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Abstract. Accurate energy production forecasting is critical when planning energy for
the economic development of a country. A deep learning approach based on Long Short-
Term Memory (LSTM) to predict one-day-ahead energy production from the run-of-river
hydroelectric power plants in Turkey was introduced in the present study. Furthermore, to
compare the prediction accuracy, the methods of Adaptive Neuro-Fuzzy Inference System
(ANFIS) with Fuzzy C-Means (FCM), ANFIS with Subtractive Clustering (SC), and
ANFIS with Grid Partition (GP) were utilized. The predicted values obtained by the
application of these four methods were evaluated with detected values. The correlation
coe�cient (R), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
and Root Mean Square Error (RMSE) were used as quality metrics for prediction. The
comparison showed that the LSTM neural network provided higher accuracy results in
short-term energy production prediction than other ANFIS models used in the study.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Hydroelectric energy is the largest renewable energy
source that is substantially critical to more than 160
countries in the world [1{3]. By the end of 2018, 15.9%
of global electricity was generated by hydroelectric
power, and hydroelectricity also represented more than
62% of electricity generated from renewable sources
worldwide. Hydroelectric power generation reached
approximately 4,200 TWh, making the highest ever
contribution from renewable energy sources. Approxi-
mately, 22 GW hydropower capacity was commissioned
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and the world's total installed power capacity increased
to 1,292 GW [4].

Energy plant investments are incredibly high,
especially in hydropower plants; besides, the cost and
environmental e�ects should be carefully considered.
To be able to decide on sustainable solutions in energy-
related decisions, accurate estimation is a crucial sub-
ject. Accurate energy production estimation from
run-of-river or small hydropower plants is essential
in many decision-making areas. Meanwhile, network
demand forecasting with a time series problem must
also be made to realize that the provided power is
fully consumed. Short-term forecasting is crucial to
planning a backup power supply, providing the ongo-
ing power supply, and performing energy operations
between power stations [5]. The power generation of
a small hydroelectric power plant refers to a dynamic
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process that shows the maximum production capacity
under certain hydrological and meteorological condi-
tions. It is also easily a�ected by climate, hydrology,
and installation capacity. Therefore, estimating the
power generation of a small hydroelectric system is
a complex problem with non-linear and multi-factor
dynamics [6].

The possibility of accurately predicting the fun-
damental trends in the energy production of renew-
able power plants supplies essential bene�ts to both
the facility management and investors. For energy
companies, reasonable estimates of future electricity
generation are essential to planning resources to avoid
shortcomings and maximize pro�ts in the electricity
trade. Policy-makers need to make an appropriate plan
for hydroelectric power plant development and achieve
this successfully. Policy-makers should constantly
track the electricity load in the hydroelectric market
and check if the target �ts the actual condition. If
the hydroelectric energy production is higher than
consumer demand, the excess capacity of hydroelectric
energy will arise. Conversely, a lower hydroelectric
energy production than the demand for hydroelectric
consumption will produce a shortage of hydroelectric
supply. Also, climate change and natural variability
of water ow in rivers where power plants are set up
substantially a�ect the run-of-river hydroelectric power
plants [7].

Related literature indicates that the importance
of energy production, water inow, and water level
forecasting methods associated to hydropower plants is
gradually increasing worldwide. However, forecasting
energy production from the run-of-river hydroelectric
power plants is not a simple task due to complex factors
such as internal faults, scheduled plant closures, power
grid faults, oods, extreme weather conditions, water
inow, etc. Since hydroelectric power is a type of elec-
trical energy, run-of-river hydroelectricity consumption
is forecasted, similar to the forecasting models for
other energy consumption types [7]. The published
prediction models are generally classi�ed under four
categories: statistical, physical, arti�cial intelligence,
and hybrid models. However, many existing models
typically require historical observations or complex
independent variables such as atmospheric air temper-
ature, reservoir inow, and precipitation. Generally,
two major categories are valid for classi�cation: the
regression model and the time-series approach [8]. The
regression model must accurately determine certain
descriptive or independent variables that may a�ect
energy production in a plant to estimate the energy
production e�ciently. On the other hand, in the time
series approach, energy production can be modeled as
a function of the historical data [9].

