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Abstract. This paper discusses a production-inventory system under random machine
breakdown. Holding safety stock is the common way to mitigate the e�ect of random
machine breakdown on shortages that may occur during machine repair time. Since holding
safety stock can be costly, especially for expensive products, this paper investigates an
alternative strategy in which it is assumed that the production manager can purchase the
same products from a supplier in order to meet the demands that may be lost due to
depletion of the inventory after the machine breakdown. The supplier has known lead-time
and reliability with the quality assured products. Despite holding safety stock, purchasing
occurs only when the machine breakdown happens. The question is about the optimal
amount of production and purchasing lot sizes to minimize the total expected costs. The
optimality of the model is investigated when failure and repair time follow an exponential
distribution, and a computational algorithm for �nding the optimal lot sizes is presented. A
comparison between the purchasing strategy and holding safety stock is performed through
a sensitivity analysis regarding some e�ective parameters. This study shows that using the
purchasing strategy when holding or production cost rises is more bene�cial than holding
safety stock.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

One of the signi�cant issues for the production man-
agers is the disruptions of the production facility during
the production run time. The classical Economic
Production Quantity (EPQ) models assume that the
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production facilities always are failure-free. However,
in practical situations, the production system may stop
due to age or usage, such as fatigue and corrosion [1].
This disruption may beget an out of stock situation
swiftly result in losing the margins that a business
could have gained had it met the demand and extend to
negatively a�ecting the future demand of the �rm [2].
Since failures are unavoidable, the production manager
should have practical solutions to deal with such
disruptions. In recent decades, researchers suggested
various solutions to mitigate machine breakdowns con-
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sequences; among them preventive maintenance and
keeping safety stock have been the most common in
the literature.

One of the �rst studies related to implementing
of the safety stock policy on stochastic machine break-
down cases was developed by Groenevelt et al. [3].
They addressed the safety stock needed to maintain the
designated management service level under exponential
failure and general repair time distributions. They
showed the expected inventory increase with the failure
rate, service level, demand rate, and repair times.

Cheung and Hausman [4] modeled the joint imple-
mentation of preventive maintenance and safety stocks
in an EPQ system under the general time-to-failure
distribution function. They assumed the production
and demand rates are equal in an ordinary production
period.

Dohi et al. [5] revisited the model of Cheung
and Hausman [4] from the theoretical point of view
by assuming that the lifetime of the production ma-
chine obeys an exponential distribution. They showed
that the hazard rate of the repair time distribution
could play an important role in to design of optimal
control of the preventive maintenance schedule and
safety stock. Abboud [6] developed an imperfect
EPQ model by assuming that the shortage in the sys-
tem is partially backlogged. Considering the discrete-
time through which the failures and repair times are
distributed geometrically, he modeled the inventory-
production system as a Markov chain and developed an
e�cient algorithm to compute the cost function. Giri
et al. [7] assumed that the failure rate of the machine
is dependent on the production rate, and hence they
investigated the optimal values of production rate
and production quantity in an imperfect EPQ system.
They developed the model, with and without consider-
ing safety stock policy. Chelbi and Rezg [8] considered
the joint e�ects of the safety stock and age-based
preventive maintenance by developing an analytical
model and a numerical procedure to determine stock
lot size and the age at which preventive operation must
be performed. They showed that the safety stock lot
size is sensitive to inventory and maintenance costs
variation, whereas the optimal value of the age for
preventive maintenance is limited by the constraint
of the minimum required availability level. Gharbi et
al. [9] also presented a similar study. They demonstrate
that how the cost-based measure can be used a basis for
determining the optimal bu�er stock and the scheduled
preventive maintenance period. El-Ferik [10] presented
similar research by assuming that the maintenance
operation is not performed entirely and cannot restore
the system to its primary state. Chakraborty et
al. [11] introduced an EPQ model by considering the
simultaneous e�ects of process deterioration, machine
breakdown, and preventive maintenance on lot-sizing

