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Abstract. This paper establishes a model-free �nite-time tracking control of nonlinear
robotic manipulator systems. The proposed controller incorporates both Time Delay
Estimation (TDE) and an enhanced Terminal Sliding Mode Control (TSMC). The improved
TSMC scheme is devised using Fractional-Order TSMC (FOTSMC) and Proportional-
Integral-Derivative (PID) control to obtain robust tracking and high control performance.
The TDE is designed to estimate the unknown nonlinear dynamics of robotic manipulators,
including the Stribeck friction and the external disturbances. Due to Stribeck friction, the
e�ect of TDE error may fail to obtain the desired error performance; thus, another TDE
loop is devised to compensate for TDE error generated by non-smooth frictions. The
Lyapunov criterion is used to investigate the �nite-time stability to analyze the behavior
of the designed approach. Finally, computer simulations of the proposed method on
PUMA 560 robotic manipulators are performed in contrast with FOTSMC and Adaptive
Fractional-Order Nonsingular Terminal Sliding Mode Control (AFONTSMC).

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

A robotic manipulator is a nonlinear mechanical device
and is generally used in processing/manufacturing
industries and its applications because it is cost-
e�ective and replaces manual labor for complicated
and repetitive tasks [1{4]. The complex dynamics
of robotic manipulators having inherent uncertainties,
dynamic coupling between neighboring links, time-
varying inertia, gravity, and nonlinear frictions require
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e�cient controlling to obtain high control performance
of rapid dynamic convergence, repeatable accuracy,
�nite-time stability, smooth control input, and minimal
vibration at the desired angle [5].

In general, nonlinear e�ects such as presliding
displacement, backlash hysteresis, Dahl e�ect, and
Stribeck friction are present in every mechanical sys-
tem. Basically, the Stribeck friction consists of the
Coulomb friction, static friction, and viscous friction
[6]. Thus, the motorized mechanism is widely a�ected
by these frictions where moving parts make contact
with each other, and it is impractical to pay no
attention to the control design. Conversely, this severe
nonlinearity may degrade the control performance of
the closed-loop system.

A variety of control approaches have been de-
signed, such as neural network-based piecewise con-
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tinuous function control To meet e�ectual control
performance under Stribeck frictions [7], adaptive fuzzy
control [8], recursive model-free control [9], Sliding
Mode Control (SMC) [10{12]. However, some of these
schemes rely on the knowledge of the system dynamics
or information of uncertain parameters [13]. Moreover,
some intelligent learning control methodologies, such as
fuzzy logic and neural network control, require complex
calculations caused by the weight training processes of
intelligent control.

Toward this front, to avoid complicated formu-
lations and estimate unknown system dynamics and
uncertainties, the Time Delay Estimation (TDE) can
be employed to achieve high control performance and
implemented easily. Fundamentally, TDE is an estima-
tion method that originates from Time Delay Control
(TDC) theory. In this way, the unknown dynamics and
uncertainties of a system are estimated by exploiting
the system's delayed dynamics. Thus, the constant
time delay is inserted with known system parameters,
such as control input and the state derivatives, to
obtain delayed unknown dynamics. In literature,
TDE has been incorporated with well-known con-
trol methodologies, for example, SMC, fuzzy control,
neural network control, and intelligent proportional-
integral-derivative (iPID) control [14{18] to obtain a
precise estimation as well as better control perfor-
mances.

On the other hand, TDE cannot precisely esti-
mate the unmodeled dynamics because of the TDE
estimation error, which is inevitable due to inherent
non-smooth frictions and nonlinearities. Therefore, in
order to tackle estimation error, TDE is usually used
with various control schemes such as adaptive control,
neural network control, fuzzy logic, Ideal Velocity
Feedback (IVF), and anti-windup schemes [17{21].
TDE estimates the unknown dynamics, and the other
schemes suppress the estimation error. As mentioned
earlier, the intelligent schemes are complex enough, and
the adaptive control may not be estimated to some
extent due to its constant tuning gain. Therefore, the
TDE scheme is suitable for its simplicity and precise
estimation. In this work, TDE is employed to estimate
the unmodeled dynamics, and then the other TDE is
utilized to deal with the estimation error caused by the
Stribeck friction's e�ect.