Various studies examine energy production, wa-
ter inow, and water level forecasting methods re-

lated to the hydropower plants in the world. Arti�-
cial Neural Network (ANN) [10{15], Arti�cial Neural
Network model with Arti�cial Bee Colony (ANN-
ABC) algorithm [16], Numerical Weather Prediction
(NWP) model [17{19], Autoregressive Integrated Mov-
ing Average (ARIMA) model [13,20,21], Seasonal
Auto-Regressive Iterative Moving Average (SARIMA)
model [21], a Model for Assessment of Energy Demand
(MAED) [22], Grey Model (GM) [23,24], Correlation
Analysis Method (CAM), Complementary Modeling
Framework (CMF) [25], least squares Support Vec-
tor Regression (SVR) ensemble learning approach,
Bayesian regularization with Echo State Network
(BESN-ESN) [26], Regression Analysis (RA) [27], Sup-
port Vector Machines (SVMs) [28], Genetic Algorithm-
Support Vector Machines (GA-SVM) [29], Grey
Wolf Optimization method coupled with an Adaptive
Neuro-Fuzzy Inference System (GWO-ANFIS) [30] ap-
proaches have been widely applied by some researchers
for this purpose. Quite good predictive results are
obtained, especially in complex non-linear problems
and, thus, energy production estimation can be made
using arti�cial intelligence algorithm-based methods.
Arti�cial neural networks have the capabilities to not
only learn power generation series but also model
an ambiguous non-linear relationship between energy
production and its independent variables. Besides,
fuzzy logic and machine learning approaches have
recently been applied in energy production estimation,
and relatively good performances have been obtained.
In some academic studies, statistical and probabilistic
approaches have been proposed primarily for long-term
load estimates.

As can be understood from the literature studies
mentioned above, various studies have been carried
out in many countries to estimate energy production
from hydroelectric power plants. Also, a reasonable
estimate for energy consumption helps optimize plant
operational planning and control operational manage-
ment. Energy production in hydroelectric power plants
is dynamic; however, a control system can record
dynamic time-series data to establish a relationship
between current and historical working conditions.

This study predicts energy production from run-
of-river hydroelectric power plants with a time series
approach. This is a time series problem since the cur-
rent energy production from run-of-river hydroelectric
power plants is directly related to previous operating
conditions or data. As is known, the time series
estimation technique is regression analysis. Traditional
models usually cannot learn time series data as they
cannot store previous information, leading to a limited
ability to estimate long-term time-series data, e.g.,
energy production. Thus, a new method with the
ability to process signi�cant amounts of high-quality
data is needed. Hence, the present study adopted
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a Long Short-Term Memory (LSTM) neural network
that dynamically recalls historical information to esti-
mate energy production from run-of-river hydroelectric
power plants. Studies in which deep learning ap-
proaches based on the LSTM network are successfully
applied are included in the literature. Refs. [31{42] can
be examined for detailed information.

Within the scope of this study, the following
subjects are at focus:
� A deep learning approach based on LSTM is pre-

sented to predict energy production from run-of-
river hydroelectric power plants in Turkey. Studies
on the deep learning-based LSTM neural network to
predict electricity generation from river-type hydro-
electric power plants are limited in the literature;

� As for forecast models published in the literature
on hydropower, many studies have been carried out
with the aim of predicting sizeable hydroelectric
power plants and they have focused mainly on
estimating river ows such as streamow, reservoir
inow, precipitation, and runo�. However, the
number of studies on estimating small hydropower
generation is limited, especially in Turkey. In this
paper, LSTM, a helpful attempt at deep learning,
is applied to study energy production from Turkey's
run-of-river hydroelectric power plants;

� Additionally, within the scope of the research, the
�ndings acquired from the LSTM method were
correlated with those of the ANFIS models using the
same data to prove the performance of the current
approach used in the study and the di�erences
between them were interpreted.

2. Material and methods

2.1. Adaptive neuro-fuzzy inference system
Adaptive Network Fuzzy Inference System (ANFIS) is
a universal estimator. It can be used for any proper
continuous function in a compact setup to any degree of
accuracy. ANFIS is expressed as a network statement
of Sugeno-type fuzzy systems equipped with neural
learning capabilities and creates fuzzy if-then rules
with appropriate Membership Functions (MF) from
input-output by employing a neural network learning
algorithm. FIS development procedure using the ANN
framework is stated ANFIS [43,44]. In the working
principle of an ANFIS model, the system is �rst trained
similarly to ANN. After that, the system is conducted
as a fuzzy inference system. In this sense, ANFIS's
integration of both ANN and FIS principles has led to
integration of the advantages of both systems into a
single system [45].