decisions. Assuming that defective items are not identi-
�able during the production period, they �xed the war-
ranty cost for the sold items. Sana and Chaudhuri [12]
considered the impact of machine breakdown on non-
con�rming quality items in an imperfect EPQ model,
analyzing the joint e�ect of the preventive maintenance
and the variable safety stock on optimal production
rate and lot-sizing decisions. Sana [13] develops a
model to determine the optimal product reliability
and production rate that achieves the most signi�cant
total integrated pro�t for an imperfect manufacturing
process. Chiu et al. [14] studied a production system
that may produce defective items randomly, and it
is also subject to a random machine failure. To
prevent the shortage situation from happening, they
assumed there is a safety stock level to deal with the
possibility of stoppage occurrence in the very earlier
stage of the production. Sana [15] presented a three-
layer supply chain with perfect and imperfect quality
items and considered the impact of business strategies
such as order size, production rate, unit production
cost, and idle times in di�erent sectors on collaborating
marketing systems. Chakraborty and Giri [1] pre-
sented the model similar to Sana and Chaudhuri's [12]
model with the di�erence that, they discussed the
optimality of the model and suggested a computational
method to solve the problem. Sana [16] considered
the simultaneous e�ect of preventive maintenance,
keeping bu�er stock, and minimal repair warranty in
an imperfect production system. Prakash et al. [17]
presented a production-inventory model with discrete
random machine breakdown and discrete stochastic
corrective and preventive repair times. They assumed
that the demand rate follows a discrete stochastic
distribution. Zhang et al. [18] used a dynamic method
for the production of lot-sizing with machine failures
in which the average cost is minimized instead of the
expected one. Paul et al. [19] presented a disrup-
tion recovery model for a single-stage EPQ system
under the random stoppage. Their model maximizes
the total pro�t during the recovery time window by
generating a revised preventive action plan after the
occurrence of disruption. Taleizadeh et al. [20] devel-
oped a single-vendor/single-buyer model with random
machine breakdown, multiple shipments, and keeping
safety stock capability. They assumed both batch lot
size and distance between two shipments are identical,
and the buyer pays transportation cost. �Ozt�urk [21]
investigated optimal production run time on an EPQ
system under machine breakdown situations with in-
spection and rework capability. Nobil et al. [22]
considered rework and inspection in an imperfect multi-
item single machine production system. Poursoltan
et al. [23] extended an EPQ model with deteriorating
products considering random machine breakdown and
stochastic repair time. Pal and Adhikari [24] developed
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an imperfect EPQ model in which production is exe-
cuted mainly by the original machine. But when the
system faces disruption, the bu�er of it continues the
production.

In the earlier work stated above, preventive main-
tenance and holding safety stocks are discussed as the
proactive and reactive approaches respectively to deal
with the e�ect of random machine breakdown on the
production system's costs and service level. However,
sometimes the expensive costs of these approaches are
not bene�cial for the system due to high product
holding or maintenance costs. In such situations, it
may be advantageous to use an external supplier to
meet the demand while the machine is being repaired.
The issue is not necessarily about the �nal product. It
could be related to a standard piece of a �nal product
manufactured by the main supplier in which he/she is
responsible for supplying the piece according to a long-
term contract. In this case, the supplier can purchase
from smaller suppliers with lower reliability to prevent
shortages in urgent situations. For example, items
such as printed boxes, plastic bottles, or computer
chips, could be produced by other manufacturers after
minor changes to their production facilities. Although
buying items from an external supplier would result in
some margin loss, it could compensate for part of the
overhead cost, protect the supplier's reputation, and
ensure future demand [2]. Purchasing from a supplier
is a reactive approach and executed only if machine
failure occurs.

Peymankar et al. [2] are the �rst who considered
the purchasing approach in case of machine breakdown.
In the proposed model, when machine failure happens,
the machine undergoes corrective repair immediately,
and during the repair time, the manufacturer has
an option to purchase from a supplier with speci�c
reliability. The production time before breakdown and
repair time both follow an exponential distribution.
The optimal lot sizes for production and purchasing
were found through an exhaustive enumeration in a
numerical example. They also investigated the e�ects
of revenue sharing and price discount contracts on
the optimal lot sizes. Deiranlou et al. [25] also
considered the joint e�ect of holding safety stock, and
the purchasing policy, assuming the supplier zero lead-
time in machine breakdown case. It is worth noting
that the supplier lead-time in [2], and [25] is assumed
to be zero that is a somewhat simpli�ed assumption.
This implies that the mathematical formulation and
conclusion cannot be justi�ed for general situations.
Although the supplier lead-time in EPQ systems has
been considered in several articles such as [26], in this
particular case, none of the articles have examined the
lead-time. The signi�cant contribution of this study
is to develop a stochastic model in which the supplier
has a �xed non-zero lead-time. This assumption brings

the model closer to reality; however, it will make the
model more complicated. Furthermore, Peymankar et
al. [2] just found the optimal lot sizes in a numerical
example with an exhaustive numerical search. In this
paper, the optimality of the new stochastic model is
discussed, and a computational method is presented to
�nd the optimal values.

The rest of this paper is structured as follows. In
Section 2, the problem state notation and the essential
assumptions of the model are de�ned. This is fol-
lowed by the development of the mathematical model
under general failure and repair time distributions
in Section 3. In Section 4, the case of exponential
distributions, the optimality of the model is studied,
and the solution approach for this case is proposed. A
numerical example is presented in Section 5 to deter-
mine the optimum values of production and purchasing
lot sizes and the sensitivity of the essential parameters
are examined. A comparison between the purchasing
strategy and the safety stock policy is made in this
section. Finally, Section 6 concludes the paper and
proposes directions for future researches.

2. Problem assumptions and notations

We make the following assumptions to develop the
proposed model:

1. The problem concerns a single-machine single-
product environment. Time to machine failure and
repair time are stochastic variables;

2. Once the machine is broken down, the corrective
repair starts immediately to restore it to its initial
working condition;

3. If the accumulated inventories are enough to meet
demand during machine repair, then the next pro-
duction cycle starts only when the inventory level
reaches zero;

4. If the inventories on hand are depleted during repair
time, shortages will occur, and all of them will be
lost;

5. If a machine failure occurs during the production
phase, there would be an option to order a lot
size from a supplier with a �xed lead-time and
reliability. The reliability means that the supplier
may not be available with a known probability.
This lot size is denoted as purchasing lot size.