SMC is one of the most robust control schemes
in control engineering; however, conventional SMC
has some drawbacks, such as slow convergence speed,
oscillation in control, and singularity [22]. Thus, Ter-
minal Sliding Mode Control (TSMC), fast TSMC, and
nonsingular TSMC have been designed to overcome
these problems [23{27]. Furthermore, to enhance the
TSMC performances, such as robustness and dynamic
response, TSMC based on PID (TSMC-PID) has been
designed [28]. Moreover, Fractional-Order (FO) control

is an arbitrary order of generalized calculus that im-
proves the dynamic response of the controller. Thus,
FO has been integrated with TSMC to improve the
tracking accuracy and transient response of the closed-
loop system [29{32]. Therefore, this work considers
fractional-order TSMC-PID with the estimation of un-
certain dynamics under Stribeck friction through TDE
to design the robust model-free scheme Fractional-
Order TSMC (FOTSMC) and Proportional-Integral-
Derivative (PID). At the same time, the chattering
problem is attenuated by replacing the sgn function
with the tanh function. The main goal of this work
can be marked as follows:

1. Unlike the intelligent learning methods, TDE based
FOTSMC-PID control scheme under Stribeck fric-
tion is proposed to obtain model-free control with
�nite-time convergence, high precision, and robust-
ness;

2. FOTSMC-PID is utilized to obtain robust and
accurate performances, and unknown dynamics are
estimated by TDE. In contrast, TDE error is
compensated by integrating augmented control via
another TDE approach;

3. A proof of �nite-time stability is investigated by
Lyapunov stability synthesis;

4. The proposed scheme shows a faster convergence
rate and robustness with compared approaches.

The article is organized as follows: Mathemat-
ical preliminaries are given in Section 2. Section
3 introduces the dynamics of robotic manipulators.
In Sections 4 and 5, the proposed TDE framework
with FOTSMC-PID for robotic manipulators and its
�nite-time stability analysis by Lyapunov synthesis is
demonstrated, respectively. Section 6 presents the re-
sultant comparative simulations to validate the e�cacy
of the developed scheme. This paper is concluded in
Section 7.

2. Mathematical preliminaries

2.1. De�nition 1
A perturbed nonlinear system with state z(t) is de�ned
as:

_z(t) = g(z) + h(z)u(t) + p(t); (1)

where g(z) represents the unknown nonlinear state
dynamics function, h(z) denotes a distribution matrix,
p(t) is an unknown external disturbance, and the
control input is given by u(t). By separating known
and unknown terms, Eq. (1) can be written as:

�(z; t) = g(z) + p(t) = _z(t)� h(z)u(t): (2)

The TDE of an unmodeled term can be computed
as [33]:
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�̂(z; t) �= ĝ(z) + p̂(t) �= g(z�d) + p(t�d)

= _z(t�d) � h(z�d)u(t�d); (3)

where d is the constant delay, and �̂(z; t) is the
estimated expression of unknown dynamics.

2.2. De�nition 2
The 
th-order Riemann-Liouville (RL) fractional dif-
ferointegral of function z(t) with terminal value b is
de�ned by Podlubny [34]:

bI
t z(t)=bD�
t z(t) =
1

�(
)

tZ
b

z(�)
(t� �)1�
 d�; (4)

bD
t z(t) =
d
z(t)
dt


=
d[
]

dt[
] bI [
]�

t z(t); (5)

where I
 and D
 represent the fractional integral and
derivative, respectively. Fractional value 
 ranges m�
1 < 
 < m and m 2 N, while �(�) denotes Euler's
Gamma function as:

�(
) =
1Z

0

e�tt
�1dt: (6)

2.3. Lemma 1
By taking the ordinary derivative (dn=dtn) of fractional
operator bD
t z(t) yields [34]:

dn

dtn
(bD
t z(t)) = bD
t

�
dnz(t)
dtn

�
= bD
+n

t z(t): (7)

2.4. Lemma 2
For Lyapunov function V(t) with initial value V(t0),
�nite-time stability is implied by Tang [35]:

_V(t) � �nVp(t); 8t � t0; V(t0) � 0; (8)

where n > 0 and 0 < p < 1. The �nite-time tf can be
estimated as:

tf � 1
n(1� p)V1�p(t0): (9)

3. Dynamics of robotic manipulators

The uncertain dynamics of n-link robotic manipulators
can be expressed in the Lagrange form as:

M(q)�q + Vc(q; _q) _q +G(q) + F( _q) + �d = �; (10)

where q; _q; �q 2 <n represents the joints' position,
velocity, and acceleration vectors, respectively, the
inertia matrix is given by M(q) 2 <n�n, the Corio-
lis/centripetal matrix is denoted by Vc(q; _q) 2 <n�n,
the gravitational vector is represented by G(q) 2 <n,
time-varying unknown external disturbance is denoted

by �d 2 <n, and the control torque is symbolized by
� 2 <n. Moreover, the Stribeck friction model can be
expressed as [7]:

F( _q) =
h
�0 + �1e� 1j _qj + �2(1� e� 2j _qj)

i
sgn( _q);

(11)

where F( _q) 2 <n represents Stribeck friction force, �0
denotes the Coulomb friction, (�0 + �1) represents the
Static friction, �2 is the Viscous friction coe�cient, and
 1 and  2 are positive constants.

