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Abstract 

This study integrates production and maintenance planning with statistical process 

monitoring in the presence of dependent multiple assignable causes. To adapt the model to 

the reality, two assumptions are considered: (1) the assignable causes (ACs) are dependent, 

and (2) the occurrence of ACs can affect both process mean and variability. Given the second 

assumption, a non-central chi-square (NCS) chart is used to monitor the process. Since the 

occurrence rate of ACs increases over time, a non-uniform sampling scheme is presented to 

reduce the out-of-control time period. A sensitivity analysis is presented to explore how the 

number of AC types influences the cost terms. The results indicate that the more AC types, 

the higher quality loss and maintenance costs are imposed on the manufacturer. Moreover, 

three comparative studies are conducted for confirming the effectiveness of the model. The 

first comparative study shows that the total cost will be less than its real value when the 

interdependency among the ACs is ignored. The second comparison shows that the NCS 

chart outperforms the X R  in detecting the process disturbances and leads to a less quality 

loss cost. Eventually, the last one represents that employing the non-uniform sampling 

strategy leads to a significant cost savings. 
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1. Introduction 

To date, several models have been presented to analyze the production systems. The 

economic production quantity (EPQ) as one of the most known production models which is 

firstly introduced by Taft [1]. Similar to the traditional models, this model considers two 

unrealistic assumptions: (1) all the produced items conform to the customer requirements; (2) 

the machine doesn’t degrade during the production cycle. However, the process may go to the 

out-of-control conditions during the production cycle due to different reasons, and 

consequently, some no-confirming items may be produced. Hence, a proper tool is required 

to improve the outcome of the production process continuously by detecting assignable 

causes (ACs). Control charts, as the most important tools of statistical process monitoring 

(SPM), can effectively detect the ACs during the production process (Salmasnia et al. [2], and 

Salmasnia et al. [3]). On the other hand, notwithstanding the considered assumptions in the 

EPQ model, the machines may cease working in a time period due to exhaustion. In this 

regard, appropriate maintenance policies can play a fundamental role in preventing and 

postponing the machine breakdowns.  

Although, the production planning is in a close relationship with SPM and maintenance 

planning, these concepts are rarely investigated monolithically. Several studies such as 

Rahim and Ohta [4], Pan et al. [5], and Gunay and Kula [6] attempted to integrate the 

production planning and SPM topics. Another category of researches such as Emami-

Mehregani et al. [7],  Zahedi-Hosseini et al. [8], Si et al. [9], and Liu et al. [10] focused on 

optimizing production and maintenance planning without considering the SPM concept. A 

large number of researches proposed integrated models of SPM and maintenance planning. 

Examples include Mehrafrooz and Noorossana [11], Liu et al. [12], Xiang [13], Atashgar and 

Abdollahzadeh [14], Salmasnia et al. [15], and Salmasnia et al. [16]. 

As a pioneer research, Ben-Daya and Makhdoum [17] optimized the SPM, maintenance 

and production planning simultaneously. They investigated the impact of three types of 

maintenance policies on optimizing the EPQ and economic design of the control chart. Then, 

Ben-Daya [18] proposed an integrated model of three mentioned concepts and assessed the 

impact of maintenance operations on process output. Lam and Rahim[19] presented a similar 

model by taking into account both uniform and non-uniform sampling schemes. Jafarian-
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Namin et al. [20] presented an integrated model of production planning, control chart, and 

maintenance planning for processes with autocorrelated quality characteristics under a delay 

monitoring policy. Salmasnia et al. [21] developed an integrated model of the mentioned 

topics under multiple ACs. Salmasnia et al. [22] proposed an integrated production and 

maintenance planning model by considering a control chart with variable parameters. 

Eventually, Salmasnia et al. [23] presented a joint model of production and maintenance 

planning under an adaptive control chart. 

In an array of production processes like the process considered in the study of 

Salmasnia et al. [21], the hazard rate is an increasing function of time. In such processes, 

using the traditional sampling approach with fixed sampling intervals (uniform sampling) is 

not functional, because the integrated hazard rate in different sampling intervals is not equal 

to one another. Hence, several researchers have presented non-uniform sampling strategy in 

which the samples are taken in a way that the integrated hazard rate in different intervals is 

equal. In this field, Banerji and Rahim [24] developed a non-uniform sampling scheme for 

the processes with increasing hazard rate. Rahim [25] used a non-uniform sampling scheme 

in an integrated model of inventory planning and control chart design. In addition, among the 

other researches regarding the non-uniform sampling strategy, we can refer to Ben-Daya and 

Makhdoum [17], Chen and Yang [26], Moghadam et al. [27], and Salmasnia et al. [28].   

Quite the contrary to many studies mentioned in the paragraphs above, in a production 

process, various ACs such as the low-quality of raw materials, incorrect setting up, sudden 

shocks, and electricity fluctuations, may shift the process to an out-of-control condition. 

Considering the multiple ACs, Duncan [29] developed a model for the economic design of X  

control chart. Afterwards, Chen and Yang [26] presented an economic design model 

considering multiple ACs when the in-control time period follows the Weibull distribution, 

like the other researches such as Yu and Hou [30] and Asadzadeh and Khoshalhan [31]. In 

the mentioned researches, it was assumed that the ACs are independent of each other while in 

real conditions, the occurrence of an AC may reduce or increase the occurrence probability of 

the others. Nenes et al. [32] presented an economic-statistical model for the adaptive control 

charts. They used the Markov chain approach to account for the interacting ACs. Moreover, 

Tasias and Nenes [33] presented a model similar to the previous models for simultaneous 

monitoring of the mean and variance parameters employing variable parameters (VP) charts. 
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The X  control chart is used to detect the ACs affecting the process mean while the R 

chart is utilized to identify the ACs affecting the process variability. These charts can be 

simultaneously employed to detect the ACs affecting both mean and variance parameters. 

Examples include Saniga [34], Costa [35], Rahim and Costa [36], and Ohta et al. [37]. The

X R  charts are not effective in detecting small shifts and make no advantage of recognizing 

the shift type. Consequently, Costa and Rahim [38] presented the non-central chi-square chart 

for monitoring the mean and variance parameters simultaneously. After presenting NCS 

chart, an array of studies have been conducted on these charts among which Costa and Rahim 

[39], Costa and De Magalhaes [40], and Tsai et al. [41] are the most notable ones. Despite the 

effectiveness of the NCS chart, this monitoring scheme has not been combined with 

maintenance planning and inventory control topics. Concerning the mentioned gaps in the 

literature, the novelties of this study are: 

1- To bring the model closer to the real manufacturing systems, multiple ACs and 

interdependency among them are taken into account; 

2- A non-uniform sampling scheme is developed for faster detection of the occurred ACs; 

3- The process mean and variability are monitored simultaneously to improve the 

customer satisfaction.  

The rest of this study organized as follows: In Section 2, the problem is defined. In 

Section 3, the mathematical programming model is explained. Afterwards, in Section 4, the 

solution approach is described. The optimization results, sensitivity analysis and comparative 

studies are presented in Section 5. Eventually, in Section 6, conclusions are made, and some 

suggestions for future studies are provided.  

2. Problem definition  

We assume that the manufacturing process starts with an in-control condition, and s types of 

ACs can shift the process to out-of-control situations. Salmasnia et al. [21], assumed that 

when i
th

 AC occurs, any other ACs won’t happen until the end of the production cycle. To 

make the proposed model more practical, it is assumed that the occurrence of one AC does 

not prevent the occurrence of the other ones. As mentioned before, in this research, it’s 

assumed that each AC can affect both the process mean and variance. Thus, an appropriate 

monitoring scheme is required to monitor the mean and variance parameters together. This 
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study employs the NCS chart which is more efficient than the X R  chart (Costa and Rahim 

[38]), particularly in detecting small and mediocre shifts. 

