Argon 
ow rate, hydrogen 
ow rate, and deposition temperature. The
nano-hardness of the DLCs is evaluated using nano-indention tests. The hardness is then
expressed as the function of the three process parameters using a polynomial regression
metamodel. Finally, using RPSOLC, the metamodel is optimized and compared to the
optimal predictions of a traditional Genetic Algorithm (GA). It is seen that RPSOLC has
faster convergence and is more reliable than the GA. In general, a high H2 
ow rate along
with a low CH4-Ar 
ow rate and high temperature is found to be bene�cial in improving
the hardness.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Other than graphite and diamond, Diamond-Like Car-
bon (DLC) is a signi�cant material in the carbon group
[1]. DLC is basically a hybrid form of carbon that
holds both graphite-like sp2 bonds and diamond-like
sp3 bonds [2]. Apart from its unique structures DLC
coatings possess superb tribological, optical, mechan-
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ical, and electronic properties which led them to the
signi�cant industrial application [3]. DLC has the
properties of both graphite and diamond because it
contains a combination of sp2 and sp3 bonds [4]. The
good tribological and mechanical properties of DLC
are basically due to the presence of sp3 hybridized
carbon whereas, electrical and electronic properties are
due to the sp2 hybridized carbon [5]. DLC coating
is also used for making magnetic storage discs, micro-
electromechanical devices, bio-implants, engine parts,
etc. [6]. Vapour deposition techniques are generally
used for the deposition of thin-�lm coatings and out of
all the vapour deposition techniques Chemical Vapour
Deposition technique (CVD) is the most widely used
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synthesis method for the DLC coating. Other than
DLC coatings, the CVD process is also used for the
synthesis of di�erent metal alloy compounds, such as
nitrides, carbides, and oxides [7,8]. CVD techniques
are seen to be a viable choice for thin-�lm coating
deposition since they create a variety of products
with good wear resistance, hardness (H), coe�cient
of friction (F ), young modulus (E), and oxidation
resistance. Out of all the CVD processes, Plasma-
Enhanced Chemical Vapor Deposition (PECVD) is the
most suitable method for the deposition of DLC thin-
�lm coating due to the low deposition temperature
[9]. The properties of DLC coating can be a�ected
by PECVD process parameters such as gas 
ow rate,
deposition temperature, duty cycle, gas composition,
and power supply [7,9]. The main problem for the
researchers is to determine the combination of deposi-
tion parameters to get the optimal response parameter.
Various optimization techniques such as arti�cial neu-
ral networks, Genetic Algorithms (GA), grey relational
analysis, adaptive neuro-fuzzy inference system, and
others could be used to optimize the PECVD process
parameters in order to achieve the optimum output.
To optimize the properties of Zr-DLC coatings, Yang
and Huang adopted a grey-fuzzy and Taguchi technique
[10]. Using the Taguchi technique, Singh and Jatti pre-
dicted the optimal combination of process parameters
to maximize hardness, including deposition pressure,
bias frequency, bias voltage, and gas composition [11].
Ghadai et al. used the GA technique to optimize the
process parameters for Atmospheric Pressure Chemical
Vapour Deposition (APCVD) to improve mechanical
properties like H and E [12].

From the literature survey, it is seen that most
authors so far have relied on Multi-Criteria Decision-
Making (MCDM) tools to �nd the optimal process
parameter combination. However, because MCDM
techniques lack a powerful full domain search, their
predictions are frequently subpar when compared with
metaheuristic search-based optimal predictions. This
paper makes three primary contributions:

1. While most literature has focused on CVD tech-
niques, DLCs used in this research are deposited
using PECVD;

2. Experimental nano-hardness is obtained for DLCs
which would serve as a benchmark for future stud-
ies;

3. A novel memetic PSO called RPSOLC is used for
the optimal design of DLCs.

2. Materials and methods

2.1. Response surface metamodel
In this research, a second-order polynomial model of
the following form is considered as the response surface

metamodel [13,14]:

ŷ = �0 +
kX
i=1

�ixi +
kX
i=1

kX
j>i

�ijxixj +
kX
i=1

�iix2
i + ";

(1)

where ŷ is the metamodel for the hardness of the
DLC coating, xi is the process parameters, �0, �i,
�ij , and �ii are the unknown regression coe�cients to
be determined by �tting the training data to Eq. (1)
such that the sum of squares of the residuals (SSR) is
minimized. The SSR is calculated as follows:

SSR =
nX
i=1

(yi � ŷi)2; (2)

where yi is the experimental training data point.
The experimental design for the training data

points is decided as per Box-Behnken Design (BBD).
For each process parameter, BBD has three levels (�1,
0, and +1). Table 1 shows the coded and uncoded BBD
designs used in this study. The total training data
points as per BBD is determined using the following
relation:

n = 2k(k � 1) + co; (3)

where n is the number of training data points, k is the
number of process parameters and co is the number of
repetitions of the central point.