3.1. Assumption 1
The M(q) is a uniformly positive de�nite matrix such
that:

�1I �M(q) � �2I; (12)

where �1 > 0 and �2 > 0 are constants.

System (10) can be rewritten in the following form
as:

�q + ��1[M(q)�q � ��q + Vc(q; _q) _q +G(q) + F ( _q)

+�d] = ��1�: (13)

Then Eq. (13) can further be simpli�ed as:

�q = ��1� +M(q; _q; �q); (14)

where � is a constant diagonal matrix and:

M(q; _q; �q) = ���1[M(q)�q � ��q + Vc(q; _q) _q +G(q)

+F ( _q) + �d]:

Now, we can represent Eq. (14) in the tracking
error form as:

�~q(t) = ��1� +M(q; _q; �q)� �qd; (15)

where ~q(t) = q(t) � qd(t), _~q(t) = _q(t) � _qd(t), �~q(t) =
�q(t) � �qd(t), and qd; _qd; �qd 2 L1 are the desired
trajectory vectors.

4. Controller development

In this section, a model-free controller is proposed
using TDE with FOTSMC-based PID (FOTSMC-PID)
for the uncertain robotic dynamics under Stribeck
�ction and external disturbances. Then, the �nite-time
stability of the closed-loop system is investigated using
Lyapunov's theorem analysis.

4.1. FOTSMC-PID surface
The sliding surface, based on the properties of FO
and PID, is designed to obtain a fast response, high
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robustness, and �nite-time convergence under non-
smooth friction. Thus, the terminal sliding manifold
is de�ned as:

S = ~q +K
Z
j~qj�sgn(~q)d�; (16)

where K > 0 is a diagonal matrix and 1 < � < 2.
Once the tracking error reaches the sliding surface

S = 0( _S = 0), it guarantees the �nite-time convergence
of the error ~q; one gets:

~q +K R j~qj�sgn(~q)d� = 0
) _~q +Kj~qj�sgn(~q) = 0
) _~q = �Kj~qj�sgn(~q):

(17)

Consider the positive-de�nite Lyapunov candidate as
V = 1

2 ~qT ~q, which has:

_V = ~qT _~q; (18)

_V = �K~qT j~qj�sgn(~q) � �Kk~qk�+1; (19)

_V � �K(2V )
�+1

2 � �K(2)
�+1

2 (V )
�+1

2 � �bV � : (20)

With � = �+1
2 and b = K2� . According to Lemma 2,

the �nite-time convergence can be calculated as follows:

ts =
V 1��(tr)
b(1� �)

; (21)

where ts is the settling time, and reaching time tr will
be calculated in Theorem 1.

Using terminal sliding surface Eq. (16), the fol-
lowing FOTSMC-PID sliding surface is developed as:

Spid = KpS +KiD
�1S +Kd _S; (22)

where Kp;Ki;Kd > 0 are PID gains diagonal matrix,
and 0 < 
 < 1 is FO value.

By taking the derivative of Eq. (22), one can
obtain:

_Spid = Kp _S +KiD
S +Kd �S: (23)

Substituting second derivative of Eq. (16) into Eq. (23)
yields:

_Spid = Kp _S +KiD
S +Kd(�~q + �Kj~qj��1 _~q): (24)

Substituting �~q(t) from Eq. (15) into Eq. (24), one has:

_Spid = Kp _S +KiD
S +Kd(��1� +M(q; _q; �q)

��qd + �Kj~qj��1 _~q): (25)

The FOTSMC and PID sliding surfaces are
merged, and the proposed sliding surface is developed
Eq. (22). Therefore, the FOTSMC-PID surface has
the advantage of both schemes, for instance, rapid dy-
namics response, quick �nite-time convergence, small
steady-state error, and non-singularity. For the uncer-
tain systems, the mentioned properties are elemental
because they are robust against uncertainties and
parameter variations, and the system stabilizes swiftly.