The neuro-fuzzy model contains a total of �ve
layers as a multi-layered neural-network-based fuzzy
system. The network structure contains input and
output nodes representing input states and output re-
sponse, respectively, and nodes in hidden layers acting
as Membership Functions (MFs) and rules. Thus,
the disadvantage of an observer's di�culty in under-
standing or replacing a standard feedforward multi-
layered network is avoided [46,47]. Figure 1 shows
type-3 fuzzy reasoning and corresponding equivalent
ANFIS architecture (Type-3 ANFIS), respectively. In
the structure, a circle represents a �xed node, while
a square represents an adaptive node. Two inputs, x
and y, and one output, f , are considered, as it is a

Figure 1. (a) Type-3 fuzzy reasoning. (b) Equivalent ANFIS (Type-3 ANFIS) [44].
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simple structure. Thanks to its high interpretability,
computational e�ciency, and built-in optimal and
adaptable techniques, the Sugeno model is the most
widely applied fuzzy model found in the relevant
literature.

2.2. Long Short-Term Memory (LSTM)
neural network

LSTM is a repetitive neural network designed by
Hochreiter and Schmidhuber [48]. The architecture
allows LSTM networks to either carry information
for the long term or forget the information. This
process is controlled by gates that are some kind
of activation function in this case. The decision of
whether the information will be passed along or not
falls on the activation function. LSTMs that eliminate
the long-term dependencies of RNN are speci�c types
of RNN, thus learning long-term dependencies and
remembering data for a long time by default. They
are used in processing, prediction, and classi�cation
of information based on time series data. Their use
in speech recognition, machine translation, language
modeling for tourism, and stock prediction has yielded
successful results. Studies on LSTM have shown
their successful applications including their possible
application to energy forecasting.

LSTM networks address the issue of retaining
information for the long term. Standard recurrent
neural networks rely on a simple tan-hyperbolic layer.
LSTM network has the same structure, but it also
has additional layers that interact in a particular
manner. Figure 2 shows the architecture of a typical
LSTM block. This architecture gives LSTM networks
the ability to carry information for the long term or
forget it. This process is controlled by gates that are
some kind of activation function in this case. The
decision of whether the information will be passed

along or not falls on the activation function. The chain
structure of LTSM comprises four neural networks and
di�erent memory blocks, namely cells. The cells retain
information and the gates manipulate memory. LTSM
networks address the issue of retaining information for
the long term. Standard recurrent neural networks
rely on a simple tan-hyperbolic layer. LTSM network
has the same structure, but also has additional layers
that interact in a particular manner. An LSTM unit
comprises a cell, an input gate, an output gate, and a
forget gate. The forget gate was not initially included
and was later proposed by Gers et al. [49] to allow a
network to reset its state. LSTM architecture com-
prises a group of regularly reconnected sub-networks,
i.e., memory blocks. The memory block maintains its
state as time passes and regulates information ow
through non-linear gating units. Input activation ow
into the memory cell is controlled by the input gate.
The output gate controls cell activations' output ow
into the remaining network. Finally, the forget gate
was included in the memory block.

2.2.1. Forget gate
Forget gate (Figure 3) removes the now-redundant
information in the cell state. The gate is fed with
two inputs x(t) (input at a particular time) and y(t�1)

(previous cell output), which are then multiplied by
weight matrices and added to the bias term. An
activation function processes the resultant, yielding
a binary output. For a particular cell state, the
information is forgotten if the output is zero; it is
retained for future use if the output is 1.

f (t) =�
�
Wfx(t)+Rfy(t�1)+pf � c(t�1)+bf

�
; (1)

where Wf , Rf , and pf are the weights associated with
x(t), y(t�1), and c(t�1) respectively, while bf is for the
bias weight vector.

Figure 2. The architecture of a typical LSTM block.
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Figure 3. Forget gate in the LSTM memory block.

Figure 4. Input gate in the LSTM memory block.