2.2. Experimental procedure
In the present research, PECVD is used for the
synthesis of DLC coatings over P-type silicon (Si)
substrate. Initially, the Si substrate was cleaned for 4
minutes in a 2% HF solution to remove the oxide layer.
After the removal of the oxide layer, the substrates
are ultrasonically cleaned for 10 minutes by using
deionizing water. CH4-Argon (Ar) 
ow rate, Hydrogen
(H2) 
ow rate, and deposition temperature (Td) are
considered deposition parameters for the optimization
of hardness as shown in Table 1. Surface roughness
(Ra) and particle size of PECVD deposited DLC
coatings were measured by using the AFM (model:
INNOVA SPM). In the AFM the precise topographic
images of the �lms are taken by scanning the surface
with a nanometre-scale probe (vertical � 0.1 nm,
lateral resolution � 1 nm). For the �lms, the surface
roughness, as well as maximum and average particle
size, were evaluated at a 10 �m level. The nano-
indentations are performed using a CSM instruments
nano-hardness tester (NHTX-55{0019). For indenta-
tion, a Berkovich diamond indenting tip (B-I 93) with
a tip radius of 100 nm is used. A constant indentation
load of 20 mN is considered at three di�erent locations
and the indentations over the sample and their average
number are reported. During the indentation, the rate
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Table 1. Box-Behnken DOE and experimental values.

Coded process parameters Un-coded process parameters Output

Std. Ord. CH4-Argon

ow rate

H2 
ow
rate

Deposition
temperature

CH4-Argon

ow rate

H2 
ow
rate

Deposition
temperature

hardness
(GPa)

1 {1 {1 0 0.5 20 100 14.40

2 1 {1 0 2 20 100 15.20

3 {1 1 0 0.5 40 100 15.50

4 1 1 0 2 40 100 17.34

5 {1 0 {1 0.5 30 80 11.28

6 1 0 {1 2 30 80 12.92

7 {1 0 1 0.5 30 120 19.20

8 1 0 1 2 30 120 16.42

9 0 {1 {1 1 20 80 13.20

10 0 1 {1 1 40 80 12.20

11 0 {1 1 1 20 120 14.60

12 0 1 1 1 40 120 21.56

13 0 0 0 1 30 100 15.56

14 0 0 0 1 30 100 16.90

15 0 0 0 1 30 100 16.80

of loading-unloading was 10 mN/min and at the peak
load of 20 mN, the indenter was paused for 10 sec.
The Oliver{Pharr method [15] is used for hardness
calculation. The indentation hardness is calculated by
using the following equation:

H =
Pmax

A
; (4)

where Pmax is the maximum load applied over the
work piece and A is the contact area of the tip of the
indenter over the coating. In [16], a detailed analysis
has been done over the nanoindentation phenomenon
by considering di�erent spherical indenter tips.

2.3. Repulsive Particle Swarm Optimization
with Local search and Chaotic
perturbation (RPSOLC)

Particle Swarm Optimization (PSO) is a widely used
metaheuristic in various �elds of engineering [17{20].
In this research, a novel memetic version of PSO [21]
called RPSOLC (Repulsive Particle Swarm Optimiza-
tion with Local search and Chaotic perturbation) [22] is
used. Any typical PSO algorithm starts by generating
a set of random solutions (called particles) in the design
space. In PSO terminology, this set of solutions is
collectively called the swarm [23,24]. Each particle
within the swarm is aware of its personal best position
called the pBest. The particles in the swarm are also
aware of the gBest, which is the overall best position
(or solution) found so far. All particles try to move
towards the gBest position by using the following two

rules to update their velocity and position:

vt+1 = !:vt + c1:r1:(pBest� xt)
+c2:r2:(gBest� xt); (5)

xt+1 = xt + vt+1; (6)

where vt and vt+1 are the velocity in the current and
the next generation respectively. Similarly, xt and
xt+1 are the positions of the particle in the current
and the next generation respectively. r1 and r2 are
two random numbers between 0 to 1. c1 and c2 are
called the cognitive and social parameters. The e�ect of
the velocity of the previous generation on the velocity
of the current generation is controlled by the inertia
weight !.