4.2. TDE with FOTSMC-PID-based
model-free control design

In this subsection, the design of the proposed control
is presented by combining the schemes such as TDE
with the enhanced FOTSMC-PID approach to estimate
unknown dynamics of robotic manipulators under fric-
tions and external disturbances. For such a problem of
model-free tracking control, the proposed controller is
designed as follows:

� = �nom + �est + �aug; (26)

where �nom is nominal control, and �est is estimation
control by TDE, while �aug will be discussed later.
Here, �nom and �est are respectively de�ned in Eqs. (27)
and (28) as:

�nom=�(�qd��Kj~qj��1 _~q�K�1
d Kp _S � K�1

d KiD
S);
(27)

�est = ��M̂; (28)

where M̂ denotes TDE, which can be computed by
Eq. (14) as:

M̂ �=M(q; _q; �q)(t� ) = �q(t� ) � ��1�(t� ); (29)

where the constant delay  and then the delayed term
(t�  ) are obtained.

Thus, by substituting Eq. (26) into Eq. (25),
simpli�ed sliding surface is obtained as:

_Spid = Kd
h
��1�aug + ~�

i
; (30)

where ~� =M(q; _q; �q) � M̂. Since the estimation error
~� does not precisely converge to zero due to hard
nonlinearities. Thus, to deal with this situation, �aug
is designed by:

�aug = �� hKd�1K1sgn(Spid) + ~̂�
i
; (31)

where ~̂� �= ~�(t� ) = K�1
d

_Spid � ��1�aug(t� ) is
formulated using TDE of Eq. (30) and K1 > 0.

By substituting Eq. (31) into Eq. (30), one can
get:

=) _Spid = �K1sgn(Spid)� ~~�; (32)

where ~~� = ~̂� � ~�. The complete proposed model
structure is shown in Figure 1.
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Figure 1. The complete structure of the proposed method.

Remark 1: The proposed FOPID-SMC has four major
parameters in comparison with conventional SMC. The
�rst parameter, Kp, helps to sustain the properties of
the TSMC. The second parameter, Ki, helps to obtain
high robustness properties similar to integral SMC.
The third parameter, Kd, helps to obtain chatter-free
control input. The fourth parameter, the parameter
of FO control 
 greatly improves the response of the
system. Moreover, the TDE scheme is used to estimate
the unknown dynamics of the system.

Remark 2: TDE scheme is applied for an estimation,
which means this technique estimates on the basis of
delayed parameters/dynamics. For the implementation
of the TDE scheme, a su�ciently small delay is used
and can be obtained when the sampling period is
selected 30 times faster than the controlled system
bandwidth [16,36,37].

Remark 3: In the practical implementation of the
controller, the acceleration must be known where the
position/velocity measurements are available. Thus,
the Second-Order Exact Di�erentiation (SOED) ap-
proach can be exploited to estimate the acceleration,
which is given as follows:

_y1 = ��1jy1 � qj2=3sgn(y1 � q) + y2;

_y2 = ��2jy2 � _y1j1=2sgn(y2 � _y1) + y3;

_y3 = ��3sgn(y3 � _y2); (33)

where y1 = q; y2 = _q; y3 = �q and �1; �2; �3 > 0.

5. Stability analysis

The stability synthesis of the developed scheme is
carried out by the following theorem.

5.1. Theorem 1
The states of the unknown system under Stibeck fric-
tion (11) converge to zero along the manifold Spid = 0 if
the designed controller FOTSMC-PID (26) is applied,
then it ensures the �nite-time stability and convergence
of the system.

Let V(t) be a Lyapunov candidate selected as:

V(t) =
1
2
STpidSpid: (34)

By taking the time derivative of V(t), one obtains:

_V(t) = STpid _Spid: (35)

Substitution of Eq. (32) into Eq. (35), one can get:

_V(t) = �STpid
�K1sgn(Spid) + ~~�

�
; (36)

According to kS(t)k = S(t)T sgn(S(t)) yields:

_V(t) � ��K1 + ~~�
�

Spid

 : (37)

Since the TDE error ~~� is bounded by j~~�j � � with � > 0
[16] and ~~� � K1, one can express the Relation (37) as:

_V(t) � �K1


Spid

 � 0: (38)

Since K1 > 0, the system (10) will converge to the
origin. Hence, the derived Lyapunov analysis shows the
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stability of the system is ensured under the proposed
control design.