2.2.2. Input gate
The input gate (Figure 4) adds helpful information to
the cell state. The sigmoid function �rstly regulates
the information and similarly �lters the values to that
of forget gate with inputs y(t�1) and x(t). The tanh
function, which yields an output of values ranging from
�1 to +1, is used to create a vector containing all the
possible values from y(t�1) and x(t). Finally, the vector
values and regulated values are multiplied to obtain
helpful information.

i(t) = �
�
Wix(t) +Riy(t�1) + pi � c(t�1) + bi

�
; (2)

z(t) = g
�
Wzx(t) +Rzy(t�1) + bz

�
; (3)

where:
� Point-wise multiplication of two vectors
Wi;Wz Weights associated with x(t)

Ri; Rz Weights associated with y(t�1)

pi Weight associated with c(t�1)

bi Bias vector
bz Bias weight vector

2.2.3. Output gate
The output gate (Figure 5) extracts helpful information
from the current cell state and presents it as an output.

Figure 5. Output gate in the LSTM memory block.

The application of the tanh function to the cell �rstly
generates a vector. The sigmoid function regulates
the information and �lters the values that will be
remembered using inputs y(t�1) and x(t). Finally, the
vector and regulated values are multiplied as outputs
and inputs to the next cell. The output of the block is
regularly reconnected to the block input and all gates.

o(t) = �
�
Wox(t) +Roy(t�1) + po � c(t�1) + bo

�
; (4)

where Wo, Ro, and po are the weights associated with
x(t), y(t�1), and c(t�1), respectively, while bo is the bias
weight vector.

Finally, the block output combining the current
cell value c(t) with the current output gate value is
calculated through the following equation:

y(t) = g
�
c(t)
�� o(t); (5)

where �, g, and h in the above steps represent point-
wise non-linear activation functions.

�(x) =
1

1 + e1�x (logistic sigmoid):

The logistic sigmoid is the gate activation function and
the hyperbolic tangent g(x) = h(x) = tanh(x) is often
the block input and output activation function [50].

2.3. Error analysis
In our study, four statistical error criteria including
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE),
and correlation coe�cient (R) are used for assessing
the goodness of a model to estimate an observed
output variable. Their calculation methods are given
as follows [51{53]:

Mean absolute error:

MAE =
1
N

NX
i=1

jp(i)� o(i)j: (6)

Root mean square error:
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RMSE =

vuut 1
N

NX
i=1

[p(i)� o(i)]2: (7)

Mean absolute percentage error:

MAPE =
1
N

NX
i=1

jp(i)� o(i)j
o(i)

� 100: (8)

The correlation coe�cient:

R =

 
NX
i=1

[p(i)� �p] [o(i)� �o]

!
,0@vuut NX

i=1

[p(i)� �p]2

vuut NX
i=1

[o(i)� �o]2
1A ; (9)

where p(i) and o(i) are the predicted and observed
values at time i, respectively; �p and �o are the means of
the predicted and actual values, respectively, and the
total number of data is represented by N .

3. Results and discussion

3.1. Data analysis and model structure
Since topographical conditions make small power plant
development more convenient in Turkey, run-of-river
hydroelectric power plants have shown signi�cant de-
velopment in recent years. As of the end of 2020,
the total installed power value of these power plants

was approximately 8 GW. This is equivalent to 8.4%
of Turkey's total installed power capacity. Therefore,
forecasting studies over energy production from the
run-of-river hydroelectric power plants have become
very important, especially for Turkey. Moreover, since
Turkey is mainly dependent on foreign sources of
electricity generation, accurate and precise forecasting
of energy production is very important. Therefore,
this study aims to predict short-term energy generation
from the run-of-river hydroelectric power plants for
Turkey. The data used for this objective in this
study cover daily energy production from run-of-river
hydroelectric power plants in Turkey. These data were
obtained by the Turkish Electricity Transmission Cor-
poration (TETC) by collecting an energy generation
of 576 run-of-river power plants in 25 river basins of
Turkey. The location of Turkey's 25 river basins is
presented in Figure 6.