Due to the fact that the time-to-occurrence of each AC follows the Weibull distribution, 

a non-uniform sampling strategy is used for more efficiency of SPM. It is worth mentioning 

that similar to Salmasnia et al. [21], the production process is divided into three different 

scenarios. In the first scenario, the process is completely in-control, and no AC occurs during 

the production cycle. Thus, the planned maintenance operation is carried out at the end of the 

production cycle. In the second scenario, due to the occurrence of an AC, the process shifts to 

an out-of-control condition. In this scenario, the out-of-control condition is detected by the 

control chart before the end of the production cycle, and consequently corrective maintenance 

is carried out. It this scenario, other ACs may take place before the detection of the shift 

which results in larger shifts in process mean and variance. In the third scenario, the process 

shifts to the out-of-control condition because of one AC. However, the shift is not detected by 

the control chart until the end of the production cycle. In this scenario, until the end of the 

production cycle, other ACs may occur, and at the end of the production cycle, corrective 

maintenance is carried out. 

The aim of this study is to determine the optimum values of the number of sampling 

intervals between two planned maintenance operations ( k ), and the length of production 

cycle (
1kW 
) along with the NCS chart parameters including the control limit coefficient ( CSL

), the length of the first sampling interval (
1h ), non-centrality parameter ( d ) and the sample 

size ( n ) in a way that the expected total cost consisting of SPM costs, inventory costs, and 

maintenance costs is minimized.  

2.1. Notations 

Before developing the mathematical programming model, the notations used for problem 

formulation are presented in Table 1.  

Please insert Table 1 here 

2.2. Assumptions 

Since this study is an extension of Salmasnia et al. [21], this subsection only focuses on the 

assumptions that are different from the mentioned paper. The rest of the assumptions that are 

considered in Salmasnia et al. [21], and do not violate the following assumptions, are also 

applied in this research.  
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1. Production cycle is monitored by means of a non-uniform sampling scheme. This 

scheme is conducted in a way that the integrated hazard rates are the same during all 

sampling periods. According to the non-uniform sampling scheme, random samples 

each of size n are taken from the process at points 1 1 2 1 2 3, , ,...h h h h h h   . Denoting 

jW  as the time of taking the j
th

 sample, the sampling intervals and sampling points are 

computed as follows. 

1

1jW j h  

(1) 

1 1

1 1( 1)jh j h j h     

(2) 

2. The quality characteristic of interest follows a normally distribution, and the 

occurrence of the i
th

 AC changes both mean and variance parameters as below: 

0 0i i      (3) 

0i i    (4) 

3. The occurrence probability of one AC is under the impact of another AC occurred 

before that. The time-to-occurrence of AC type u (
uA ) when the process is under the 

impact of AC type i (
iA ) follows a Weibull distribution with size and shape 

parameters 
,i u  and  , respectively. Accordingly, we have ,1

, ,( ) i ut

i u i uf t t e
   .  

4. The state 0i    denotes the in-control condition (
0 1  ,

0 0  ).  

5. The occurrence of one AC does not prevent the occurrence of the others, which leads 

to larger shifts in process mean and variability. That is to say, the posterior process 

state is always worse than its prior state , 0 ( )i u u i    .  

6. The time-to-occurrence of the earliest AC, when the process is under the impact of i
th

 

assignable cause type is a Weibull variable with parameters ,

1

m

i i u

u i

 
 

   and   

1( ( ) )it

i if t t e
   with respect to the assumptions (2) and (4).  

7. In the developed Markov chain, at time t the process will be in its i
th

 state, if the 

process is under the impact of i
th

 AC type (if the process is in-control, the process is 

assumed to be in state 0i  ).  

8. The state y is referred as an intermediate state between the prior state i and the 

posterior state u when the process initially goes from state i to state y and then goes 
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from state y to state u. It is assumed that the probability of existing more than one 

intermediate state in a sampling interval is negligible.  

To calculate the expected total cost in the proposed model, the following definitions are 

required: 

a)    ( 1,2,..., , 1,2,..., 1 )ijq i s j k    : The probability that the process shifts from 

the in-control to an out-of-control condition due to the occurrence of iA  during 
jh . 

1

0, ( )

j

j

W

ij i

W

q f t dt



   (5) 

b)    ( 1,2,..., , 1,2,..., 1 )ij i s j k     : The expected in-control time period within 

jh , given that iA has occurred during the thj  sampling interval. 

1
1 0,( ) ( )

j

j

W

j i
W

ij

ij

t W f t dt

q
 






 (6) 

c)  ( 1,2,..., )i i s   : The expected in-control time period within a given sampling 

interval in which iA occurs. 

1
1 0,

1 1

( ) ( )
j

j

k k W

i ij ij j i
W

j j

q t W f t dt 




 

     (7) 

d) 0 ( , )q a b : The probability that the earliest AC occurs during the interval [ , ]a b  

0 0( , ) ( )

b

a

q a b f t dt   (8) 

3. Model description 

In this Section, initially, a Markov chain is developed to model interdependencies among the 

ACs. Afterwards, different cost elements related to the model are calculated.  

3.1. Developing a Markov chain to model interdependence among assignable causes  

As it was previously discussed, the mentioned process can be under the impact of different 

ACs in a production cycle. Hence, depending on the time period that the process spends in 

each state (the time after the occurrence of one AC to the occurrence of next one), the 

manufacturer incurs costs. To calculate the expected time period in each state, the model 

needs to calculate steady-state probabilities, and for this end, a Markov chain is developed. 
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In the general concept of the Markov chain, the time is classified into three different 

periods of past, present, and future. The main characteristic of the Markov process is that the 

future of this process is not dependent on the route which it has traversed in the past, and it 

only depends on its present position. Generally, a Markov process is categorized based upon 

two factors: 

(1) Time parameter which can be discrete or continuous. When time is discrete, it can 

be interpreted that the process behavior is studied in specific points.  

(2) Set of values which Markov characteristic can have that is named system state.  

Markov chain is a particular case of Markov process in which both system state and time 

parameter can only take discrete values. If the process is investigated only in the sampling 

points, and the system state is defined based on the assumption (8), we can consider it as a 

Markov chain. The system state in each sampling point is merely dependent on its state in the 

previous one, because the time origin of Weibull distribution is considered as the start of the 

process. In the rest of this section, the elements of the transition probability matrix are 

calculated, and the steady-state probabilities are determined by using this matrix.  

The probability of transition from state i to state u  denoted by iuP  is equal to the 

probability that the process is in state i at the beginning of a sampling interval, and is in state 

u at the end of that interval. This probability is under the impact of a Weibull distribution, 

which is not a memoryless distribution. Equivalently, the probability of transition from state i 

to state u differs in different sampling periods. Hence, the following formula is utilized based 

on the law of total probability to calculate the transition state.   

(9)  
1

1

1

Pr ( ) ( )
k

iu j j

j

P i u W t W






     

Given Equation (9), the probability of transition from state 1i   to state i is obtained using 

Equations (10) and (11). This probability calculates the intersection between two events: (1) 

when the process is under the impact of 1iA  , iA  happens before the other ACs. (2) after the 

occurrence of iA , no other AC occurs. It is mentionable that the probability of transition from 

state 1i   to state i in the first sampling interval is larger than zero, only if the prior state be 

state 0. This condition always occurs because as it was previously pointed out, the process 

starts from its in-control condition. As a result, a little difference exists between Equations 

(10) and (11). 
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(10) 
1

1
( )1,

1, 1

1 1

( ) 1 0

j

i j

j

W
k

Wi i

i i i

j iW

P f t e dt for i








 

 

 
    
  

 
  

(11) 

1

1
( )1,

1, 1

2 1

( ) 1 0

j

i j

j

W
k

Wi i

i i i

j iW

P f t e dt for i








 

 

 
    
  

 
  

To determine the probability of transition from state i to state 1u i   based on the 

assumption (9), we consider two scenarios. In first scenario, the process directly goes from 

state i to state u while in the second one it transfers from state i to an intermediate state and 

transfers from the intermediate state to state u. Based on this, the probability of iuP  ( 1u i  ) 

are given by Equations (12) and (13). 