The following notations are used throughout the
paper:
tf Random variable denoting machine

time to failure
G(tf ) Cumulative distribution function

corresponding to tf
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D Demand rate (units/time)

P > D Production rate (units/time)
tr Random variable denoting corrective

repair time
H(tr) Cumulative distribution function

corresponding to tr
A Fixed setup cost for each production

run ($/set up)

A0 Fixed ordering cost of purchasing
($/order)

� Reliability of the supplier (%)
L Lead time for purchasing from the

supplier
ch Inventory holding cost ($/unit/time)

cP Production cost ($/unit)

c0 Purchasing price from the supplier
($/unit)

cr Corrective repair cost ($/time)

cs Lost sale cost ($/unit)

Q Production lot size per cycle (decision
variable)

Q0 Purchasing lot size from the supplier
(decision variable)

3. Model formulation

Consider a production-inventory system in which, the
production rate (p) and the demand rate (D) are
assumed to be constant (P > D). Given that the
time to failure is stochastic, the best possible situation
for the production system is the one where no failure
occurs during the production phase (tf > Q=P ). In
this situation, as shown in Figure 1, the model would
be the same as classical EPQ, and we have cycle time
and total cost based on Eqs. (1) and (2), respectively.

Figure 1. Inventory structure when there is no failure
during production phase.

T1 =
Q
D
; (1)

TC1 = A+
ch(P �D)Q2

2P:D
+ cP :Q: (2)

If machine breakdown occurs during the production
phase (tf < Q=P ), the corrective repair starts imme-
diately. During the repair time, the accumulated on-
hand inventory decreases at a constant D to meet the
demand. If the repair is completed before that the on-
hand inventory is depleted, the new production cycle
is started when the inventory level is reduced to zero.
If the on-hand inventory is totally exhausted before
completion of the repair, all incurred shortages will be
lost.

In order to avoid shortages that may be incurred
after machine failure, the production system has an
option to order from an external supplier with the
lead-time of L. The purchasing is only feasible when
the production system makes an order at least L time
units before the on-hand inventory is exhausted. We
notate the time to exhausting inventory on-hand by
tidle. obviously, tidle = ptf=D � tf . tidle is dependent
on tf and hence it is also stochastic variable. So based
on the comparison between tidle and L two conditions
may occur. If tidle < L there will be no purchasing from
the supplier, otherwise, the production system may or
may not purchase from the supplier. The details of
these two conditions are provided in sub-section 3.1
and 3.2.

3.1. Condition 1 (tidle < L)
In this condition, the supplier lead-time is greater than
the idle time; therefore, the production system does
not make any purchasing order. If tr � tidle, the on-
hand inventory is enough to cover the demand during
the repair and the new cycle starts once the on-hand
inventory has been exhausted (Figure 2). For this
situation, the cycle time and the total cost of the
system are as follows, respectively:

T2 =
P:tf
D

; (3)

Figure 2. Inventory structure when L > tidle and
tr < tidle.
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Figure 3. Inventory structure when L > tidle and
tr > tidle.

TC2 = A+
ch(P �D)P:t2f

2D
+ cP :P:tf + cr:tr: (4)

If tr > tidle, the system faces a shortage and loses
the demand up to the end of repair time (Figure 3).
The corresponding cycle time and total cost for this
situation are as Eqs. (5) and (6), respectively.

T3 = tf + tr; (5)

TC3 = A+
ch(P �D)P:t2f

2D
+ cP :P:tf + cr:tr

+cs(D:tr � (P �D)tf ): (6)

Thus, according to the probability of each situation
occurring, the expected length of each cycle and the
expected total cost in a cycle in condition 1 are
obtained through Eqs. (7) and (8), respectively.

E(TQ) =
Z Q

P

08<:Z (P�D)tf
D

0
T2dH(tr) +

Z 1
(P�D)tf

D

T3dH(tr)

)
; (7)

E(TCQ) =
Z Q

P

08<:Z (P�D)tf
D

0
TC2dH(tr) +

Z 1
(P�D)tf

D

TC3dH(tr)

)
dG(tf ) +

Z 1
Q
P

TC1dG(tf ):
(8)

Now, based on the renewal reward theorem [27], the
expected total cost per time unit is given by:

ETCQ =
E
�
TCQ

�
E
�
TQ
� : (9)

3.2. Condition 2 (tidle > L)
In this condition, it seems viable to make an order
from the supplier. Regarding the repair time and the
supplier's reliability, the manufacturing system may
face �ve di�erent situations during the repair. If the
repair is completed before the time to order (ptf=D�L,
see Figure 4), there is no need to make any order. The
formulation of the model for the cycle time and the
total cost in this situation are similar to Eqs. (3) and
(4), respectively.