To compute the �nite-time convergence, Relation
(38) can be expressed as:

_V(t) � �%V1=2(t) � 0; (39)

with % =
p

2K1. Thus, implementing Lemma 2 on
Relation (39), the �nite-time tr can be formulated as:

tr =
2V1=2(t0)

%
: (40)

Therefore, the total �nite convergence time can be
computed using tf = tr + ts as [38]:

tf =
2V1=2(t0)

%
+
V 1��(tr)
b(1� �)

: (41)

Hence, the tracking error will converge to the origin
in a �nite-time tf , and the trajectory will maintain
converging to the surface manifold when b > 0 and
% > 0.

Remark 4: The �nite-time and the control torque are
dependent on the constant gain K1, which is explicitly
seen that it is proportional to the � and reciprocal of
tf in Eqs. (26) and (41), respectively. Thus, better
tracking performance, fast �nite-time response, and
overall dynamic stability can be obtained by selecting
the appropriate value of K1.

Remark 5: The parameters of the FOTSMC-PID
method have been chosen according to the speci�ed
range, such as K > 0, Kp > 0, Ki > 0, Kd > 0,
K1 > 0, 1 < � < 2, and 0 < 
 < 1. If these
parameters are not selected within the given range,
then there could be a singularity problem, and the
stability of the closed-loop system cannot be achieved.
Hence, by selecting the suitable parameters, the desired
trajectory tracking and closed-loop system stability can
be obtained simultaneously.

6. Simulation evaluations

For the applicability of the theoretical results, the
performance of the proposed FOTSMC-PID is vali-
dated by implementing 3-DOF dynamics of PUMA
560 robotic manipulators under Stribeck friction. The
simulations are performed in the Matlab/Simulink
environment with a Runge-Kutta solver under 0.001
sec �xed step size. Moreover, to demonstrate the
e�cacy of FOTSMC-PID, its results are compared
with the proposed scheme without PID (FOTSMC)
and Adaptive Fractional-Order Nonsingular TSMC
(AFONTSMC) [31].

The dynamics of the considered PUMA 560 ma-
nipulators, which were developed in [39], are used.

Moreover, the parameters of the proposed and com-
pared controllers are given in Table 1. Initial conditions
of joint positions are chosen as q1(0) = q3(0) = 0:1 and
q2(0) = 0:05, and the parameters of SOED Eq. (33)
are chosen as �1 = 20 and �2 = �3 = 5. To counteract
the chattering problem, the sgn function in Eq. (26) is
replaced by the tanh function. Further, the desired
inputs are selected as qd1 = qd3 = 0:2 cos(0:7t) +
0:2 cos(0:5t � 0:2) and qd2 = 0:2 cos(0:5t � 0:2) �
0:2 cos(0:7t).

6.1. Case-1 (without stribeck friction)
The proposed method is compared with FOTSMC
and AFONTSMC. Thus, simulations of joint position
tracking, tracking errors, and control torques without
Stribeck friction are depicted in Figures 2{4. Moreover,
the Root Mean Square (RMS) results of position errors
are illustrated in Table 2.

These results clearly show the high tracking per-
formance of the proposed method in terms of fast
convergence speed, quick response, and chatter-free
control inputs.

Table 1. Selected control parameters for Fractional-Order
TSMC-PID (FOTSMC-PID), Fractional-Order TSMC
(FOTSMC), and Adaptive Fractional-Order Nonsingular
TSMC (AFONTSMC).

Controller Parameters Values

FOTSMC-PID K Diag(30,30,30)

Kp Diag(0.2,0.2,0.2)

Ki Diag(0.2,0.2,0.2)

Kd Diag(0.2,0.2,0.2)

� Diag(0.77,0.77,0.77)


,  , �, K1 0.9,0.001,1.9, 100

FOTSMC K Diag(200,200,200)


 0.1

AFONTSMC k1 Diag(50,50,50)

k2 Diag(10,10,10)

K Diag(10,10,10)

� 0.1

Table 2. Comparative tracking error performance for
Fractional-Order TSMC-PID (FOTSMC-PID),
Fractional-Order TSMC (FOTSMC), and Adaptive
Fractional-Order Nonsingular TSMC (AFONTSMC).