In this study, a time-series analysis-based LSTM
neural network was proposed and applied to predict
the energy production of run-of-river hydroelectric
power plants in Turkey. In the LSTM neural network
simulation, the measurement inputs were divided into
two datasets. The �rst one, the training dataset, was
employed for the model's training, while the second
one, the testing dataset, was employed for over-�tting
model validation. The evaluation criteria comprised
RMSE, MAPE, MAE, and R. In addition to the LSTM
neural network, three di�erent approaches including
ANFIS-FCM, ANFIS-SC, and ANFIS-GP were used.
Then, the ANFIS models were analyzed. The results

Figure 6. Location of Turkey's 25 river basins.
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Figure 7. Energy production from the run-of-river hydroelectric power plants in Turkey.

were compared using performance statistics. The
number of MFs varied between 2 and 10, and the
number of iterations varied between 50 and 300.

Figure 7 shows the energy production data used in
the present work. They were obtained from the TETC
in Turkey as a daily dataset from January 01, 2016 to
April 19, 2020 [54]. Turkey's daily energy production
from the run-of-river hydroelectric power plants ranged
from 13.87 GWh to 142.11 GWh between January 01,
2016 and April 19, 2020. The minimum daily energy
production was realized on September 17, 2017, while
the maximum daily energy production was on May
09, 2019. During these �ve years, the average daily
energy production was calculated to be approximately
54 GWh. A total of 1571 samples were partitioned into
two sections as the �rst 80% section was the train set
and the last 20% section was the test.

The water carried by the rivers may vary in
amount every year or every season of the year. Some
rivers may dry out entirely in some arid years, or rivers
may overow by not �tting in their beds in some rainy
years. Similarly, di�erent amounts of water streams
may increase in di�erent seasons of the year. Given

that energy production is a dynamic process depending
on river water ow and many independent variables,
energy production throughout the year exhibits a
signi�cant change daily and monthly. As shown in
Figure 7, energy production increases upon increasing
the amount of water ow in river water due to excessive
rainfall, especially in March, April, and May. Although
energy production in hydroelectric power plants is
dynamic, a control system can record dynamic data to
establish a time-series relationship between current and
historical working conditions. This study predicts the
energy production from the run-of-river hydroelectric
power plants using a time series approach. The
proposed method processes the previous load series
data instead of various factors such as time, water
stream, climate, and socio-economic activities that
a�ect energy production because it is not always easy
to obtain and measure these independent variables.

3.2. Results of the LSTM network
Table 1 gives the prediction performances for the
LSTM neural network with di�erent accuracy criteria.
The values shown in bold indicate the best results

Table 1. The prediction performances for the LSTM neural network models.

Model Number of
hidden layers

MAE
(GWh)

MAPE
(%)

RMSE
(GWh)

R

LSTM-1 5 2.71 5.98 3.62 0.9914
LSTM-2 10 2.73 6.03 3.62 0.9914
LSTM-3 15 2.74 6.04 3.62 0.9914
LSTM-4 20 2.76 6.07 3.63 0.9914
LSTM-5 25 2.78 6.12 3.65 0.9913
LSTM-6 30 2.77 6.12 3.66 0.9913
LSTM-7 50 2.79 6.12 3.63 0.9914
LSTM-8 75 2.77 6.10 3.64 0.9914
LSTM-9 100 2.80 6.15 3.66 0.9913
LSTM-10 125 2.77 6.06 3.65 0.9913
LSTM-11 150 2.81 6.17 3.65 0.9913
LSTM-12 175 2.84 6.16 3.72 0.9910
LSTM-13 200 2.81 6.15 3.68 0.9911
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Table 2. The prediction performances for the ANFIS-FCM models.

Model Number of
MFs

MAE
(GWh)

MAPE
(%)

RMSE
(GWh)

R

ANFIS-FCM-1 2 2.82 6.23 3.72 0.9910
ANFIS-FCM-2 3 2.82 6.20 3.72 0.9909
ANFIS-FCM-3 4 2.80 6.16 3.66 0.9912
ANFIS-FCM-4 5 2.79 6.14 3.67 0.9912
ANFIS-FCM-5 6 2.82 6.15 3.69 0.9911
ANFIS-FCM-6 7 2.88 6.31 3.77 0.9907
ANFIS-FCM-7 8 2.86 6.27 3.75 0.9908
ANFIS-FCM-8 9 2.84 6.22 3.74 0.9909
ANFIS-FCM-9 10 2.87 6.28 3.79 0.9906