Despite the fact that PSO is a stochastic tech-
nique, Standard Particle Swarm Optimization (SPSO)
for complicated problems has a tendency to get stuck
in local optima [25,26]. To counter this issue, Ur-
falioglu [27] proposed the Repulsive Particle Swarm
Optimization (RPSO) in which the particles update
their velocity using the relation below:

vt+1 = !:vt + �:r1:(pBest� xt)

+!:�:r2:(p̂Best� xt) + !:
:r3:vrt ; (7)

where �, �, 
 are constants. The term �:r1:(p̂Best�xt)
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leads any particle towards its self-best position. The
term !:�:r2:(p̂Best� xt) leads the particle away from
a randomly chosen particle from the swarm. The
term !:
:r3:vrt is responsible for the exploration of new
search regions.

In this paper, the traditional RPSO is further
upgraded by incorporating the memetic attributes sug-
gested by Santos et al. [28,29]. Each particle is endowed
with the ability to conduct a local search by visiting its
surroundings by using a parameter called nstep. The
visit is independent of the gradient in any direction
and thus is free from bias. If any particle is seen to be
trapped in one position even after a pre-de�ned number
of multiple generations a small random disturbance in
its velocity (called the chaotic perturbation) is inserted.

xt+1 = xt + vt+1:(1 + rchaos); (8)

where rchaos is the chaotic perturbation. This helps
the RPSOLC algorithm avoid getting trapped in local
optima pits. The current RPSOLC pseudocode can be
found in the authors earlier work [30].

It should be noted that the stochasticity of SPSO
is due to r1 and r2. Similarly, RPSO is dependent on
r1, r2, and r3 for stochastic search. Moreover, r1, r2,
and r3 should be vectors of random values. If they are
scalers, only linear combinations of the initial particle
positions will be searched. Thus, it may be argued
that to some extent r1, r2, and r3 aid the algorithm
in avoiding local optima by introducing stochasticity.
The rchaos is a much smaller perturbation as compared
to r1, r2, and r3 and is applied occasionally, if the
algorithm `feels' it is trapped in local optima.

3. Results and discussion

3.1. Metamodel building and evaluation
A second-order polynomial metamodel describing the
coating nano-hardness as a function of the CH4-Ar 
ow
rate, H2 
ow rate, and deposition temperature (Td) is
developed as shown in Eq. (9):

H = (�3:1282 + 9:9245x1 � 0:7883x2

+0:3379x3 + 0:0185x1x2 � 0:0681x1x3

+0:0100x2x3 � 1:3700x2
1 � 0:0019x2

2

�0:0021x2
3); (9)

where x1, x2, and x3 represent CH4-Ar 
ow rate, H2

ow rate, and deposition temperature respectively.

The predicted nano-hardness by the metamodel
and the experimental nano-harness of the coatings are
compared in Figure 1. It is seen that the data points
in Figure 1 are very close to the diagonal line which

Figure 1. Predicted response versus experimental
response.

Figure 2. Residuals versus the predicted response.

indicates a very high accuracy in the prediction of the
metamodel. The analysis of the residuals with respect
to the predicted nano-hardness in Figure 2 shows that
the residuals are arbitrarily distributed in the graph.
The lack of any visible pattern in the residuals of the
metamodel indicates that the data do not have any ties.
Furthermore, this shows that the measuring resolution
is adequate. Figure 2 further shows that the residuals
arbitrarily take on both negative and positive values,
indicating that the metamodel is not biased and that
any arbitrary combination of process parameters has an
equal chance of being underpredicted or overpredicted.
Since the normality of residuals is an important con-
struct in many statistical analyses, a normality test is
carried out for the metamodel residuals. From Figure 3
it is seen that the residuals follow a normal curve since
they are very close to the reference line.