(12) 
1

1

1
( ),

,

1

1
,

,

1

( )

( ). ( , ) 0

j

u j

j

j

j

W
k

Wi u

i u i

j iW

W
u

i y

i y u j

y i iW

P f t e dt

f t P t W dt for i




















 

 
   
  

 

 
  

 
 

 

 

 

(13) 
1

1

1
( ),

,

2

1
,

,

1

( )

( ). ( , ) 0

j

u j

j

j

j

W
k

Wi u

i u i

j iW

W
u

i y

i y u j

y i iW

P f t e dt

f t P t W dt for i




















 

 
   
  

 

 
  

 
 

 

 

 

It should be pointed out that , ( , )y u jP t W  equals to the probability that the process is in state y 

at time t, and it directly transfers from state y to state u during , jt W   , and remains in state u 

until 
jW . This is formulated as follow: 

(14) 
( ),

, ( , ) ( | )

j

u j

W

Wy u

y u j y

yt t

P t W f t t t e dt








    
  

Ultimately, 
,i iP  equals to the probability that the process remains in state i from the beginning 

to the end of the sampling interval. In other words, this probability equals to the probability 

of not transferring from state i to any other state.  

(15) , ,1i i i u

u i

P P
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After calculating transitions probabilities based on Equations (10)-(15), the transition 

probabilities matrix is attainable in the following form: 

(16) 

0,0 0,1 0,2 0,

1,1 1,2 1,

2,2 2,

,

0

0 0

0 0 0 1

s

s

s

s s

P P P P

P P P

P P

P

 
 
 
 
 
 
  

P 

Then, based on matrix P , the steady-state probabilities can be obtained as follows: 

(17) (0) π π P 

where 0 1[ , , , ]s  π  and 
(0)π  are the steady-state probabilities vector and the initial 

probabilities vector, respectively. As previously mentioned, the production process starts with 

the in-control condition and therefore we have 
(0) 1 ( 1)[1,0, ,0] s π . It should be noted that 

regarding to the previous explanations, the steady-state probability for state i ( 1,2, ,i s ) 

given that the process is out-of-control is obtained as Equation (18).  

(18) 
01

i
i





 


 

where i   denotes the steady-state probability for state i given that the process is out-of-

control.  

3.2. Features of scenarios  

Scenario1: According to Figure 1, under this scenario, the process remains in-control during 

the production cycle and is restored to the as-good-as-new condition by planned maintenance 

after the end of the cycle. Therefore, the expected in-control and out-of-control time periods 

under this scenario are attainable through equations below:  

(19) 
1

1 1 1( | ) ( 1)in kE T S W k h
   

(20) 1( | ) 0outE T S  

The occurrence probability of this scenario, similar to Salmasnia et al. [21], equals to the 

probability that the earliest AC occurs after 1kW  .  
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(21) 0 1( 1)

1 0 1( ) 1 ( )
k h

kP S F W e
 

   

Please insert Figure 1 here 

Scenario 2: Under this scenario, the process mean and variance go to the out-of-control 

condition during the production cycle due to the occurrence of AC. The NCS chart cannot 

necessarily detect it in the first sample after the occurrence of the shift. However, before the 

end of the cycle, the shift is recognized by the control chart. Based on Figure 2, a difference 

between this model and Salmasnia et al. [21] is that the process can be under the impact of 

different ACs in an out-of-control time period. In other words, after the occurrence of the 

earliest AC, other ACs can occur which deteriorate the process. Consequently, the expected 

in-control and out-of-control time periods are calculated by Equations (22) and (23). 

(22) 2 0 1
0

( | ) ( | 0 )
kW

in kE T S tf t t w dt   

(23)  
1

0, 1

2 0 1 1 1 1

1 1 10

( | ) ( , ) ( ) (1 )
k jm k

i r

out j j r j j i

i j r

E T S q W W w w nE T


  


 


   

  

 
        

 
   

Please insert Figure 2 here 

It should be noted that   is obtained by Equation (24). Because in this model, the out-of-

control time period can be under the impact of different ACs, the steady-state probabilities 

should be taken into account in calculations.  

(24) 
1

m

i i

i

  


 

In the above equation, i  is the probability of Type II error when the process is under the 

impact of iA . According to the features of the NCS chart discussed by Costa and Rahim [38], 

i  can be obtained using Equation (25). It is remarkable that the average run length (ARL) in 

out-of-control condition can be calculated using Equation (26).  

(25) 
2 2 2

01 ( ) 1 ( / / )i l CS l i CS iP Y L P Y L         

(26) 1 1/ (1 )ARL   

where lY  is the NCS statistic at l
th

 sample. According to Equation (23) and the steady-state 

probabilities, the expected time length that the process is under the impact of i
th

 assignable 

cause is obtained as: 
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(27) 2 2

0

( | ) ( | )
1

i
i outE Ta S E T S







 

where iTa  is the time interval that process remains in state 1,2, ,i s . The occurrence 

probability of scenario 2, equals to the occurrence probability of the earliest AC before taking 

k
th

 sample, given that at least one alarm issues in previous samples. If the earliest AC occurs 

at time t, the maximum number of samples taken from an out-of-control process will be 

obtained as  
1/

1( ) /
v

Sa t k t h  
 

 (see Proof 1).   

Proof 1. The maximum number of taken samples in a production cycle is equal to k. 

Furthermore, with considering the following mathematical inference, the number of samples 

taken before t is obtained as  
1/

1/
v

t h 
 

. Moreover, the maximum number of samples taken 

during the out-of-control time period is calculated as  
1/

1( ) /
v

Sa t k t h  
 

.     

1/ 1/ 1/ 1/

1 1 1

1

1/ 1/

1 1

( 1) ( 1)

( 1)

v v v v

j j

v v

t
W t W j h t j h j j

h

t t
j j j

h h

         

    
         
     

 

Finally, the occurrence probability of scenario 2 is computed through Equation (28).  

(28) 
( )

2 0

0

( ) ( )(1 )
kW

Sa tP S f t dt  

Scenario 3: In this scenario, during the production cycle, the process shifts to an out-of-

control condition. However, the NCS chart does not detect the occurrence of AC until the end 

of the production cycle. As it can be seen in Figure 3, similar to scenario 2, in this scenario 

the process can be under the impact of different ACs. During the implementation of planned 

maintenance, the out-of-control state is detected and therefore, the planned maintenance is 

replaced by the corrective maintenance. The expected in-control and out-of-control time 

periods in this scenario are calculated based on equations below: 

(29) 
1

3 0 1
0

( | ) ( | 0 )
kW

in kE T S tf t t W dt


   

(30) 
1

2 1 3 1 3( | ) ( | ) ( 1) ( | )out k in inE T S W E T S k h E T S
     

Therefore, the expected time that the process spends in each of states 1,2, ,i s  is: 
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3 3

0

( | ) ( | )
1

i
i outE Ta S E T S







 (31) 

Based on Equation (32), 3( )P S  equals to the probability that the earliest AC occurs before 

1kW 
 but no alarm issues after its occurrence.  

1

( )

3 0

0

( ) ( )
kW

Sa tP S f t dt


   (32) 

Please insert Figure 3 here 

3.3. Model costs  

3.3.1 Quality loss cost 

Each AC leads to different quality loss cost per unit. According to the expected time that the 

process is under the impact of each AC, the expected quality loss cost under the out-of-

control condition can calculated. The expected quality loss cost under in-control condition is 

computed similar to Salmasnia et al. [21]. Hence, the quality loss cost in each scenario is 

obtained as Equations (33)-(35). Then, the expected total quality loss cost is obtained as 

Equation (36).  