If the repair time passes the time to order, pur-
chasing will make sense. However, due to unreliability,
the supplier may not be available with the probability
of 1 � �. In this situation, if tr � tidle (Figure 5), the
system would not face any shortages and cycle time
and total cost are obtained similar to Eqs. (3) and (4).

In the previous situation, if tr > tidle, and
the system will face shortages (Figure 6) and the
corresponding cycle time and total cost for this case
are similar to Eqs. (5) and (6).

With the probability of � the supplier will be
available. In this situation, a �xed ordering cost of

Figure 4. Inventory structure when L > tidle and
tr < tidle � L.

Figure 5. Inventory structure when L > tidle and
tidle � L < tr < tidle.
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Figure 6. Inventory structure when L < tidle and
tr > tidle.

Figure 7. Inventory structure when L < tidle and
tidle � L < tr < tidle +Q0=D.

A0 must be paid when making an order amount of Q0;
while, the purchasing price for each item is c0. As is
shown in Figure 7, the ordered lot size can cover the
demand during repair time only if tr<tidle+Q0=D.

The corresponding inventory cycle and the total
cost of the system for this case are obtained based on
Eqs. (10) and (11), respectively.

T4 =
P:tf
D

+
Q0
D
; (10)

TC4 = A+
ch(P �D)P:t2f

2D
+
chQ

02

2D

+A0 + cP :P:tf + cr:tr + c0:Q0: (11)

If tr > tidle + Q0=D, the manufacturer runs out
the purchasing quantities before the machine repair
is completed and after that, the demands are lost
up to the end of the repair. Figure 8 illustrates the
inventory path diagram in this situation. So we have
cycle time and total cost in a cycle as Eqs. (12) and
(13), respectively.

Figure 8. Inventory structure when L < tidle and
tr > tidle +Q0=D.

T5 = tf + tr; (12)

TC5 = A+
ch(P �D)P:t2f

2D
+A0 + cP :P:tf

+
chQ02

2D
+ cr:tr + c0:Q0

+cs(D:tr � (P �D)tf �Q0): (13)

Now, we can obtain the expected cycle time and the
expected total cost per cycle in Condition 2.

E(TQ;Q0 ) =
Z Q
P

0

8<:Z (P�D)tf
D �L

0
T2dH(tr) + (1� �)

0@Z (P�D)tf
D

(P�D)tf
D �L

T2dH(tr) +
Z 1

(P�D)tf
D

T3dH(tr)

1A
+ �

0@Z (P�D)tf
D +Q0

D
(P�D)tf

D �L
T4dH(tr) +

Z 1
(P�D)tf

D +Q0
D

T5dH(tr)

1A9=;
dG(tf ) +

Z 1
Q
P

T1dG(tf );
(14)

E(TCQ;Q0 ) =
Z Q
P

0

8<:Z (P�D)tf
D �L

0
TC2dH(tr)

+ (1� �)
0@Z (P�D)tf

D
(P�D)tf

D �L
TC2dH(tr) +

Z 1
(P�D)tf

D

TC3dH(tr)

1A
+�

0@Z (P�D)tf
D +Q0

D
(P�D)tf

D �L
TC4dH(tr) +

Z 1
(P�D)tf

D +Q0
D

TC5dH(tr)

1A9=;
dG(tf ) +

Z 1
Q
P

TC1dG(tf ):
(15)

We employ the renewal reward theorem [27] to calcu-
late the expected total cost per time unit as follows:

ETCQ;Q0 =
E(TCQ;Q0)
E(TQ;Q0)

: (16)
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In Condition 2 as tidle > L and tf < Q=P , according
to the equation tidle = ptf=D � tf we have Q >
L:P:D=(P �D).

To �nd the optimal solution for production and
purchasing lot sizes, we should minimize the expected
total cost per time unit in Eqs. (9) and (16), respec-
tively. Accordingly, ETCQ is minimized subject to
Q � 0. Furthermore, ETCQ;Q0 in minimized subject to
Q0 � 0 and Q > L:P:D=(P �D). Finally, the optimal
values for Q and Q0 are selected based on the lower
expected total cost per time unit.

4. The model with exponential failure and
exponential repair time

The complexity of the objective function causes the
analysis of the model with general failure and general
repair time distributions to be di�cult. In this section,
we consider the optimality of the model in both
conditions under exponential failure and repair time
distributions as follows:

G(tf ) = 1� e��tf

H(tr) = 1� e��tr
For Condition 1, we proved the convexity of ETCQ in
Section 4.1, but in Condition 2, due to the complexity
of the model, it is di�cult to prove the convexity of
ETCQ;Q0 for any given parameters when Q and Q0 are
decision variables. For this condition, we �rst discussed
the convexity of the model when each decision variables
is known respectively, and then used the algorithm
presented in [1] with a few changes for obtaining the
optimal solution.