3.2. Parametric study of the process
parameters

The developed metamodel is used in this section to
understand the e�ect of the deposition process param-
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Figure 3. Normal probability plot for the metamodel.

eters on the nano-hardness of the coatings. Figure 4
shows the e�ect of the CH4-Ar 
ow rate and the H2

ow rate on the nano-hardness at three di�erent levels
of deposition temperature. It is seen that for all other
parameters kept constant, in general, the hardness of
the coatings will increase if the deposition temperature

is increased. However, from Figure 4 it is seen that
at low deposition temperature the increase in H2 
ow
rate reduces the coating hardness which is opposite to
the trend shown in mid-level and high temperatures.
At mid-level and high temperatures, the increase in
H2 
ow rate is accompanied by increased hardness.
Overall, from all the three subplots of Figure 4, it
is observed that a high temperature with a high H2

ow rate and low CH4-Ar 
ow rate is most suitable for
increasing the coating hardness.

Similarly, the e�ect of CH4-Ar 
ow rate and
deposition temperature on the nano-hardness of the
DLCs at di�erent H2 
ow rates is studied in Figure 5.
Typically, the hardness is seen to be positively im-
pacted by the increased H2 
ow rates. Here, unlike
Figure 4, all the three sublots show similar trends i.e.,
the coating nano-hardness increases with the increase
in deposition temperatures. However, the trend of the
hardness with respect to the CH4-Ar 
ow rate at low
deposition temperatures is contrary to that at high
deposition temperatures. While at high deposition
temperatures low CH4-Ar 
ow rates are desirable, the
performance of the coatings in terms of hardness is

Figure 4. E�ect of H2 
ow rate and CH4-Argon 
ow rate on coating hardness at (a) T = 80�C, (b) T = 100�C, and (c)
T = 120�C.
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Figure 5. E�ect of deposition temperature and CH4-Argon 
ow rate on coating hardness at di�erent H2 
ow rate: (a) 20
sccm, (b) 30 sccm, and (c) 40 sccm.

better at high CH4-Ar 
ow rates when low deposition
temperatures are considered. Figure 6 shows the
combined e�ect of deposition temperature and H2 
ow
rate at di�erent CH4-Ar 
ow rates.

3.3. Optimization study
The hardness exhibits a non-linear relationship with
the CH4-Ar 
ow rate, H2 
ow rate, and deposition
temperature (Td), as shown by the parametric in-
vestigation of the process parameters in the previous
section. Thus, it is necessary to use a metaheuristic-
based search to �nd the optimal parameter settings
to maximize the nano-hardness. The various tuning
parameters used for the RPSOLC algorithm are: ! =
0:5, � = 0:5, � = 0:5, 
 = 0:005, swarm size = 50,
nstep = 10, iteration limit = 100.r1; r2; r3 are three
random numbers ranging from 0 to 1. For the GA
algorithm the following tuning parameter values are
used: population size = 500, generation limit = 100,
crossover probability = 90%, mutation probability =
5%, length of chromosomes = 12 bit. Binary encoding
is used for the GA and one-point crossover is used.

Figure 7 shows the improvement of the �t-
ness function (i.e., nano-hardness) as the generations
progress for a typical trial. It is seen that RPSOLC

has a faster rate of convergence as compared to the
traditional GA. However, in this trial, both the meta-
heuristic algorithms- RPSOLC and GA are seen to
converge to the same �nal optimum.

To further understand the optimum prediction
capability of the algorithms, the 50,000 function evalu-
ations of the algorithms for a typical trial are analyzed
in Figure 8. The box plot of the GA has a larger
spread as compared to the RPSOLC plot. Also, the
�tting of the evaluated function data points to a normal
curve shows that the GA follows a more normal trend
indicating that the maximum evaluated points in the
GA trial are around its mean value and thus would take
longer to converge. On the other hand, for RPSOLC
the data points are seen to form a large cluster at the
top with a long and narrow tail in the bottom portion.
This indicates that on average the RPSOLC would have
higher �tness than the GA, which is also indicated by
the relative higher position of the mean value of the
RPSOLC evaluations in the Box plots.

Figure 9 shows that GA could only reach the
maxima in three of the 50 independent trials, whereas
the RPSOLC predicted it in all the 50 trials. This in-
dicates that the RPSOLC is more reliable as compared
to the traditional GA. Computer codes for GA and
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Figure 6. E�ect of deposition temperature and H2 
ow rate on coating hardness at di�erent CH4-Argon 
ow rate: (a) 0.5
sccm, (b) 1 sccm, and (c) 2 sccm.

Figure 7. Convergence of the algorithms across
generations.