1

1 1 1( | ) . . ( | ) . .( 1)Q in in inE C S Q p E T S Q p k h    
 

(33) 

2 2 2

1

( | ) . . ( | ) . . ( | )
s

Q in in i i

i

E C S Q p E T S p Qout E Ta S


    
 

(34) 

3 3 3

1

( | ) . . ( | ) . . ( | )
s

Q in in i i

i

E C S Q p E T S p Qout E Ta S


    
 

(35) 

3

1

( ) ( | ) ( )Q Q z z

z

E C E C S P S


   
 

(36) 

3.3.2. Sampling cost 

As mentioned, the process remains in-control during the production cycle in scenario 1. On 

the other hand, the NCS chart does not detect the assignable causes in scenario 3. Therefore, 

the number of samples taken in both scenarios 1 and 3 is a constant value denoted by k . In 

contrast, in scenario 2, the process stops after taking in outr r  samples where 
inr  and 

outr  

indicate the expected number of samples taken when the process is in-control and out-of-

control, respectively.  
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0 1

1

( 1) ( , )
k

in j j

j

r j q W W



    (37) 

1

1
1

0

1 1

( ( ( ) ))( (1 ) )
j

j

k jk w
r

out
w

j r

r f t dt r  


 


 

    (38) 

The sampling cost is affected by two factors: (1) the fixed and variable costs of each sample; 

and (2) the expected number of taken samples. According to the given explanations, the 

sampling cost for each scenario and the total sampling cost are obtained by using equations 

below: 

1( | ) ( )S F VE C S C nC k   (39) 

2( | ) ( )( )S in out F VE C S r r C nC    (40) 

3( | ) ( )S F VE C S k C nC   (41) 

3

1

( ) ( | ) ( )S S z z

z

E C E C S P S


   (42) 

3.3.3. Maintenance cost 

In this sub-section, first the expected maintenance cost under ; 1,2,3thz z   scenario, 

( | )M zE C S , including the maintenance activity implementation and the false alarm evaluation 

is calculated. Note that, the false alarm cost is obtained via the multiplication of evaluation 

cost of each false alarm by the expected number of issued false alarms in its corresponding 

scenario. Since the process remains in-control during the production cycle in scenario 1, the 

maintenance cost which is given in Equation (43) consists of the planned maintenance cost 

and the false alarm cost.  

1

0

( | ) Y
M PM

k C
E C S C

ARL


   (43) 

As noted, the process goes to an out-of-control state due to the occurrence of assignable 

causes in scenarios 2 and 3. As a consequence, we replace k  by inr  to calculate the expected 

number of false alarms in these scenarios. Besides, the corrective maintenance cost is 

imposed in both scenarios 2 and 3 which is dependent on the type of the assignable cause. 

Accordingly, the expected maintenance cost in scenarios 2 and 3 can be obtained as 

Equations (44) and (45), respectively: 
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    (45) 

It is worth mentioning that, the value of 
inr  in scenarios 2 and 3 is obtained by Equations (37) 

and (47), respectively. Moreover, the value of in-control ARL is attained as 0 1/ARL   

where   is calculated based on Costa and Rahim [38].  

2 2

0 0( ) ( / )l CS l CSP Y L P Y L       (46) 

1

0 1

1
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in j j

j

r j q W W






    (47) 

Finally, the  expected maintenance cost for a given production cycle is calculated based on 

the values of  ( | ); 1,2,3M zE C S z   and their corresponding occurrence probabilities as 

follows: 

3

1

( ) ( | ) ( )M M z z

z

E C E C S P S


   (48) 

3.3.4. Inventory holding cost and setup cost  

According to the classic EPQ model, the inventory holding cost and the setup cost can be 

obtained according to Equations (49) and (50).  

1 ( )

2

k dB W p D
IHC   

  (49) 

1

setup

k

D A
C

p W 





 (50) 

where 1kW   denotes the end time of a perfect production cycle.  

3.4. Objective function and constraints 

According to the previous explanations, the objective function and the model constraints are 

given as follow: 

( ) ( ) ( )setup Q S MMin ETC C IHC E C E C E C      (51-1) 

. :s t   

01 n u   (51-2) 
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0 LARL ARL  (51-3) 

1 UARL ARL  (51-4) 

1kW CT   (51-5) 

10, 0, 0, ,CSd h L n N k N       (51-6) 

The proposed mathematical model aims to minimize the expected total cost which is 

defined in Equation (51-1). Note that, the cost objective function contains five terms of the 

setup, inventory holding, quality loss, sampling and the maintenance costs. The proposed 

mathematical model includes five constrains. The constraint (51-2) guaranties that the sample 

size does not exceed a pre-determined value 
0u . The statistical constraints (51-3) and (51-4) 

ascertain the in-control and out-of-control performance of NCS chart, respectively. Constraint 

(51-5) ensures the process continuity by selecting a lower bound for the production length of 

a perfect cycle. Finally, constraints (51-6) defines the acceptable domain of the decision 

variables.  

The economic production quantity (EPQ) expressed by Equation (52) depends on the 

production rate ( p ) and the cycle length (
1kw 
). As it can be seen, the value of 

1kw 
 is a 

function of two decision variables 
1h  and k  obtained by solving the mathematical 

programming (51).   

1/

1 1( 1) v

kEPQ W p k h p       (52) 

4. Solution approach 

Regarding to the high complexity of the proposed mathematical model, this paper employs 

the particle swarm optimization (PSO) as a famous population-based algorithm for 

optimizing the mathematical programming (51). The PSO algorithm is one of the most 

popular methods among the meta-heuristic algorithms which finds near-optimal solutions in a 

reasonable computation time. This algorithm has been widely used by some researchers in the 

existing literature such as Jafarian-Namin et al. [42], Salmasnia et al. [43], and Matin et al. 

[44]. In PSO algorithm, each solution in feasible space is known as a particle which contains 

two features including the  position and velocity (particle direction). It combines the local and 

global searching mechanisms to improve its search effectiveness. In the first iteration, the 

position and velocity vectors are selected randomly. Afterwards, the search process continues 

by updating particles based on three factors of force of inertia ( w ), global best ( gbest ), and 

personal best ( pbest ). Note that, the gbest  indicates the best solution observed so far while 
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the pbest  is the best decision variable vector experienced by the thi particle. That is to say, the 

particle’s velocity vector is updated based on a compromise among three vectors: (1) the 

current velocity, (2) moving towards its pbest , and (3) moving towards the gbest . The 

vector of velocity and position are updated in each iteration, after finding the two best values. 

The PSO’s searching process in a two-dimensional feasible space is illustrated in Figure 4. 

Please insert Figure 4 here 

In Figure 4, 
t

ix , t

iv  and 1t

ipbest 

 
represent the position, velocity and personal best vectors of 

the i
th  

particle in t
th

 iteration while tgbest  vector denotes the best vector of decision variables 

during the past t iterations. Moreover, gr  and pr  are two random vectors whose elements are 

selected uniformly from the interval [0,1] . Furthermore, 1c  and 2c  are cognition and social 

learning parameters, respectively and are determined through a trial-and-error process subject 

to 
1 2 4c c  .  

Particle representation is a substantial factor in the PSO algorithm. A five-dimensional vector 

is used in this research for representing the particles, which is indicated by Equation (53).  

1[ , , , , ]t

i CSx n h L d k  (53) 

The particle representation includes two discrete decision variables n, k and three continuous 

ones including 1, ,CSh L  and d . As mentioned before, the initial values of the continuous 

decision variables are randomly generated from a uniform distribution between their 

corresponding lower and upper limits. However, to determine the initial value of discrete 

decision variables, firstly a random value is produced from a uniform distribution within the 

interval [0,1] . Then, the initial values of the discrete variables n and k are obtained using 

equations (54) and (55).  

min max min 1 max( ( 1) , )n Min n n n R n        (54) 

min max min 2 max( ( 1) , )k Min k k k R k        (55) 

Where minn , maxn , mink
 
and maxk denote the lower and upper limits of n and k, respectively 

while 1R  and 2R
 
are two random numbers from (0,1)U . Eventually, vector of decision 

variables is updated according to PSO procedure, and the algorithm stops when it meets the 

stopping criterion. The PSO flowchart summarizing its computational procedure is depicted 

in Figure 5. 

Please insert Figure 5 here 
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5. Experimental results 

In this section, first in sub-section 5.1 a numerical example is presented. Then, in sub-section 

5.2 a sensitivity analysis is provided to analyze how the changes in the number of ACs affects 

the cost terms. In sub-section 5.3, the presented model is compared with a model in which the 

multiple ACs are independent from each other. In sub-section 5.4, the ability of NCS chart is 

evaluated against with the X R  chart. Eventually, in sub-section 5.4, the performance of 

uniform and non-uniform sampling strategies are compared.  

5.1. Numerical example 

In this sub-section, an industrial example borrowed from Chen and Yang [26] is introduced to 

highlight the application of the proposed mathematical model. In this example, the company 

under investigations sells a specific food product to a wholesaler in packages marked with the 

specific weight. According to Bisgaard et al. [45], it is assumed that the quality characteristic 

of the interest is the weight of packages and ACs can change both mean and variability 

parameters. The values of parameters which are independent from the type of ACs are given 

in Table 2. 