4.1. Condition 1
In this condition, the expected cycle time and the
expected total cost per cycle are obtained from Eqs. (7)
and (8) as follows:

E(TQ) =
�:D

� (�:D + �(P �D))�
1� e�(�+�(P�D)

D )QP
�

+
P
�:D

�
1� e��QP � ; (17)

E(TCQ) = A+
�
cP :P
�

+
cr
�

��
1� e��QP �

+
cs:�:D2

�(�:D + �(P �D)

�
1� e�(�+�(P�D)

D )QP
�

+
ch(P �D)P

�:D

�
1
�
�
�

1
�

+
Q
P

�
e��QP

�
: (18)

Therefore, the expected cost per unit time is:

ETCQ = A+
�
cP :P
�

+
cr
�

��
1� e��QP �

+
cs:�:D2

�(�:D + �(P �D)

�
1� e�(�+�(P�D)

D )QP
�

+
ch(P �D)P

�:D

�
1
�
�
�

1
�

+
Q
P

�
e��QP

�
�

�:D
� (�:D + �(P �D))

�
1� e�(�+�(P�D)

D )QP
�

+
P
�:D

�
1� e��QP � :

(19)

Property 1. E(TQ) is a concave function of Q for all
Q > 0.
Proof. If d

2E(TQ)
dQ2 < 0, the concavity of function E(TQ)

is proved. Now, with second-order partial derivative of
Eq. (17) with respect to Q, we get:

d2E(TQ)
dQ2 = � �

P:D
e��QP

�
�
�(�:D + �(P �D))

�:D:P 2

�
e�(�+�(P�D)

D )QP < 0

and the proof is completed.

Proposition 1. Suppose that ETCQ2 � ETCQ1 for
two values Q1 and Q2. Then ETCQ is a pseudo-convex
function provided:

E(TCQ2) � E(TCQ1) + (Q2 �Q1)
dE(TCQ)

dQ
jQ=Q1 :

Proof. Since E(TQ) > 0 and E(TCQ) > 0 for all
Q � 0, therefore, ETCQ2 � ETCQ1 implies that
E(TQ2 )
E(TQ1 ) � E(TCQ2 )

E(TCQ1 ) . Again, since E(TQ) is concave from
Property 1, we have:

E(TQ1) + (Q2 �Q1)
�
dE(TQ)
dQ

�
Q=Q1

� E(TQ2)

Given that E(TQ2 )
E(TQ1 ) � 1 � E(TCQ2 )

E(TCQ1 ) � 1 we have:

(Q2 �Q1)
h
dE(TQ)
dQ

i
Q=Q1

E(TQ1)

� E(TCQ2)� E(TCQ1)
E(TCQ1)

: (20)

By �rst-order derivative of ETCQ with respect to Q at
the point of Q1
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�
dETCQ
dQ

�
Q=Q1

=
E(TQ1)

h
dE(TCQ)

dQ

i
Q=Q1

� E(TCQ1)
h
E(TQ)
dQ

i
Q=Q1

[E(TQ1)]2

By substituting equivalent

h dE(TQ)
dQ

i
Q=Q1

E(TQ1 ) in Eq. (20),
we have:

(Q2�Q1):E(TQ1)
�
dETCQ
dQ

�
Q=Q1

� E(TCQ1) + (Q2 �Q1)
�
dE(TCQ)

dQ

�
Q=Q1

� E(TCQ2)

if

E(TCQ2) � E(TCQ1) + (Q2 �Q1)
�
dE(TCQ)

dQ

�
Q=Q1

Also ETCQ2 � ETCQ1 implies
(Q2 �Q1)

h
dETCQ
dQ

i
Q=Q1

� 0.

This proves that ETCQ is a pseudo-convex function
provided

E(TCQ2) � E(TCQ1) + (Q2 �Q1)
�
dE(TCQ)

dQ

�
Q=Q1

satisfying ETCQ2 � ETCQ1 .

Proposition 2. Under Proposition 1, only exists a
unique Q� which minimizes ETCQ.

Proof. The �rst derivative of Eq. (19) with
respect to Q is  (Q) = dETCQ

dQ = D(Q)
N(Q) where:

D(Q) =
��

cP +
�:cr
�:P

+
ch(P �D)Q

P:D

�
e��QP

+
cs:D:�
�:P

e�(�+�(P�D)
D )QP

�
E(TQ)

�
�

1
D
e��QP +

�
�:P

e�(�+�(P�D)
D )QP

�
E(TCQ)

N(Q) =
�

�:D
� (�:D + �(P �D))

�
1� e�(�+�(P�D)

D )QP
�

+
P
�:D

�
1� e��QP ��2

We have:

lim
Q!0

D(Q) = �A h 1
D + �

�:P

i
and lim

Q!0
N(Q) = 0.

It is observed that  (Q) ! �1 as Q ! 0.
Moreover,  (Q)! 0 as Q!1. So, given the pseudo-
convexity of ETCQ under Proposition 1, there exists a
unique root Q� of  (Q) = 0.

Now, we can obtain the optimal value of Q by
solving the equation  (Q) = 0.