in all tables. The evaluation criteria in this table
were considered according to the forecasting values
obtained from the test process results. A total of
13 LSTM neural network models ranging from 5 to
200 hidden layers were tried and tested. According
to this table, the performance values obtained using
di�erent hidden layer numbers are quite close to each
other. For example, MAPE values for all the models
were calculated to be between 5.98% and 6.17%, while
R values were obtained to be between 0.9910 and
0.9914. However, the best result was observed when
the number of the hidden layers was equal to 5 with
the values of 2.71 GWh MAE, 5.98% MAPE, 3.62
GWh RMSE, and 0.9914 R. The results demonstrated
that the LSTM models performed satisfactorily in
forecasting daily energy production.

Observed and predicted daily energy production
data for the LSTM network are shown in Figure 8(a).
The daily production variations could be observed in
the energy production time series. As seen from Figure
8, the prediction of the energy production time series is
quite consistent with the actual values in the testing.
The testing values were presented in Figure 8(b) in
more detail. In addition to Figure 8(a) and (b), Figure
8(c) shows the regression plots of actual and predicted
values of the energy production data from the LSTM
neural network. This �gure shows that good estimation
results are obtained due to the formation of data pairs
closer to the 45� line.

3.3. Results of the ANFIS-FCM model
Table 2 shows di�erent evaluation criteria values for
the ANFIS-FCM model. A total of 9 ANFIS-FCM
models ranging from 2 to 10 MFs were tried and tested.
In terms of a general evaluation, it was observed that
the performance values obtained from all ANFIS-FCM
models gave very close results to each other. However,
a small number of the MFs did not yield satisfactory
results due to the non-good partitioning of the inputs.
In addition, a large number of MFs did not give good
results, as this led to the use of a large number of
nodes and fuzzy rules that add to the computation

Figure 8. (a) The daily time series energy production
data with actual values (blue) and predicted values (red)
for the LSTM neural network model. (b) Actual values
(blue) and predicted values (red) of the testing of the
energy production data for the LSTM neural network
model. (c) Regression plots of the actual values and
predicted values of the energy production data for LSTM
neural network model.
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time. According to the test process results, the best
performance was obtained from MFs = 5 with 2.79
GWh MAE, 6.14% MAPE, 3.67 GWh RMSE, and
0.9912 R.

The daily time series energy production data
with actual and predicted values for the ANFIS-FCM
method are presented in Figure 9(a). As revealed in
Figure 9, the energy production time series estimates
agree with the actual values in the test part. Figure
9(b) shows the test values so as to take a closer look at
prediction results. In addition to Figure 9(a) and (b),
Figure 9(c) shows the regression plots of the actual and
predicted values of the energy production data from
the ANFIS-FCM method. This graph presents the
distribution of actual and predicted values and shows
how consistent the model results are with the actual
data. A strong linear relationship between actual and
predicted values in this �gure shows that the ANFIS-
FCM method predicts daily energy production from
run-of-river hydroelectric power plants with remarkable
accuracy (99%).

3.4. Results of the ANFIS-SC model
Similarly, the prediction methodology was applied to
the ANFIS-SC model. Di�erent cluster radius sets were
analyzed in the range of 0.1 to 0.9. Table 3 gives the
results obtained from the testing process. According to
the table, all models of ANFIS-SC have given accuracy
values very close to each other. However, the ANFIS-
SC-4 and 5 models gave better RMSE and R estimates.
The MAE, MAPE, RMSE, and R values were obtained
for these models as 2.81 GWh, 6.16%, 3.70 GWh, and
0.9911, respectively. Results showed that low values
of the cluster radius did not allow good mapping of
the ANFIS-SC model. However, the high values of the
cluster radius made the training more di�cult and led
to over�tting or memorization of undesirable inputs.

The actual and predicted daily energy production
data are shown in Figure 10(a) for the ANFIS-SC
method. Figure 10(b) shows the testing values for
the last 20% of the dataset. Figure 10(c) shows the

Figure 9. (a) The daily time series energy production
data with actual values (blue) and predicted values (red)
for the ANFIS-FCM method. (b) Actual values (blue) and
predicted values (red) of the testing of energy production
data for the ANFIS-FCM method. (c) Regression plots of
the actual values and predicted values of the energy
production data for ANFIS-FCM method.