Please insert Table 2 here 

In addition to the parameters above, there are some other parameters affected by the type 

of ACs. According to the sixth assumption of sub-section 2.1, parameters i  and i  for 

1,2, ,i s  are introduced as follow: 

0 .i vi     (56) 

0 .i vi     (57) 

where 0 0   and 0 1  . Knowing that iQout  and iCcm  are proportional to the shift 

magnitude, the following equations are used to calculate them. 

( 1).i B vCcm Ccm i Ccm    (58) 

0.5 ( 1)i B BQout Qout i Qout      (59) 

Since the quality loss cost per unit under in-control condition should be proportional to the 

out-of-control condition, it is assumed that 0.2in BQ Qout  which is independent from the 

type of AC. To determine iu , in case that the process is under the impact of iA , it is 

assumed that the more u is closer to i, the larger is the occurrence rate of uA ,. Therefore: 
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 (60) 

To determine the parameters dependent on ACs, the values of v , v , vCcm , BCcm , BQout  

and B  are defined based upon Table 3. Then, by using these values and according to 

Equations (56)-(60), the values of parameters dependent on ACs are computed.  

Please insert Table 3 here 

As mentioned at the beginning of this subsection, the numerical example is related to the 

food industry. In this industry, the production of a nonconforming items can result in 

significant problems such as food poisoning. As a result, the quality loss cost per item in both 

the in-control and out-of-control conditions is remarkable in comparison with the other costs 

presented in Tables 2 and 3. Accordingly, the findings of this research can also be employed 

in the pharmaceutical or military industries since the non-conforming products impose 

excessive costs on the manufacturer. Assuming 6s  , we solve the proposed mathematical 

programming (51) using the PSO algorithm. The obtained results for decision variables are 

   1, , , , 11,1.4910,26.40,44,0.25179CSn h L k d  while , ,inETC ARL  
outARL  and are obtained as 

38118.29, 104.71, and 1.38. 

5.2. Sensitivity analysis on the number of assignable cause types 

Here, we investigate how the number assignable cause types affect different cost terms. To do 

this, given the values allocated to the parameters, by using PSO algorithm, the model is 

solved for 1,2, ,6s   (where s is the number of AC types) and the results are summarized 

in Table 4. As can be also seen in Figure 6, the expected quality loss cost increases with a rise 

in the number of ACs. The reason is that increasing the number of ACs, decreases not only 

the expected in-control time period, but also the out-of-control condition includes more states 

with higher costs of quality loss. Besides, according to Figure 7, with an increase in the 

number of ACs, the maintenance cost rises with a slowing-down slope. Its reason is the rise 

in the steady-state probability for states with higher costs of corrective maintenance. On the 

other side, it can be seen from Figure 8 that the expected sampling cost has both ascending 

and descending trends. This cost is proportional to the sample size and the number of 

sampling points in a process cycle. When s increases from 3 to 4, although the number of 

samplings rises, the expected sampling cost reduces, and its reason is a considerable decrease 

in the sampling size from 12 to 6.  
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Please insert Figure 6 here 

Please insert Figure 7 here 

Please insert Figure 8 here 

Recall that the inventory holding cost, the setup cost, and economic production quantity are 

calculated based on Equations (49), (50) and (52) and depend only on the production run 

length. For all values of 1,2, ,6s  , since the production length is obtained equal to 10, the 

inventory holding cost, the setup cost and EPQ are the same as can be seen in Table 5. 

Consequently, with an increase in the number of ACs, the quality loss and maintenance costs 

have ascending trend while the inventory holding and setup costs remain fixed. Only the 

sampling cost has a descending trend in some cases, which in comparison with the other costs 

has a smaller share of the expected total cost. Hence, as can be observed from Figure 9, the 

expected total cost rises with the increase in s. 

Please insert Figure 9 here 

Please insert Table 4 here 

Please insert Table 5 here 

5.3. Comparing two models with dependent and independent assignable causes 

In this sub-section, the model with dependent ACs (called as dependent model) is compared 

with the model in which that ACs are independent (named as independent model). It is 

assumed that the independent ACs occur in a process whose parameters are calculated based 

on sub-section 5.1. However, in the case of the independent model, the occurrence rate of 

each AC under the in-control condition is calculated based on Equation (61). 

12

B
i i





  (61) 

The results obtained by solving two dependent and independent models using the PSO 

algorithm for ACs 1 to 6 are given in Table 6. As it can be inferred from Table 6, the cost of 

the independent model is less than the dependent model. This can leads to misleading 

interpretations because the independency assumption among the ACs is far from the reality. 

The most significant factor that causes difference between the costs of these two models is 

the steady-state probabilities. As mentioned earlier, in the dependent model, i   indicates the 

probability that the process is under the impact of iA  given that the process is out-of-control. 
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However, in an independent model, similar to Salmasnia et al. [21], 
i   is substituted by 

0/i   where 
0

1

s

i

i

 


 .  

Please insert Table 6 here 

As can be seen in Table 6, under the single AC scenario, the optimum value in both 

models are equal, and the expected total costs are approximately equal. The nuance in the 

expected total costs of the two models is due to the difference in calculations methods, which 

are explained below the Equation (23). However, for 2,3, ,6s   the expected total cost of 

the proposed model (dependent model) is higher, which is closer to the reality. The reason is 

that in the dependent model, the occurrence probability of the worse conditions is higher. In 

Figure 10, the comparison between the two expected total costs is illustrated graphically.  

Please insert Figure 10 here 

As can be seen in Figure 11, the coefficient of control limit ( CSL ) is usually larger in the 

proposed model than the independent model. That is because of the higher occurrence 

probability of large shifts in the proposed model which reduces the probability of Type II 

error and raises the CSL . On the other hand, since the occurrence probability of large shifts in 

process mean and standard deviation is lower in the independent model, sampling is more 

easy-going. Consequently, the values of 1h and n  are usually larger and smaller, respectively 

compared to the dependent model.  

Please insert Figure 11 here 

5.4. Comparing non-central chi-square control chart with X R  chart performances 

In this sub-section, the performance of the proposed model is compared with the 

competing one which uses the combined X R  chart based on the previously generated 

examples. To do so, it is initially considered four levels for each of v , v , and B , BQout , 

YC  as given in Table 7. Then, the numerical examples are produced by using a Taguchi 

design consisting of 16 experiments as can be seen in Table 8. It is notable that the rest of the 

parameters in all examples, based on Table 2, are the same.  

Please insert Table 7 here 

Please insert Table 8 here 
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For fair comparison between the NCS and X R  charts, we assimilate the in-control costs 

for both methods and calculate costs of out-of-control state for the process. To accomplish 

this, first the considered example is solved with the proposed model, which considers NCS 

chart, and the decision variables and cost values are calculated. In order to compute the 

optimum values of the model considering X R  chart (hereafter referred as X R  model), 

the values of 1h  and k  are considered equal to those of the proposed method. Moreover, we 

try to make   the same in both models so that the in-control costs in mentioned models 

become the same. Afterwards, the optimum values of n , 
X

L  and  
RL  are determined such 

that the total cost in the X R  model is minimized. The results gained from solving two 

models can be seen in Tables 9 and 10. As can be seen in Tables 9 and 10, in all examples, 

the NCS chart has better performance than its competing chart. While the expected in-control 

costs are the same in both models with an acceptable approximation, the expected out-of-

control costs in X R  model is higher than the proposed model. In Table 11, the amount of 

improvement in costs by using the NCS control chart is demonstrated.  

In order to clarify the higher performance of the proposed model, it is essential to 

investigate the performance of the two control charts based on the different shifts in process 

mean and standard deviation. It can be inferred from Table 12 that the NCS chart has a better 

performance in detecting both mean and variance shifts. The superiority of the non-central 

chi-square chart over the X R  is more significant when smaller shifts are induced. In other 

words, as 
v  and 

v  increases, the difference between the NCS and X R  charts reduces. 

This fact is illustrated in Figures 12-14 graphically. It can be seen in Figure 14 that for each 

v , the improvement percentage decreases with an increase in v . 