4.2. Condition 2
Assuming the exponential distribution for the random
variables in Condition 2, from Eqs. (14) and (15), we
obtain Eqs. (21) and (22) are shown in Box I and the
expected cost per unit of time obtain by Eq. (23) is
shown in Box II. In this condition, the proof of the
objective function convexity is di�cult when Q and Q0
are decision variables simultaneously. Therefore, we

E(TQ;Q0) =
P
�:D

�
1� e��QP �+

�
1� e�(�+�(P�D)

D )QP
�

 
(1� �)�:D + �:�:�:Q0e�:L + �:�:De��:Q

0
D

� (�:D + �(P �D))

!
(21)

E(TCQ;Q0) = A+
�
cP :P
�

+
cr
�

��
1� e��QP �+

ch(P �D)P
�:D

�
1
�
�
�

1
�

+
Q
P

�
e��QP

�
+

 
(1� �)�:cs:D2 + �:�:cs:D2:e��:Q

0
D + �:�:�e�:L(2A0:D + ch:Q02 + 2c0:Q0)

�(�:D + �(P �D)

!
�

1� e�(�+�(P�D)
D )QP

�
(22)

Box I
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ETCQ;Q0 =
�
A+

�
cP :P
�

+
cr
�

��
1� e��QP �+

ch(P �D)P
�:D

�
1
�
�
�

1
�

+
Q
P

�
e��QP

�
+

 
(1� �)�:cs:D2 + �:�:cs:D2:e��:Q

0
D + �:�:�e�:L(2A0:D + ch:Q02 + 2c0:Q0)

�(�:D + �(P �D)

!
�

1� e�(�+�(P�D)
D )QP

� ��� P
�:D

�
1� e��QP �

+
�

1� e�(�+�(P�D)
D )QP

� (1� �)�:D + �:�:�:Q0e�:L + �:�:De��:Q
0

D

� (�:D + �(P �D))

!)
: (23)

Box II

Algorithm 1. The algorithm for �nding optimal value of Q and Q0 in Condition 2.

investigate the problem's solution by examining Kuhn-
Tucker necessary condition. Assume � be the Lagrange
coe�cient related to the constraint Q > L:P:D=(P �
D). We have:
@ETCQ;Q0

@Q
� �E2(TQ;Q0) = 0; (24)

@ETCQ;Q0
@Q0 = 0; (25)

�:[Q� L:P:D=(P �D)] = 0: (26)

Clearly � = 0 since Q > L:P:D=(P � D). So we can
obtain the optimal values of Q and Q0 by simultaneous
solving of Eqs. (24) (� = 0) and (25) using Algorithm
1 based on Ref. [1].

In the following, we discuss the optimality of the
ETCQ;Q0 in two situations in which Q and Q0 are
set to be �xed, respectively. Based on the following
discussions, we can easily �nd the optimal values for Q
and Q0 in Eqs. (24) and (25), respectively.

4.2.1. When Q0 is predetermined
Assuming the purchasing lot size is constant, let
ETCQ;Fix = E(TCQ;Fix)/E(TQ;Fix) denote the corre-
sponding expected cost per unit time where E(TQ;Q0)
and E(TCQ;Q0) in Eqs. (20) and (21) turn to E(TQ;Fix)
and E(TCQ;Fix) when Q0 is known.

Property 2. The function E(TQ;Fix) is concave.
Proof. The second order di�erentiation of E(TQ;Fix)
with respect to Q is:

@2E(TQ;Fix)
@Q2

=� �
P:D

e�
�Q
P

�
0BB@ (�:D+�(P�D))

�
�:�:D:e�

�:Q0
D +(1��)�:D+�:�:�:Q0e�:L

�
�:D2:P 2

1CCA
e�(�+

�(P�D)
D )QP < 0:

So the proof is completed.

Proposition 3. Let ETCQ2;F ix � ETCQ1;F ix for
two distinct values Q1 and Q2 of Q. Then ETCQ;Fix
is a pseudo-convex function provided:

E(TCQ2;F ix) � E(TCQ1;F ix)

+ (Q2 �Q1)
@E(TCQ;Fix)

@Q
jQ=Q1 :

Proof. Under Property 2, the proof of pseudo-
convexity of ETCQ;Fix is similar to the method pre-
sented in Proposition 1.
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Proposition 4. Under Proposition 3, only exists a
unique Q�, which minimizesETCQ;Fix.

Proof. The �rst derivative of ETCQ;Fix with respect
to Q is '(Q) = @ETCQ;Fix

@Q = U(Q)
O(Q) where:

U(Q) =
��

cP +
�:cr
�:P

+
ch(P �D)Q

P:D

�
e�

�Q
P

+

0B@ (1� �)�:cs:D2 + �:�:cs:D2:e�
�:Q0
D + �:�:�e�:L

�:P:D

(2A0:D + ch:Q
2

+ 2c0:Q0)
�:P:D

!
e�(�+�(P�D)

D )QP

)

E(TQ;Fix)�
�

1
D
e�

�Q
P +

0B@ (1� �)�:D + �:�:D:e�
�:Q0
D

�:P:D

+�:�:�:Q0:e�:L
�:P:D

!
e�(�+�(P�D)

D )QP

)
E(TCQ;Fix);

O(Q) =
�

P
�:D

�
1� e��QP �+

�
1� e�(�+�(P�D)

D )QP
�

 
(1� �)�:D+�:�:�:Q0e�:L+�:�:De��:Q

0
D

� (�:D+�(P�D))

!)2

We have:

lim
Q!0

U(Q) = �A"
1
D

+
�:�:�:Q0:e�:L + (1� �)�:D + �:�:D:e��:Q

0
D

�:P:D

#
and lim

Q!0
O(Q) = 0.