Controller e1RMS e2RMS e3RMS
P3

1 ei

FOTSMC-PID 0.0057 0.0036 0.0057 0.015

FOTSMC 0.0029 0.0032 0.0035 0.0096

AFONTSMC 0.0077 0.0112 0.0073 0.0262
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Figure 2. Position tracking for Adaptive
Fractional-Order Nonsingular TSMC (AFONTSMC),
Fractional-Order TSMC (FOTSMC), and
Fractional-Order TSMC-PID (FOTSMC-PID).

6.2. Case-2 (under stribeck friction)
In this case, comparative analyses of the proposed
method with FOTSMC and AFONTSMC under
Stribeck friction are given. Thus, the Stribeck friction

Figure 3. Tracking error for Adaptive Fractional-Order
Nonsingular TSMC (AFONTSMC), Fractional-Order
TSMC (FOTSMC), and Fractional-Order TSMC-PID
(FOTSMC-PID).

parameters are given as �0 = 22, �1 = 1, �2 = 0:96,
 1 = 55, and  2 = 50. The corresponding comparisons
of position tracking, tracking errors, control torques,
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Figure 4. Control torque for Adaptive Fractional-Order
Nonsingular TSMC (AFONTSMC), Fractional-Order
TSMC (FOTSMC), and Fractional-Order TSMC-PID
(FOTSMC-PID).

and RMS position errors under Stribeck friction are
depicted in Figures 5{7 and Table 3, respectively.

According to the results of simulations, Figure 5
depicts the actual joint position of the robotic manip-

Figure 5. Position Tracking under Stribeck friction for
Adaptive Fractional-Order Nonsingular TSMC
(AFONTSMC), Fractional-Order TSMC (FOTSMC), and
Fractional-Order TSMC-PID (FOTSMC-PID).

ulator and precisely tracks the desired trajectory. Fig-
ure 7 shows the satisfactory chatter-free control input
performance of the proposed method. Therefore, the
comparisons of the proposed method with FOTSMC
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Figure 6. Tracking error under Stribeck friction for
Adaptive Fractional-Order Nonsingular TSMC
(AFONTSMC), Fractional-Order TSMC (FOTSMC), and
Fractional-Order TSMC-PID (FOTSMC-PID).

and AFONTSMC show that the performance of all
controllers is good without Stribeck friction. As can be
seen from Figures 5{7, Stribeck friction considerably
a�ects the dynamics of the robotic manipulator. How-

Figure 7. Control torque under Stribeck friction for
Adaptive Fractional-Order Nonsingular TSMC
(AFONTSMC), Fractional-Order TSMC (FOTSMC), and
Fractional-Order TSMC-PID (FOTSMC-PID).

ever, the results under the friction explicitly show that
the proposed FOTSMC-PID robustly suppresses the
e�ect of Stribeck friction and obtains e�ective tracking
and fast convergence performances.
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Table 3. Comparative tracking error performance under
Stribeck Friction for Fractional-Order TSMC-PID
(FOTSMC-PID), Fractional-Order TSMC (FOTSMC),
and Adaptive Fractional-Order Nonsingular TSMC
(AFONTSMC).

Controller e1RMS e2RMS e3RMS
P3

1 ei
FOTSMC-PID 0.0060 0.0048 0.0060 0.0168
FOTSMC 0.1369 0.0043 0.5980 0.7392
AFONTSMC 0.0098 0.0218 0.0138 0.0454

7. Conclusion

A model-free controller based on Time Delay Estima-
tion (TDE) and Fractional-Order TSMC (FOTSMC)
and Proportional-Integral-Derivative (PID) is proposed
for robotic manipulators under Stribeck friction. Ro-
bust dynamic response and precise trajectory tracking
are achieved by FOTSMC-PID, whereas unmodeled
uncertain dynamics are estimated by TDE. TDE esti-
mation error is generated because of nonlinear friction,
which is compensated by designing augmented torque
input. Moreover, the developed scheme is equipped
with Second-Order Exact Di�erentiation (SOED) to
estimate joint acceleration, which is impracticable
to measure. Numerical simulation demonstrates the
performance of FOTSMC-PID applied on PUMA 560
manipulators. Moreover, the compared simulation
results are illustrated with FOTSMC and Adaptive
Fractional-Order Nonsingular Terminal Sliding Mode
Control (AFONTSMC), which shows the e�ectiveness
of the proposed scheme.

This paper presents unknown dynamics of the
robotic manipulators under Stribeck friction. There-
fore, the TDE-based Sliding Mode Control (SMC)
approach can be designed to control the system under
nonlinearities such as saturation, backlash hysteresis,
and dead-zone.
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