Please insert Figure 12 here 

Please insert Figure 13 here 

Please insert Figure 14 here 

Please insert Table 9 here 

Please insert Table 10 here 

Please insert Table 11 here 

Please insert Table 12 here 

5.5. Comparing uniform sampling with non-uniform sampling  
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The examples that are produced in section 5.3 are used to carry out this comparison. The 

optimal decision variables of the proposed model which uses non-uniform sampling, are 

given in Table 9. Furthermore, the sampling interval in the uniform sampling scheme ( )Fh  is 

fixed on 1h . Then k is determined in the form of ( 1) / Fk W k h     in order to satisfy 

constraint 51-5. Considering the value of 1h  and k, and by assuming that the rest of the 

decision variables are based upon Table 10, the costs of the model are calculated in case of 

uniform sampling. Since in this comparison, 
1kW 
usually is not the same in the uniform and 

the non-uniform sampling scheme, the expected cost per time unit 

( / ( 1))ECTU ETC W k  is used to compare two methods. It is s notable that 
pEout  

means the ratio of the expected out-of-control time to the expected production cycle time and 

is calculated as follow: 

(62) 
   

2 2 3 3

1 3 2 2 2

( ). ( | ) ( ). ( | )

( ) ( ) . ( 1) ( ). ( | ) ( | )

out out
p

in out

P S E T S P S E T S
Eout

P S P S W k P S E T S E T S




   
 

As it can be seen in Table 13, using the non-uniform sampling strategy reduces the 

expected costs per time unit from 14.1 to 32.5 percent in different examples. In other words 

the use of the non-uniform sampling strategy instead of the uniform one leads to a 

considerable savings in the annual manufacturer costs. The reason for this is non-uniform 

sampling higher ability in detecting shifts. Based on the data given in Table 13, non-uniform 

sampling reduces the ratio of the out-of-control time to the production cycle time. Because 

the more the time of process elapses and the occurrence probability of shift increases, the 

more the possibility of in-time detecting of shifts using non-uniform sampling and smaller 

sampling periods becomes. Hence, although sampling costs are lower in the case of uniform 

sampling, this approach will result in a delay in detecting shifts and raises costs of quality 

loss, which finally increases production costs. Figure 15 compares the costs of these two 

sampling schemes graphically. 

Please insert Figure 15 here 

Please insert Table 13 here 

6. Conclusion 

In this research, an integrated model of production and maintenance planning, as well as 

statistical process monitoring was established with consideration of dependency among the 

multiple assignable causes. To improve the applicability of the proposed model, it was 

assumed that the occurrence of ACs can affect both the process mean and variability. 
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Therefore, a NCS chart was utilized for monitoring the process parameters simultaneously. 

Furthermore, a non-uniform sampling scheme was employed such that the integrated failure 

rate be similar over all of the sampling intervals. Eventually, the performance of the proposed 

model was investigated by providing a numerical example. Then, a sensitivity analysis on the 

number of assignable cause types was provided. Furthermore, three comparative studies were 

presented to evaluate the features of the proposed mathematical programming. The results 

confirmed that with increasing the number of ACs, the expected total cost increments because 

of arising quality loss and maintenance costs. Then, the presented model was compared with 

a model with independent ACs. The results showed that the independency assumption of ACs 

brings misleading results for producers and underestimates the production costs. Afterwards, 

the efficiency of the NCS chart was studied by comparing the presented model with a 

corresponding model in which the X R  chart is employed. The obtained results implied that 

in the case of small shifts in process mean and standard deviation, compared to the X R  

chart, the use of the NCS control chart reduces the production costs significantly. 

Furthermore, the costs of the model were compared in the case of using uniform and non-

uniform sampling schemes. The resulting values showed that using non-uniform sampling 

strategy can reduce the ETCU from 14.1 to 32.5 percent. The reason behind this is that as 

time goes on, the sampling intervals become smaller in the non-uniform scheme, and shift 

detection is accelerated.  

Finally, some practical recommendations for industrial managers are presented as: 

 Ignoring the correlation among the multiple assignable causes may results in 

underestimating the process critical condition by the quality practitioner. Moreover, in this 

situation, the expected cost imposed on the system is estimated less than the reality. 

 The use of NCS chart imposes less quality loss costs on manufacturer because of its 

superiority over the X R  chart in detecting out-of-control conditions.  

 In mechanical processes, employing a non-uniform sampling strategy instead of a 

uniform one reduces the quality loss cost due to a smaller ratio of out-of-control time 

interval to the cycle time. 
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Figures and Tables 

 

 

Figure 1. Illustration of scenario 1  

 

 

Figure 2. Illustration of scenario 2 
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Figure 3. Illustration of scenario 3 

 

 

 

Figure 4. The PSO’s searching process 
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Figure 5. The graphical representation of PSO algorithm 

 

 

Figure 6. Effect of s on the quality loss cost 
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Figure 7. Effect of s on the maintenance cost 

 

 

Figure 8. Effect of s on the sampling cost 
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Figure 9. Effect of s on the sampling cost 

 

 

Figure 10. Comparison between the dependent and the independent models 
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Figure 11. Comparison between decision variables in the dependent and the independent models 

 

 

Figure 12. Effect of shift in the  mean on the cost improvement 

 

 

Figure 13. Effect of shift in the variance on the cost improvement  
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Figure 14. Trend of the cost improvement for different shifts in mean and variance 

 

 

Figure 15. Comparison of ECTU in the uniform and non-uniform sampling schemes 
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Table 1. Notations 

Notation Description 

Indices  

, ,i u y  Index of assignable causes 

, ,j r l  Index of sampling intervals 

z  Index of scenarios 

Decision 

variables 
 

1h  The length of the first sampling interval 

k
 

The number of sampling intervals in a perfect production cycle  

CSL  The control limit coefficient of non-central chi-square chart 

n  The sample size 

d  The non-centrality parameter of NCS chart  

Independent 

parameters 
 

A   The setup cost of production cycle 

LARL  The lower bound of average run length when the process is in-control 

UARL  The upper bound of average run length when the process is out-of-control 

B  The inventory holding cost per unit per time unit 

iCcm  The corrective maintenance cost when the process is under the impact of ith assignable cause 

FC  The fixed sampling cost 

VC  The variable sampling cost 

PMC  The planned maintenance cost 

CT  The lower bound of a perfect cycle time  

YC  The false alarm cost  

D  The annual demand rate 

dD  The daily demand rate 

E  The time to take and record a random sample  

Lk  The lower bound of k  

p  The production rate 

iA  The ith type of assignable cause 

inQ  The quality loss cost per unit when the process is in-control  

iQout  The quality loss cost per unit when the process the process is under the impact of iA   

BQout  The fixed term of iQout  for each 1,2, ,i s  

s  Number of assignable cause types 

1T  The time to detect and validate of the assignable cause 

0u  The upper bound of the sample size 

,i u  The occurrence rate of uA  when the process is under the impact of iA  

0  The in-control process mean  

i  The shift size in the process mean when the process is under the impact of iA  

v  The variable term of 
i   

i  The process mean when the process is under the impact of iA  

0  The in-control standard deviation  

i  The shift size in the process standard deviation when the process is under the impact of iA  

v  The variable term of 
i   
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i  The process standard deviation when the process is under the impact of iA  

  Shape parameter of the Weibull distribution 

π  The vector of steady-state probabilities  

i  The steady-state probability for state i 

i   The steady-state probability for state i given that the process is out-of-control 

(0)π  The vector of initial probabilities  

Other 

parameters 
 

0ARL  The average run length when the process is in-control  

1ARL
 

The average run length when the process is out-of-control  

iCcm  The corrective maintenance cost when the process is under the impact of iA  

BCcm  The fixed term of the corrective maintenance cost 

vCcm  The variable term of the corrective maintenance cost 

setupC  The expected setup cost 

( )inE C  The expected total cost when the process is in-control  

( )outE C  The expected total cost when the process is out-of-control  

( )ME C  The expected maintenance cost  

( | )M zE C S  The expected maintenance cost given that the scenario z occurs  

( )QE C  The expected quality loss cost  

( | )Q zE C S  The expected quality loss cost given that the scenario z occurs  

( )SE C  The expected sampling cost  

( | )S zE C S  The expected sampling cost given that the scenario z occurs 

ECTU  The expected cost per time unit 

ETC  The expected total cost per production cycle 

IHC  The expected inventory holding cost  

pEout  The ratio of the expected out-of-control time interval to the expected production cycle length  