If Q ! 0 then '(Q) ! �1. Moreover, '(Q) ! 0 as
Q ! 1. So, given the pseudo-convexity of ETCQ;Fix
under Proposition 3, there exists a unique non-negative
root Q� of '(Q) = 0 and the proof is completed.

4.2.2. When Q is predetermined
Suppose that Q is a constant value greater
than L:P:D=(P � D). Let ETCFix;Q0 =
E(TCFix;Q0)/E(TFix;Q0) denote the corresponding
expected cost per unit time where E(TQ;Q0) and
E(TCQ;Q0) in Eqs. (20) and (21) turn to E(TFix;Q0)
and E(TCFix;Q0) when Q is known.

Proposition 5. Under the condition of the Eq. (23)
if:

ETCFix;Q0 < D
�
cs +

2ch
�
e�
�
L+Q0

D

��
there exists a local minimum Q0�, which minimizes
ETCFix;Q0 .

Proof.The second-order di�erentiation of E(TCFix;Q0)
and E(TFix;Q0) with respect to Q0 respectively are:

@2E(TCFix;Q0)
@Q`2

=
�
�:�:cs:�:e�

�:Q0
D + 2ch:�:�:Q0e�:L

�
K; (27)

@2E(TFix;Q0)
@Q02 =

�
�:�:�
D

e��:Q
0

D

�
K; (28)

where,

K =
1

�:D + �(P �D)

�
1� e�(�+�(P�D)

D )QP
�
:

Under the condition of Eq. (24) if:

E(TFix;Q0)
@2E(TCFix;Q0)

@Q02

�E(TCFix;Q0)
@2E(TFix;Q0)

@Q02 > 0; (29)

then, there exists a local minimumQ0�. By substituting
Eqs. (27) and (28) in (29), we have:

E(TFix;Q0)
�
�:�:cs:�:e�

�:Q0
D + 2ch:�:�:Q0e�:L

�
K � E(TCFix;Q0)

�
�:�:�
D

e��:Q
0

D

�
K > 0:

and after the factorization, we have:

ETCFix;Q0 < D
�
cs +

2ch
�
e�
�
L+Q0

D

��
:

So the proof is completed.

5. Numerical results

In this section, a sample problem with the data set
presented in Table 1 is investigated. After solving the
model using the algorithm presented in the previous
section, we do sensitivity analysis on the main param-
eters of the given numerical example.

Using computational software Mathematica, we
optimized ETCQ subject to Q � 0, and the optimal
solution is obtained as Q� = 4683:3 and ETCQ� =
15331:8 as depicted in Figure 9. The second function
ETCQ;Q0 under constraints Q > 2520 and Q0 � 0
results in the best solution Q� = 2963:6, Q0� = 357:6
and ETCQ�;Q0� = 14601:4. The surface generated by
ETCQ;Q0 over the wide range of values of Q and Q0 is
shown in Figure 10. By comparing the optimal values
of two conditions, the best one is selected.
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Table 1. Parameter values of the sample problem.

Parameter P D L � A A0 cP c0 ch cs cr � �
Value 700 600 0.6 0.9 100 120 20 25 4 45 80 0.6 1.6

Figure 9. Graphical representation of ETCQ.

Figure 10. Graphical representation of ETCQ;Q0 .

Figure 11. E�ects of L on the optimal lot sizes and
system cost in both conditions.

5.1. Sensitivity analysis based on supplier
parameters

In this section, we examine the e�ect of the L and �
on the optimal values of the decision variables and the
objective function. As displayed in Figure 11, supplier
lead-time plays an essential role in the manufacturer's
decision.

In Condition 2, the increase of lead-time raises the

Figure 12. The behavior of Q0 and ETCQ;Q0 by
changing supplier reliability �.

risk of encountering shortages and therefore persuades
the production manager to increase the production
quantity and consequently reduce the order quantity.
In this situation, the expected total cost increases so
that for L > 1:8, ETCQ would be less than ETCQ;Q0 .
This means that for high values of L, the model
employs production as the basis for business acting.

As illustrated in Figure 12, sensitivity analysis on
supplier reliability shows that when the supplier is more
reliable, the manufacturer decreases purchasing order
quantity. Likewise, by decreasing �, the manufacturer
increases the order quantity to confront the risk of
inventory stock out and keep an acceptable service
level. This is because, in essence, the model is con-
servative. When the supplier is less reliable, the model
suggests the manufacturer purchase larger quantities to
hedge against uncertainties and maintain an acceptable
�ll rate. This balance is obtained through trade-o�s
between shortage cost, holding cost, and lost sale cost;
for more enormous lost sale costs, the model strives to
avoid shortages by accumulating more inventory. It is
also observed that the more reliable the supplier, the
less the expected total cost.