Table 3. The prediction performances for the ANFIS-SC models.

Model Radius of the
cluster

MAE
(GWh)

MAPE
(%)

RMSE
(GWh)

R

ANFIS-SC-1 0.1 2.84 6.25 3.74 0.9909
ANFIS-SC-2 0.2 2.85 6.28 3.75 0.9908
ANFIS-SC-3 0.3 2.82 6.16 3.72 0.9909
ANFIS-SC-4 0.4 2.81 6.16 3.70 0.9911
ANFIS-SC-5 0.5 2.81 6.16 3.70 0.9911
ANFIS-SC-6 0.6 2.81 6.18 3.70 0.9910
ANFIS-SC-7 0.7 2.81 6.18 3.71 0.9910
ANFIS-SC-8 0.8 2.81 6.20 3.71 0.9910
ANFIS-SC-9 0.9 2.81 6.19 3.71 0.9910
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Figure 10. (a) The daily time series energy production
data with actual values (blue) and predicted values (red)
for the ANFIS-SC method. (b) Actual values (blue) and
predicted values (red) of the testing of the energy. (c)
Regression plots of the actual values and predicted values
of the energy production data for ANFIS-SC method.

regression plots of the actual predicted values of the
energy production. The R-value was calculated to be
0.9911 for the ANFIS-SC method.

3.5. Results of the ANFIS-GP model
Similarly, the prediction methodology was applied to
the ANFIS-GP model. This model used the Gaussian
membership function and linear membership function
as the input and output, respectively. The number of
MFs received was 2 and 3. Table 4 gives the results

Figure 11. (a) The daily time series energy production
data with actual values (blue) and predicted values (red)
for the ANFIS-GP method. (b) Actual values (blue), and
predicted values (red) of the testing of the energy
production data for the ANFIS-GP method. (c)
Regression plots of the actual values and predicted values
of the energy production data for ANFIS-GP method.

obtained from the testing process. With a review of
the table, it is understood that the model obtained
using the ANFIS-GP approach predicts the energy
production from run-of-river hydroelectric power plants
with an accuracy rate of 98.81% according to the
performance evaluation criterion, R. The daily time
series energy production data with actual and predicted
values for the ANFIS-GP method are presented in
Figure 11(a). As seen in the �gure, all ANFIS-SC

Table 4. The prediction performances for the ANFIS-GP models. Best results are shown in bold.

Model Number of
MFs

MAE (GWh) MAPE (%) RMSE (GWh) R

ANFIS-GP-1 2 2.99 6.40 4.26 0.9881
ANFIS-GP-2 3 6.21 10.44 16.18 0.8574
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Figure 12. Comparison of the models.

models have produced almost similar results in terms of
accuracy measures. Figure 11(b) and (c) show a close
look at test data and the regression plots of the dataset,
respectively. For this model, the MAE, MAPE, RMSE,
and R values were calculated as 2.99 GWh, 6.40%, 4.26
GWh, and 0.9881, respectively.

3.6. Comparison of the models
LSTM neural network is one of the approaches that
enjoys good prediction performance among deep learn-
ing methods. Therefore, this study compares the pre-
diction performances of machine learning algorithms
including ANFIS-FCM, ANFIS-SC, and ANFIS-GP
with the performance of the deep learning method. The
LSTM model can decide on the relationships between
features while optimizing their network. Thanks to
its memory structure, features can be forgotten or
remembered. On the other hand, ANFIS is one of
the most important machine learning approaches that
combines the advantages of both neural and fuzzy
systems in a single model. Besides, having a very
high learning speed, the ANFIS algorithm provides
high accuracy in the testing phase. In addition, it is
easy to perform and can be used to predict di�erent
application areas. In Figure 12, the best evaluation
criteria resulting from all the models used in the study
were represented. As revealed by the table, the LSTM
neural network model yielded the best result with the
values of 2.71 GWh MAE, 5.98% MAPE, 3.62 GWh
RMSE, and 0.9914 R. The ANFIS-FCM and ANFIS-
SC models showed relatively similar results in terms of

accuracy measures. However, the ANFIS-FCM model
resulted in slightly better MAE, MAPE, RMSE, and R.
For this model, the MAE, MAPE, RMSE, and R values
were calculated as 2.79 GWh, 6.14%, 3.62 GWh, and
0.9912, respectively. Figure 12 shows that the ANFIS-
GP model yielded less accurate results in comparison
with other models. In summation, the results of the
statistical indexes are shown in Figure 12; accordingly,
the LSTM neural network achieved more good accuracy
than the other models.