RPSOLC are developed in Fortran language and the
simulations are carried out on a Dell Inspiron 15-3567
series windows system with Intel(R) Core TM i7-7500U
CPU @2.70 GHz, Clock Speed 2.9 Ghz, L2 Cache Size
512 and 8 GB ram. For 50 independent trials, the
total runtime for GA was approximately 845 seconds.
The RPSOLC is seen to have approximately 15% less
runtime as compared to the GA. Thus, it is seen that
the RPSOLC is faster compared to the GA.

Figure 8. Box plot depicting spread of 50,000 functions
evaluations for each algorithm.

3.4. Analysis of the experimental results and
optimum results

The optimal process parameter combination and the
maximized hardness predicted by the RPSOLC and the
GA are shown in Table 2. Figure 10 shows the loading-
unloading curve of the optimal point. Similarly, the
loading-unloading curve of experiments no. 2, 7, and
12 is shown in Figure 11. From the �gure, it has been
observed that for a �xed load of 20 mN, the depth of
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Table 2. Optimum deposition process parameters predicted by RPSOLC and GA.

Optimum predicted parameters Hardness (GPa)

CH4-Ar 
ow rate (sccm) H2 
ow rate (sccm) Td (�C) Predicted

0.9 40 120 21.74

Figure 9. Values of optimum predicted by the algorithms
in 50 independent trials.

Figure 10. Loading-unloading curve of optimal point.

indentation of the sample at experiment no. 2 is larger
as compared to experiments no. 7, 12, and optimum
point which revealed that the sample at experiment
no. 2 has low hardness. The hardness of the sample
increases with higher deposition temperature and H2

ow rate, as seen in Tables 1 and 2. This could be
because, at higher deposition temperatures and H2 
ow
rates, more sp3 bonds form within the �lm [31,32].
Figure 12 shows the 3D and 2D AFM images of the
samples at the optimal point. Similarly, Figures 13
and 14 show the AFM images for experiment no. 7 and
experiment no. 12 respectively. For each sample, the
maximum particle size, as well as the surface roughness

Figure 11. Loading-unloading curve of experiments no.
2, 7, and 12.

of the coating were evaluated at a 10 �m level. The
surface roughness of the sample at the optimal point,
experiment no. 7 and experiment no. 12 are found to
be 28.6 nm, 18.2 nm, and 22.3 nm respectively. At
high temperature and high H2 
ow rate agglomerated
particles are observed over the surface of the coatings
[33]. The maximum particle size of coating at the
optimal point, experiment no. 7 and experiment no.
12 are observed to be 14.3 nm, 2.2 nm, and 4.4 nm
respectively. From the AFM results, it is noticed
that the particle size of the coating is maximum at a
higher H2 
ow rate, CH4-Ar 
ow rate, and deposition
temperature.

4. Conclusion

In this paper, Diamond-Like Carbon (DLCs) were
designed for better hardness by using an optimal com-
bination of CH4-Argon 
ow rate, hydrogen 
ow rate,
and deposition temperature. The optimal process pa-
rameters were searched using an RPSOLC algorithm.
The Repulsive Particle Swarm Optimization with Local
search and Chaotic perturbation (RPSOLC) demon-
strated faster convergence as compared to a traditional
Genetic Algorithm (GA), which can be attributed to
its local search capability. The results of the repeated
trials also showed higher reliability of the RPSOLC
compared to the GA. For all the 50 trials, the RPSOLC
was successfully able to locate the maxima whereas
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Figure 12. AFM images of optimum point.

Figure 13. AFM images of experiment no. 7.

Figure 14. AFM images of experiment no. 12.

the GA predicted sub-optimal solutions in 47 trials.
This success of RPSOLC can be attributed to the
chaotic perturbation that helped it avoid the pit of
local optima. The optimal process parameters (CH4-
Ar 
ow rate, H2 
ow rate, and Td) were recorded as

0.9 sccm, 40 sccm, and 120 �C respectively. Thus,
it can be concluded that the RPSOLC combined
with polynomial metamodels can be used as a viable
and e�cient tool to �ne-tune the design process of
sophisticated materials like thin-�lm coatings.
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Nomenclature

APCVD Atmospheric Pressure Chemical
Vapour Deposition

BBD Box-Behnken Design
CVD Chemical Vapour Deposition
DLC Diamond-Like Carbon
GA Genetic Algorithm
MCDM Multi Criteria Decision Making
PECVD Plasma Enhanced Chemical Vapor

Deposition
PSO Particle Swarm Optimization
RPSOLC Repulsive Particle Swarm Optimization

with Local search and Chaotic
perturbation

SPSO Standard Particle Swarm Optimization
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