EPQ  Economic production quantity 

( | )i zE Ta S  The expected time length that the process is under the impact of iA  given that the scenario z occurs   

( | )in zE T S  The expected in-control time length given that the scenario z occurs 

( | )out zE T S  The expected out-of-control time length given that the scenario z occurs 

, ( )i uf t
 

The probability density function of time-to-occurrence of 
uA when the process is under the impact of iA  

( )if t  
The probability density function of time-to-occurrence of the earliest assignable cause when the 

process is under the impact of iA  

Fh  The time between two successive samples in uniform sampling strategy 

jh  The time between the ( 1)thj   and thj  samples in non-uniform sampling strategy 

RL  The control limit coefficient in R chart 

P  The transition probabilities matrix 

,i uP  The transition probability from state i to state u   

( )ZP S
 

The occurrence probability of scenario z 

, ( , )y uP t t   
The probability that the process is in state y  in time t, and it directly transfers to state u during 

 , ,t t and remains in state u until t  

ijq  The probability that the process shifts from the in-control to an out-of-control condition due to the 
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occurrence of 
iA  during 

jh . 

0 ( , )q a b  The probability that the earliest assignable causes occurs during the interval [ , ]a b  

inr
 

The expected number of samples taken when the process is in-control 

outr  The expected number of samples taken when the process is out-of-control  

( )Sa t  The maximum number of samples taken under the out-of-control condition when the earliest 

assignable cause occurs at time t  

t  The random variable of time-to-shift 

jW
 

The time of taking the 
thj sample (the end of the 

thj  sampling interval ) 

lY  The non-central chi-square chart statistic for the thl  sample 


 

The probability of Type I error 

i  The probability of Type II error given that the process is under the impact of 
iA  

  The probability of Type II error 

(.)  The cumulative distribution function of standard normal distribution 

0  The occurrence rate of the earliest assignable cause under in-control condition  

i  The occurrence rate of the earliest assignable cause when the process is under the impact of 
iA   

B  The base value for calculation of ,i u  

i  The expected in-control time length within a given sampling interval in which 
iA occurs 

ij  The expected in-control time length within jh  given that 
iA occurs 

 

Table 2. The values of the independent parameters of the type of assignable causes 

Parameter dD   p   E   VC   FC   PMC   YC  

Value 80  100  0.01  1  5  1300  1000 

Parameter CT   UARL   LARL   1T   A   B   D  

Value 10  10  100  1.25  60  10  10000 

 

Table 3. The values of parameters dependent on assignable causes 

Parameter B   BQout   BCcm   vCcm   v   v  

Value 0.01  100  2000  500  0.5  0.25 
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  Table 4. Obtained optimal values from solving the proposed model 
Number of  

assignable 

causes 

 Optimal value of decision variables  Optimal Cost  Constraints 

 n  1h  
CSL  k  d   ETC  ( )QE C  ( )SE C  ( )ME C   

inARL  
outARL  ( 1)W k   

1  4 1.4003 15.81 50 0.4596  30260.63 26389.47 264.16 2006.99  100.17 4.56 10.00014 

2  9 1.4004 24.02 50 0.33095  32469.38 28313.79 331.52 2224.03  102.79 1.70 10.00091 

3  12 1.4449 27.12 47 0.17919  35054.52 30740.86 350.17 2363.065  102.38 1.37 10.01066 

4  6 1.4004 20.65 50 0.49554  37168.71 32428.56 237.67 2461.13  104.35 1.83 10.00051 

5  9 1.4003 22.61 50 0.20526  37231.05 32822.44 293.38 2515.22  101.60 1.48 10.00013 

6  11 1.4910 26.40 44 0.25179  38118.29 33712.73 293.23 2512.25  104.71 1.38 10.00186 

 

Table 5. Items without change when the number of assignable causes increases 

Number of  assignable causes 
 Optimal values 

EPQ  IHC  setupC  

1  1000.01 1000.01 599.99 

2  1000.09 1000.09 599.95 

3  1001.07 1001.07 599.36 

4  1000.05 1000.05 599.97 

5  1000.01 1000.01 599.99 

6  1000.18 1000.18 599.89 
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Table 6. Comparison of the dependent model with the independent model 

Dependent model 

Number of  

assignable causes 
 Optimal value of decision variables  Probability of stability in the out-of-control states  
 n  1h  

CSL  k  d   
1   2   

3   4   
5   6   

1  4 1.4003 15.81 50 0.4596  1      

2  9 1.4004 24.02 50 0.33095  0.579 0.421     

3  12 1.4449 27.12 47 0.17919  0.479 0.293 0.210    

4  6 1.4004 20.65 50 0.49554  0.478 0.261 0.153 0.108   

5  9 1.4003 22.61 50 0.20526  0.477 0.251 0.136 0.080 0.056  

6  11 1.4910 26.40 44 0.25179  0.478 0.248 0.131 0.071 0.042 0.030 

 

Number of  

assignable causes 
 Optimal value of decision variables  Probability of stability in the out-of-control states 

 n  1h  
CSL  k  d   

1 0/   
2 0/   

3 0/   
4 0/   

5 0/   
6 0/   

1  4 1.4003 15.81 50 0.45964 1      

2  6 1.5819 17.56 39 0.20974  0.677 0.333     

3  7 1.5430 18.84 41 0.13909  0.571 0.286 0.143    

4  7 1.7679 19.41 31 0.22722  0.533 0.267 0.133 0.067   

5  2 1.5813 10.99 39 0.46414  0.516 0.258 0.129 0.065 0.032  

6  2 1.6413 11.88 36 0.58674  0.508 0.254 0.127 0.063 0.032 0.016 
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Table 7. Levels of parameters for generating examples 

level YC  
BQout  B  v  

v  

1 400 50 0.01 0.2 0.2 

2 600 75 0.02 0.4 0.4 

3 800 100 0.03 0.6 0.6 

4 1000 125 0.04 0.8 0.8 

 

Table 8. Examples produced by the Taguchi design 

Examples YC  BQout  B  v  v  

1 400 50 0.01 0.2 0.2 

2 600 75 0.02 0.4 0.2 

3 800 100 0.03 0.6 0.2 

4 1000 125 0.04 0.8 0.2 

5 1000 100 0.02 0.2 0.4 

6 800 125 0.01 0.4 0.4 

7 600 50 0.04 0.6 0.4 

8 400 75 0.03 0.8 0.4 

9 600 125 0.03 0.2 0.6 

10 400 100 0.04 0.4 0.6 

11 1000 75 0.01 0.6 0.6 

12 800 50 0.02 0.8 0.6 

13 800 75 0.04 0.2 0.8 

14 1000 50 0.03 0.4 0.8 

15 400 125 0.02 0.6 0.8 

16 600 100 0.01 0.8 0.8 
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 Table 9. The obtained results for the suggested model 