In Table 5, typical studies on energy production
and water ow estimation methods related to hydro-
electric power plants and the results within the scope
of this study are presented for comparison purposes.
In related studies, it is seen that the R value varies
between 0.7239 and 0.9999. However, the R value
achieved in this study was 0.9914, which was found
to be very close to those found by similar studies in
the literature.

4. Conclusion

Short-term estimations of daily hydroelectric produc-
tion for the day ahead are essential for power sys-
tem representatives to program system operations and
decision-making on the electricity market considering
the hydroelectric power generation in real electric
power plants and electricity market environments. A
prediction of energy production that provided data
on how much energy can be e�ectively generated
by a particular energy plant in a given period can
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Table 5. Some of the typical studies on energy production and water ow forecasting methods related to the hydropower
plants in the world.

Ref. Method Prediction Study
area

Data time Data
term

Performance
criteria

[6] CAM Energy
production

China November, 2012 -
July, 2015

Monthly R = 0:9400

[12] ANN Energy
production

Nigeria 1970-2011 and
1984-2011

Monthly R = 0:8900

[14] ANN Energy
production

Turkey 35-year-long
recorded data

Monthly R2 = 0:9820

[15] ANN Energy
production

Iraq 2005-2015 Daily R = 0:9600

[20] ARIMA Energy
production

Ecuador 2000-2015 Monthly R = 0:7239

[23] GM Energy
production

China 2012-2015 Monthly R2 = 0:9730

[55] DNN Energy
production

Turkey April-September
of 2019

Hourly R2 = 0:9999

[56] LSTM Water ow Brazil January, 2016-
September, 2019

Daily R2 = 0:8519

[57] HYPE and ANN Energy
production

Slovenia January, 2010-
December, 2017

Daily R2 = 0:7400

[58] ANN-DCSA Energy
production

China 1990-2020 Yearly R2 = 0:8827

This study LSTM Energy
production

Turkey January, 2016-
April, 2020

Daily R = 0:9914

become advantageous for optimizing renewable energy
marketing. In this study, an LSTM neural network was
applied to develop a short-term forecasting model that
could forecast daily energy production from Turkey's
run-of-river hydroelectric power plants. Forecasting
consists of predicting the future situation according
to previous or past values. Comparison of the results
obtained using the LSTM neural network with those
obtained by the traditional ANFIS model showed that
LSTM neural network model had a better perfor-
mance than the ANFIS model under the same model
structure and parameters. For example, the LSTM

neural network model yielded the best result with
2.71 GWh MAE, 5.98% MAPE, 3.62 GWh RMSE,
and 0.9914 R. In addition, the results demonstrated
the higher predictive accuracy of the proposed LSTM
neural network model and that the model enjoyed a
more robust generalization capability, a faster response
speed, and greater competitive power in modeling
energy production.

The time series method based on the LSTM neu-
ral network proposed in this study performed modeling
by considering the hidden periodicities in the data.
The most crucial advantage of univariate modeling is
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that there is no need to obtain independent variables.
Consequently, if the energy data contained a periodic
uctuation, an LSTM model based on time series
and deep learning could be considered to calculate
prediction values. For the future work, di�erent deep
learning architectures and functions will be used with
hybrid models to improve the accuracy and precision
of prediction results.
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Nomenclature

ANFIS Adaptive Neuro-Fuzzy Inference
System

FCM Fuzzy c-Means
GP Grid Partition
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
R Correlation coe�cient
RMSE Root Mean Square Error
SC Subtractive Clustering
bi Bias vector
bz Bias weight vector

c(t) Current cell value
f Output
g Nonlinear activation function
g Nonlinear activation function
o(i) Observed value
p(i) Predicted value

pi Weight associated with c(t�1)

Ri; Rz Weight associated with y(t�1)

x Input

x(t) Input at a particular time

y(t) Block output

y(t�1) Previous cell output
w Weight
Wi;Wz Weight associated with xt

� Nonlinear activation function
� Point-wise multiplication of two vectors
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