5.2. Sensitivity analysis based on failure and
repair rates

It is evident that the manufacturer's decision, to make
or do not make purchasing order quantities, is highly
dependent on the machine failure rate as well as
corrective repair time. This issue is illustrated in
Figures 13 and 14.

As the failure rate decreases, the expected cost in
both conditions decreases. This reduction is faster in
Condition 1, so that for small values of �, the expected



1670 M. Deiranlou et al./Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 1659{1673

Figure 13. A comparison of ETC in both conditions
concerning � variation.

Figure 14. A comparison of ETC in both conditions
concerning � variation.

cost in Condition 1 is lower than Condition 2 (Figure
13). In other words, regarding the constant demand
rate, by reducing of failure rate, the probability of fac-
ing shortages is reduced, and the purchasing strategy
is not bene�cial for the system.

A similar situation would happen when the cor-
rective repair rate changes. With the increase of the
meantime for repair (decrease of �), the expected cost
increases in both conditions, and with the increase of �,
it decreases. The rate of changes is more in Condition 1
so that for large values of �, the manufacturer has no
desire to use purchasing strategy (Figure 14).

5.3. Comparison with the safety stock policy
In this section, we compare the purchasing strategy
and the safety stock policy. Numerous researchers
have explored safety stock policy, and we use the
model developed by Giri et al. [7] for evaluation. To
make the model comparable with ours, we relax some
minor assumptions of the model proposed by Giri et
al. [7]. The formulation of the expected cycle time and
expected total cost in safety stock policy is presented
in Appendix A.

Sensitivity analysis of two policies shows that the
production cost and the holding cost have the most
impact on the production system to choose the optimal
policy. Figure 15 illustrates the 
uctuations of the

expected cost in two policies based on production cost
variations.

As Figure 16 shows, for the chosen data set in
the numerical example, the safety stock policy is still
preferable to the purchasing policy. With the increase
of production cost, as expected, the optimal cost of the
system increases in both policies. The increasing rate
in the safety stock policy is more than the purchasing
policy, so that an increase of more than 12.5% in
the unit production cost makes the purchasing policy
more bene�cial than the safety stock policy. It is
worth noting that the supplier lead-time can a�ect this
superiority. According to Figure 15, for L = 0:3, 10%
increase in unit production cost and for L = 0:1, 7%
increase in unit production cost, ensure the production
system prefer the purchasing policy.

A similar scenario will happen with the variation
of unit holding cost for low values of L. as illustrated
in Figure 16, the superiority of the safety stock policy
remains unchanged if there is an increase of up to
60% in the unit holding cost. Further increase in
the unit holding cost makes the purchasing policy
more economical for the production system. This is
entirely justi�able from the managerial insight because
when the unit holding cost exceeds, keeping safety
stock imposes staggering costs on the manufacture;

Figure 15. Purchasing policy versus safety stock policy
for di�erent values of L concerning cP variation.

Figure 16. Purchasing policy versus safety stock policy
concerning ch variation when L = 0:1.
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therefore, alternative options such as purchasing are
more bene�cial.

6. Concluding remarks

Considering the importance of responsiveness to the
customer in today's world of trade, and organizations'
e�orts to keep up their credit in the supply chain,
process disruption due to machine failure is one of the
critical challenges of the production managers. Various
contingency plans to deal with such situations have
been suggested by researchers, such as preventive main-
tenance, keeping safety stock, inspection and rework
operation. In terms of expensive unit holding costs
or low warehouse capacity, emergency replenishment
could be a better option than keeping safety stock.
In this paper, we investigated the bene�t of the
purchasing policy as an alternative option to keeping
safety stock during a stoppage in the production
process caused by corrective maintenance. We also
assumed that the external supplier is unreliable and
has a predetermined lead-time. Our numerical study
has found that the supplier lead-time is a crucial
parameter in determining the purchase situation from
the market. Moreover, simultaneous analysis of L
and other parameters shows that the unit production
cost and unit holding cost play an essential role in
determining when the purchasing policy is better than
relying on keeping safety stock.

Our proposed model could be improved by inves-
tigating the joint implementation of purchasing policy
and safety stock policy. This might require less safety
inventory to protect the company against stock-outs.
Moreover, investigating the in
uence of contractual
agreement between manufacturer and supplier on vari-
able lead-time in purchasing strategy could be a fruitful
area for a future study. Another avenue for further
research is considering the manufacturer and supplier's
cash constraints and how the weaker player might be
strengthened in this supply chain.
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Appendix A

Detailed formulation of E(T) and E(TC) in
safety stock policy.

In this appendix we provided details of model
in safety stock policy (Sf is the decision variable
corresponding to stock level).

E(T ) =
Z Q
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8<:Z (P�D)tf
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