Examples 
Optimal decision variables  In-control  Out-of-control  Total cost 

n  1h  CSL  k  d     ( )inE C     ( )outE C   ETC  

1 10 1.4750 25.57 45 0.3257  0.01 6801.9  0.66602 12753.4  21155.5 

2 9 1.4437 29.90 57 0.6614  0.00999 7299.8  0.473 20505.3  29405.2 

3 7 1.4003 18.00 50 0.1690  0.01 7903.8  0.33203 26295.6  35799.5 

4 10 1.4004 24.56 50 0.2435  0.00996 8539.5  0.13958 32207  42346.6 

5 5 1.4007 20.12 50 0.6253  0.00999 9656.8  0.64476 28278.3  39535.2 

6 6 1.5076 17.16 43 0.1440  0.01 16110.9  0.48940 25973  43684 

7 10 1.4006 28.46 50 0.4962  0.00995 3490.9  0.20582 14541.3  19632.3 

8 9 1.4003 22.35 50 0.1792  0.01 5956.8  0.14079 19589  27145.8 

9 10 1.4004 28.63 50 0.50504  0.00997 9841.5  0.32020 32674.8  44116.3 

10 10 1.4004 27.97 50 0.47129  0.00998 6825.3  0.22406 26784.9  35210.2 

11 7 1.4003 21.35 50 0.36795  0.00837 9989.5  0.26282 15102.4  26691.9 

12 7 1.4005 19.69 50 0.25748  0.00989 4978.2  0.17191 13052.1  19630.3 

13 8 1.4005 24.84 50 0.51120  0.01 5165  0.25631 20656.1  27421.1 

14 9 1.4004 25.90 50 0.45891  0.00992 4081.9  0.17723 13959.2  19641.2 

15 5 1.4013 25.92 50 0.97225  0.00991 11916.2  0.27854 29536.5  43053.0 

16 4 1.4743 18.34 45 0.67062  0.00963 12944.2  0.29681 19590.8  34135.1 
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 Table 10. The obtained results for the X R  model  

Examples 
Optimal decision variables  In-control  Out-of-control  Total cost 

n  1h  
X

L  RL
 k  

   ( )inE C     ( )outE C   ETC  

1 12 1.4750 3.43 5.31 45  0.01001 6874.8  0.97605 21870.9  30345.8 

2 20 1.4437 2.60 6.58 57  0.01000 7436.3  0.83814 30038.1  39074.4 

3 34 1.4003 2.60 6.82 50  0.00999 8149.2  0.67298 35298.8  45048.0 

4 29 1.4004 2.58 7.33 50  0.00996 8668.3  0.66025 43896.4  54164.7 

5 19 1.4007 3.96 5.61 50  0.00999 9842.1  0.85862 40090.6  51532.9 

6 30 1.5076 4.10 5.91 43  0.01000 16538.3  0.65618 31781.1  49919.4 

7 20 1.4006 3.65 5.66 50  0.00995 3558.7  0.64409 18177.2  23335.9 

8 26 1.4003 3.97 5.82 50  0.01001 6111.5  0.60969 25071.3  32782.7 

9 22 1.4004 3.38 5.74 50  0.00998 9950.7  0.74523 44588.2  56138.9 

10 21 1.4004 3.12 5.75 50  0.00999 6899.8  0.49305 31043.5  39543.4 

11 15 1.4003 3.99 5.52 50  0.00836 10155.9  0.62233 17660.3  29416.2 

12 23 1.4005 2.79 6.00 50  0.00989 5188.7  0.33411 14619.0  21407.8 

13 27 1.4005 3.63 5.85 50  0.01001 5293.8  0.68704 27751.2  34645.1 

14 41 1.4004 3.74 6.12 50  0.00993 4372.9  0.30403 16642.0  22614.9 

15 11 1.4013 3.91 5.23 50  0.00992 11995.2  0.56341 33958.6  47554.1 

16 15 1.4743 2.60 6.59 45  0.00962 13148.9  0.44059 21629.3  36378.2 
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Table 11. Improvement percentage in ETC when using non-central chi-square chart 

Example 1 2 3 4 5 6 

Percentage of 

improvement 
0.303 0.274 0.205 0.218 0.233 0.125 

Example 7 8 9 10 11 13 

Percentage of 

improvement 
0.159 0.172 0.214 0.110 0.093 0.083 

Example 13 14 15 16   

Percentage of 

improvement 
0.209 0.131 0.095 0.062   

 

Table12. Average of improvement percentage in ETC for each 
v  and 

v when using non-

central chi-square chart 

v  0.2 0.4 0.6 0.8 

Average improvement percentage 0.243 0.172 0.125 0.124 

v  0.2 0.4 0.6 0.8 

Average improvement percentage 0.240 0.153 0.138 0.134 
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Table 13. Comparison of the uniform and non-uniform sampling schemes 

Example 
 Non-uniform sampling  Uniform sampling  Percentage of 

improvement  
1h  k  pEout  ( )SE C  ECTU   

Fh  k  pEout  ( )SE C  ECTU  

1  1.4750 45 0.203 317.41 2114.793  1.4750 6 0.325 67.52 2833.238 0.254 

2  1.4437 57 0.272 199.76 2939.945  1.4437 6 0.409 55.66 4317.492  0.319 

3  1.4003 50 0.308 127.30 3579.784  1.4003 7 0.414 43.54 4625.642  0.226 

4  1.4004 50 0.337 119.14 4234.278  1.4004 7 0.408 45.24 4974.239  0.149 

5  1.4007 50 0.286 160.04 3952.341  1.4007 7 0.442 47.27 5859.353  0.325 

6  1.5076 43 0.185 213.92 4368.382  1.5076 6 0.315 46.07 6077.732  0.281 

7  1.4006 50 0.340 120.57 1962.749  1.4006 7 0.419 46.37 2285.593  0.141 

8  1.4003 50 0.299 143.81 2714.578  1.4003 7 0.381 47.14 3219.543  0.157 

9  1.4004 50 0.310 158.72 4411.266  1.4004 7 0.412 53.91 5657.386  0.220 

10  1.4004 50 0.342 121.05 3520.802  1.4004 7 0.422 46.69 4233.507  0.168 

11  1.4003 50 0.172 262.46 2669.182  1.4003 7 0.293 53.32 3404.477  0.216 

12  1.4005 50 0.249 172.52 1962.675  1.4005 7 0.354 46.50 2379.525  0.175 

13  1.4005 50 0.341 105.62 2741.610  1.4005 7 0.425 40.95 3301.980  0.170 

14  1.4004 50 0.301 144.51 1963.899  1.4004 7 0.387 47.68 2308.064  0.149 

15  1.4013 50 0.252 145.46 4302.104  1.4013 7 0.369 40.10 5661.891  0.240 

16  1.4743 45 0.173 178.42 3413.366  1.4743 6 0.291 35.71 4575.246  0.254 

 



45 
 

Brief technical biographies 

Ali Salmasnia is currently an Associate Professor of Industrial Engineering in University of 

Qom, Qom, Iran. His research interests include quality engineering, reliability, applied 

multivariate statistics and multi-criterion decision making. He is the author or co-author of 

various papers published in Journal of Manufacturing Systems, Computers and Industrial 

Engineering, Applied Soft Computing, Neurocomputing, Applied Mathematical Modelling, 

Expert Systems with Applications, Quality Technology and Quantitative Management, 

Journal of Information Science, Neural Computing and Applications, Applied Stochastic 

Models in Business and Industry, IEEE Transactions on Engineering Management, 

International Journal of Information Technology and Decision Making, Operational 

Research, TOP, Quality and Reliability Engineering International, Journal of Statistical 

Computation and Simulation, International Journal of Advanced Manufacturing Technology, 

Communications in Statistics-Simulation and Computation, Arabian Journal for Science and 

Engineering, Journal of Industrial and Business Economics, International Journal of 

Modeling and Simulation, and Scientia Iranica. 

Behnam Abdzadeh is currently a PhD candidate of Industrial Engineering in Iran University 

of Science and Technology. His research interest include statistical process monitoring, 

project management, and reliability engineering. He is the author or co-author of papers 

published in Journal of Manufacturing Systems, Neural Computing and Applications, Journal 

of Statistical Computation and Simulation, Communications in Statistics-Simulation and 

Computation, Scientia Iranica, Journal of Industrial and Systems Engineering, Journal of 

Industrial Engineering and Management Studies, and Journal of Modelling in Engineering. 

Mohammad Reza Maleki is an Assistant Professor of Industrial Engineering at Golpayegan 

College of Engineering in Isfahan University of Technology. His research interests include 

statistical process monitoring, profile monitoring, and reliability engineering. He has been the 

author or co-author of many papers published in high-ranked journals such as Computers and 

Industrial Engineering, Quality and Reliability Engineering International, Communications 

in Statistics–Simulation and Computation, Communications in Statistics–Theory and 

Methods, Transactions of the Institute of Measurement and Control, Journal of Industrial and 

Business Economics, Arabian Journal for Science and Engineering, Journal of Advanced 

Manufacturing Systems, International Journal of Modeling and Simulation and Scientia 

Iranica. 


